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1 Introduction

Named in honor of the Russian mineralogist Lev Perovski after the discovery of the calcium
titanium oxide mineral CaTiO3 in the Ural Mountains by Gustav Rose in 1839, the perovskite
structure identifies the wide class of compounds with general chemical formula ABX3. In this
ideally cubic structure, A is a large cation, usually an alkaline-earth or rare-earth element, lo-
cated on the corners of the lattice; B, in the center of the lattice, is a small 3d, 4d, or 5d transition
metal (TM), whereas the X-site anions are normally oxygen atoms that form an octahedral envi-
ronment around the B ion. The stability and structural distortions of perovskite crystal structures
are often discussed in terms of Goldschmidt’s tolerance factor t = (RA +RX)/

√
2(RB +RX),

where RA, RB, and RX are the ionic radii of the A, B, and X ions, respectively [1]. t = 1

represents the ideal cubic condition, which appears in a few cases. Different distorted structural
variants are formed for 0.75 < t < 1, the range of stability of the perovskite structure.

This high degree of chemical and structural flexibility combined with a inhomogeneous distri-
bution of the partially filled d states (tendency to electron localization) lead to the coexistence
of several physical interactions (spin, charge, lattice, and orbital), which are all simultaneously
active and give rise to a wide array of physical properties and functionalities: colossal magne-
toresistance (manganites) [2, 3], (multi)ferroelectricity (BaTiO3, BiFeO3) [4], superconductiv-
ity (cuprates) [5], metal-insulator transition (LaMnO3) [6], ferromagnetism (SrRuO3) [7], band
gaps spanning the visible and ultraviolet [8], surface chemical reactivity from active to inert [9],
etc. This rich array of behaviors uniquely suits perovskites for novel solutions in different
fields of application, including optoelectronics, spintronics, (photo)catalysis, and piezoelectric
devices. Moreover, the last few years have witnessed the rapid emergence of a new class of so-
lar cells based on mixed organic-inorganic halide perovskites (CH3NH3PbX3, X=Cl, Br, I and
related compounds) that are revolutionizing the field of solar technologies.

The study of the strong competition and interplay among the various orbital, structural, and spin
orderings is a central issue for the understanding of the physics and chemistry of perovskites
and poses great challenges at both the technological and fundamental level. The theoretical
description of perovskites requires methods at the frontier of materials modeling, capable of
describing the complex entanglement of the distinct interactions and to provide an accurate
account of basic properties such as structural distortions, band gap, and magnetic moment.

From an methodological perspective, the theoretical study of so-called strongly correlated ma-
terials and specifically perovskites has been mainly conducted within two historically distinct
electronic structure communities: model Hamiltonians and first principles. Spin-orbital ef-
fective Hamiltonians are based on a simplified lattice-fermion models such as the Hubbard
model [10], in which the many-body problem is reduced to a small number of relevant bands and
short-ranged electron interactions. On the other hand, in first principles schemes the intractable
Schrödinger equation involving many interacting electrons is mapped onto a simplified problem
that includes an approximate treatment of the exchange and correlation (XC) electron interac-
tion. Prominent examples of this class of schemes are the density-functional theory [11, 12]
(DFT) and the Hartree-Fock theory [13, 14] (HF). In the density-functional theory [11, 12] the
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full many-body problem is mapped onto a system of non-interacting electrons moving in an
effective Kohn-Sham potential. In DFT, XC effects are accounted for by approximated XC
functionals such as the local-density approximation (LDA) and the generalized gradient ap-
proximation (GGA) [15]. The HF method replaces the many-body Schrödinger equation by a
set of one-particle equations, with each electron moving in an effective (Fock) mean field. The
electronic many-body wavefunction is written in terms of one particle spin-orbitals arranged in
a Slater determinant [16]. This Slater picture guarantees an exact account of the exchange term
but completely neglects correlation effects.

DFT and HF are considered to be first principles methods (or likewise ab-initio) because they
rely on basic and fundamental quantum-mechanical laws without invoking additional assump-
tions or adjustable parameters. Both types of approaches, first principles and many-body model
Hamiltonians, have specific assets but also limitations. On the one hand, DFT takes into account
the realistic electronic structure, but standard XC functionals are generally unable to correctly
describe the localized picture typical of strongly correlated compounds. In this sense, the most
pressing aspect of DFT is the construction of improved XC functionals able to overcome this
drawback. Many different approaches have been proposed for reducing these inaccuracies:
the weighted-density approximation [17], the DFT+U approximation [18], the self-interaction
correction method [19], the screened-exchange approximation [20], the optimized effective po-
tential [21], various meta-GGA potentials [22], and hybrid functionals [23]. Alternative and
more sophisticated routes to go beyond DFT/HF are the GW approximation, in which the self
energy of a many-body system of electrons is computed explicitly by making use of the single
particle Green functionG and the screened Coulomb interactionW [24], and post Hartree-Fock
methods (Møller-Plesset perturbation theory [25], configuration interaction [26], and coupled
cluster [27]). On the other hand, model Hamiltonian approaches solve the many-body problem
more accurately but do not deal with the realistic band structure, some aspect of the electronic
correlation are not included (like two-particle correlation and non-local correlation) and the
results are dependent on a set of adjustable parameters. In this respect, dynamical mean field
theory (DMFT) [28] and its extensions have marked a methodological breakthrough in this field.
With the aim of constructing many-body model Hamiltonians entirely from first principles and
taking advantage of the specific assets of both types of approaches, in the past decade much
effort has been made to combine DFT with many-body model Hamiltonians, an example of
which is DFT+DMFT [29, 30].

In this abundant cluster of methods there no best choice. The decision to adopt one method
or the other should be guided by the specific intent of the research and by the computational
resources at disposal. If the aim is to achieve a realistic and predictive account of the coupling
between structural distortions and electronic/spin degrees of freedom in an extended, strongly
correlated system like perovskites, beyond-LDA/GGA approaches appears to be a practical and
convenient solution. The reason being that these methods allow for computationally efficient
calculations of the forces acting on the ions and simultaneously furnish a generally adequate
(self-consistent) account of electron localization, spin/orbital ordering, and total energies. The
unfavorable aspect is that these approaches give only an approximate description of electronic
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correlation, inferior to post-Hartree-Fock methods and last-generation many-body Hamiltonians
and GW.
The purpose of these lecture notes is to present the essential ideas and a fairly detailed physical
picture of hybrid functionals and to provide an overview of recent applications of hybrid func-
tionals to perovskites covering several different physical scenarios, including 3d, 4d, and 5d
perovskites, metal-insulator transitions (MIT), magnetic transitions and ordering temperatures,
Jahn-Teller distortions, polarons, multiferroism, and surface energies. These notes are based
on a series of articles dealing with the applications of hybrid functionals to perovskites [31–42]
and on several methodological papers (cited along the text).

2 Hybrid functionals: overview and basic concepts

Hybrid functionals are a class of XC functionals in DFT that are constructed by a suitable
mixing of LDA/GGA XC functionals with a certain portion of the exact HF exchange [23].
Before discussing the origin and framework of hybrid functionals in detail we start from a very
brief recap of DFT and HF. Both methods are designed to provide a solution to the Schrödinger
equation for a many-body system, defined by the Hamiltonian (in atomic units)

Ĥ = − 1

2

N∑
i=1

∇2
i

︸ ︷︷ ︸
Te

−
M∑
n=1

1

2Mn

∇2
n

︸ ︷︷ ︸
Tn

+
1

2

N∑
i,j=1
i6=j

1

|ri − rj|︸ ︷︷ ︸
Vee

−
M ;n∑
n;i

Zn
|ri −Rn|︸ ︷︷ ︸
Ven

+
1

2

M∑
n,m=1
n6=m

ZnZm
|Rn −Rm|︸ ︷︷ ︸
Vnn

(1)
where Te and Tn represent the kinetic energy operators for the electrons and nuclei in the system,
respectively, and Vee, Ven, and Vnn are the electron-electron, electron-nuclei, and nuclei-nuclei
potential energies, respectively. Within the Born-Oppenheimer approximation, the global prob-
lem can be separated into an electronic problem with fixed nuclei and a nuclear problem under
an effective potential generated by the electrons. In compact form, the electronic Hamiltonian
can be written as:

Ĥel = Te + Vee + Ven , (2)

and the corresponding Schrödinger equation has the form

Ĥel Ψ = E Ψ , (3)

where E is the energy and Ψ the many-particle wave function.

2.1 Density-functional theory

DFT is a way to solve the Schrödinger equation for a many-body system of interacting elec-
trons. In DFT the real system is described by an effective Kohn-Sham (KS) one-electron sys-
tem in which the electron density n(r) (which only depends on the three spatial coordinates),
rather than the complex many-electron wave function Ψ plays the crucial role, and the electron-
electron interactions are taken into account via approximate XC functionals. [11, 12, 43] The
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effective KS potential is constructed such that the ground-state density obtained from the fic-
titious, noninteracting electron system is equal to the ground-state density of the given real,
interacting electron system.
In the KS formulation of DFT, the density-dependent KS potential VKS is the sum of the clas-
sical Hartree potential VH , the XC potential Vxc, and the external potential of the nuclei Ven
(usually labeled Vext), and the KS single-particle equations read(

− ~2

2me

∇2 + Vext(r) + VH + Vxc(r)

)
φi(r) = εKSi φi(r) , (4)

where φi and εKSi are the KS single-particle electronic orbitals and energies, respectively, with
the density calculated as a sum over filled orbitals,

n(r) =
∑

i,occupied

|φi(r)|2. (5)

According to the DFT prescriptions, the self-consistent solution of this set of one-electron
Schrödinger equations should yield the correct ground-state density of the original system. In
DFT the total energy can be expressed as a functional of the density

E = TKS[n] +

∫
d3n(r)Vext(r) +

1

2

∫ ∫
d3r d3r′

n(r)n(r′)

|r− r′|
+ Exc[n] . (6)

The quality of the solutions depends on the form of the XC potential Vxc that is defined to
include everything else omitted from the first three terms in Eq. (4) and is determined from the
functional derivative of the XC energy functional Exc,

Vxc([n], r) =
δEXC
δn(r)

. (7)

Since the exact form of Exc is unknown, in practice it must be approximated. The two most
popular approximations are the LDA [44],

ELDA
xc [n] =

∫
dr3 exc

(
n(r)

)
, (8)

where exc(n(r)) is the known XC energy per particle for an electron gas of uniform spin densi-
ties, and the GGA [45],

EGGA
xc [n] =

∫
dr3 f

(
n(r),∇n(r)

)
, (9)

where the input function f is not unique [46].
Accurate approximations to Exc are essential to obtain good predictions of materials properties.
Despite the great success of DFT, its predictive power has been limited by the strong underesti-
mation of band gaps (up to 50%, see Fig. 1). This band gap problem is to a large extent due to
two major deficiencies, the presence of self interaction and the fact that the KS gaps are missing
a term coming from the discontinuity of derivatives of the exchange-correlation functional [47].
The self-interaction problem [48] arises from the non complete cancellation of the spurious
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Fig. 1: DFT and HF band gaps compared to the measured values (red line).

repulsion of each electron from itself, included in the Hartree term VH , that is not completely
accounted for in XC functionals. Since this spurious Coulomb term ∆ε for a given electron has
the general form

∆ε1 =

∫ ∫
dr dr′

n1(r)n1(r′)

|r− r′|
(10)

the self-interaction error is larger for localized states, which are typical of strongly-correlated
systems. The second drawback, the discontinuity problem, is caused by the absence of any
derivative discontinuity in the LDA and GGA functionals at integer particle number, which
should be present as demonstrated by Perdew and coworkers [49].

2.2 Hartree-Fock theory

The Hartree-Fock method is a variational, wavefunction-based approach. Unlike DFT, the
many-body Schrödinger equation is solved with respect to the wavefunction, which takes the
form of a Slater determinant

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)
...

...
...

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣
, (11)

where the φ are single-particle spin orbitals. Thus, similarly to DFT, the HF method follows a
single-particle approach, i.e., the electrons are considered as occupying single-particle orbitals
making up the wavefunction. With this type of wave function a mean-field approximation is
implied: Each electron feels the presence of the other electrons indirectly through an effective
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potential. The Slater determinant is fully antisymmetric: Exchanging any two particle’s coor-
dinates is equivalent to interchanging the corresponding rows of the Slater determinant. As a
result, exchanging any two particles’ coordinates changes the sign of the wavefunction. This
assures that the exchange term is taken into account exactly. The Slater determinant vanishes
when two or more orbitals are the same, i.e., the spurious self-interaction in the Hartree term
is canceled. However, due to the mean-field approximation, electron correlation effects are
completely neglected.
The spin-orbitals are determined by minimizing the ground-state energy using the variational
principle with this Slater determinant

EHF =
〈Ψ |Ĥe|Ψ〉
〈Ψ |Ψ〉

, (12)

and finally one arrives to the HF equations(
− ~2

2me

∇2 + Vext(r) + VH(r)

)
φi(r) +

∫
d3r′ Vx(r, r

′)φi(r
′) = εHFi φi(r). (13)

This set of equations has strong similarities with the DFT KS equations Eq. (4). Apart from the
specific form of the single-particle orbitals φ, the only fundamental difference is the way XC
effects (the last term on the left side) are treated: In DFT both exchange and correlation con-
tributions are taken into account in an approximate way through the XC potential Vxc, whereas
in HF theory correlation effects are completely neglected (mean-field approximation) but the
exchange part is exact (through the Slater determinant), without invoking any type of approxi-
mation. Specifically, the exchange is given by

Vx(r, r
′) = −

∑
j fjφj(r)φj

∗(r′)

|r− r′|
, (14)

where fj are the occupation weights of the orbitals φj . This is not a simple term since it is
nonlocal, orbital dependent, and requires knowledge of all (occupied) orbitals.
Going back to Fig. 1, where DFT approximated functionals lead to small band gaps, the lack
of correlation in HF yields to a serious overestimation of band gaps. An uneducated and rough
interpretation of Fig. 1 might suggest that the inclusion of a scrap of HF in DFT might eventually
result in a better estimation of band gaps. Nonsense? Not really, but the route to such envisioned
hybrid functionals should start from elsewhere.

2.3 The adiabatic connection formula: The birth of hybrid functionals

The starting point for constructing the bridge between DFT and HF is the adiabatic connection.
In DFT, the adiabatic connection continuously transforms the non-interacting system to the
physical interacting one:

EXC =

∫ 1

0

Exc,λ dλ , Exc,λ = 〈Ψλ|Vee|Ψλ〉 − EH , (15)
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Fig. 2: (left) A cartoon of the integrand in the adiabatic connection formula. The Kohn-Sham
exchange-correlation energy EXC,λ (shadow area) as a function of the coupling constant λ.
The extreme values at λ=0 and λ=1 (indicated by the circles) correspond to the non-interacting
(exchange only, EX) and truly interacting system (exchange plus full correlation, EXC,λ=1).
(right) Sketch of the dependence of EX,λ on the mixing parameter α in the PBE0 hybrid func-
tional; the comparison with Møller-Plesset perturbation theory suggests α=0.25 as “optimum”
fraction [50]. Adaped from a picture in Martin Schlipf, “Beyond LDA and GGA: Hybrid Func-
tionals.”

where λ is an intraelectronic coupling-strength parameter that tunes the electron-electron Coulomb
potential Vee,

EXC =

∫ 1

0

Exc,λ dλ, Vee,λ =
∑
ij

λ

|r− r′|
(16)

and Ψλ is the λ-dependent wavefunction.
This formula connects the noninteracting Kohn-Sham system (λ = 0, effective KS potential,
Ψλ=0 = KS wavefunction) continuously with the fully interacting real system (λ = 1, true exter-
nal potential, Ψλ=1 = exact many-body wavefunction) through intermediate partially interacting
(0 < λ < 1) systems (see Fig. 2). Only λ = 1 is real or physical. The λ = 0 limit and all the
intermediate values of λ, are convenient mathematical fictions.
The exchange-correlation energyEXC corresponds to the shaded area in Fig. 2 and is equivalent
to the full (λ = 1) many-body exchange-correlation energy minus the kinetic contribution to the
XC term (TXC , white area in Fig. 2). However, as already mentioned, the exact XC functional
is unknown. The calculation of the complete adiabatic connection curves is prohibitive and can
only be done for small reference systems using Quantum Monte Carlo or beyond-HF quantum-
chemistry approaches. This is the core of DFT: XC functionals are constructed by combining
known exact limiting values with accurate reference energies.
But what we want here is to take advantage of the fact that the exact exchange EX (λ = 0) can
be calculated from the KS orbitals, Eq. (14), and that XC functionals provide an approximation
for the λ = 1 limit. A first evident way to approximate the integral of Eq. (16) is a linear
interpolation, which leads to the following approximate XC energy

EXC ≈
1

2
EXC,λ=0 +

1

2
EXC,λ=1 (17)
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that forms the basis for the half-half hybrid functional proposed by Becke [51]

EHybrid
XC =

1

2
EHF
X +

1

2
ELDA
XC . (18)

Approaches like hybrid functionals (but also DFT+U) involving nonlocal exchange, go beyond
standard KS DFT and are usually referred to as generalized KS approaches [52, 53]. It should
be mentioned already at this stage that the nonlocality of the exchange potential increases the
computational load substantially due to a double summation over the Brillouin zone. In plane-
wave codes the computing time increases by a factor of 100 to 1000 for multiple k points.

2.4 Hybrid functionals: Historical overview

After proposing the half-half hybrid, Becke introduced a parametric hybrid functional including
exact exchange and local (LDA) and gradient-corrected (GGA) exchange and correlation that
has become very popular in the quantum chemistry community with the abbreviation B3LYP
[54, 55]. The B3LYP depends on three parameters. It incorporates only 20% of the exact HF
exchange and has the form

EB3LYP
XC = ELDA

XC + α1(EHF
X − ELDA

X ) + α2(EGGA
X − ELDA

X ) + α3(EGGA
C − ELDA

C ) , (19)

where the three mixing parameters α1 = 0.2, α2 = 0.72, and α3 = 0.81 are determined by
fitting experimental atomization energies, electron and proton affinities, and ionization poten-
tials of the molecules in Pople’s G1 data set. The B3LYP has been intensively and successfully
adopted for atomic and molecular calculation, but its application to periodic systems is not
equally satisfactory, because the B3LYP functional does not reproduce the correct exchange-
correlation energy for the free-electron gas. This is particularly problematic for metals and
heavier elements beyond the 3d transition-metal series [56].
A more appropriate hybrid functional for solid-state applications is the PBEh proposed by
Perdew, Burke, and Ernzerhof [57] (also referred to as PBE0) [58], which reproduces the ho-
mogeneous electron gas limit and significantly outperforms B3LYP in solids, especially in the
case of systems with itinerant character (metals and small-gap semiconductors) [56].
The starting point for the construction of the PBE0 functional is the application of the mean
value theorem to the monotonically decreasing integrand EXC,λ in the adiabatic connection
formula, Eq. (15). One obtains an approximate EXC that dependents on one parameter only, α:

EXC ≈ αEXC,λ=0 + (1− α)EXC,λ=1, α ∈ [0, 1] . (20)

The final form of the PBE0 functional is obtained by replacing EXC,λ=1 with the GGA-type
functional of Perdew, Burke, and Ernzerhof (PBE):

EPBE0
XC = EPBE

XC + α(EHF
X − EPBE

X ) . (21)

By analyzing the dependence of EX,λ on α and by a direct comparison with Møller-Plesset
perturbation-theory reference energies, Perdew, Ernzerhof and Burke found that the choice
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α=0.25 yields the best atomization energies of typical molecules [50]. Although this 0.25 choice
has become a standard in PBE0 calculations, the same authors have warned that an ideal hybrid
should have an optimum α for each system and property. They arrived to this conclusion by
treating α as an index of correlation strength, and showing that different adiabatic connection
curves would be obtained for different values of α, as exemplified in Fig. 2. The important
message is that α=0.25 is the best compromise, but a system-specific and property-specific α
would better mimic the real system. Various attempts to propose a system-dependent α will be
discussed later.
The PBE0 method has been successfully applied to solids [59,60], but its widespread application
was hindered by the numerical complications in calculating the slow-decaying long-range (lr)
part of the exchange integrals and exchange potential. This is particularly difficult for metals,
where a dense k-point sampling is needed, leading to very slow convergence [56].
To solve this issue, Heyd, Scuseria, and Ernzerhof proposed to replace the lr-exchange by the
corresponding density-functional counterpart [61, 62], i.e., by replacing the exact exchange Vx
by a screened version Vsx

Vsx(r, r
′) = −

∑
j

fj φj(r)φj
∗(r′)

erfc
(
µ|r− r′|

)
|r− r′|

, (22)

where µ is the critical inverse screening length. In the resulting screened hybrid functional,
usually referred to as HSE06, only the sort-range (sr) exchange is treated at HF level

EHSE
XC = αEHF,sr

X (µ)+(1−α)EPBE,sr
X (µ)+EPBE,lr

X (µ)+EPBE
C , α ∈ [0, 1], µ ∈ [0,∞]. (23)

The allowed range of variation of µ is 0 ≤ µ ≤ ∞, but in practical calculations its value is
usually chosen in a relatively narrow (and physically relevant) range [63]. Based on molecular
tests the value of µ was set to 0.2 Å−1 (corresponding to a screening length rs = 2/µ = 10 Å),
which is routinely considered as the standard choice for HSE calculations [62].
As the intent of HSE was to achieve accuracy equivalent to PBE0 at a reduced computational
effort, the Fock-exchange fraction was initially routinely set to its PBE0 value of α=0.25, but
it has been shown that the value α that lead to the best agreement with experimental band
gaps is material-specific and often deviates significantly from 0.25, for both PBE0 and HSE
[32, 63–65]. A few comprehensive reviews of applications of the HSE functional are available
in literature [31, 66, 67].
The decomposition of the Coulomb kernel into a lr and sr part in the HSE functional is obtained
by splitting the Coulomb operator by way of the error function (erf)

1

r
=

erfc(µr)

r︸ ︷︷ ︸
sr

+
erf(µr)

r︸ ︷︷ ︸
lr

, (24)

where r = |r− r′|, erfc is the complementary error function, i.e., erfc(µr) = 1− erf(µr), and
µ is the screening parameter that controls the range separation. The inverse of the screening
parameter, µ−1, represents the critical distance at which the short-range Coulomb interactions
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Fig. 3: (left) Plots of 1/r, erf(µr)/r, and erfc(µr)/r for the standard value of µ = 0.2. The
inset shows the three curves around the critical screening distance rs=2/µ=10 Å, at which the
short-range Coulomb interactions become negligible. (right) Diagonal part of the electronic
contribution to the inverse of the macroscopic dielectric function vs. wave vector g computed at
the GW level for MgO compared with the HSE screening given for different values of the mixing
parameter α at the fixed screening length µ = 0.2 Å−1, as well as the parametrization proposed
by Kresse, µ = 0.5 Å−1, α = 0.6 [68]. The thick straight line is the PBE0 curve.

can be assumed to be negligible. This is shown graphically in Fig. 3 (left panel). The HSE
functional reduces to PBE0 for µ = 0, and to PBE for α = 0 or µ → ∞. Moussa et al. have
shown that the PBE limit is indeed achieved for a much smaller value of µ of about 1 [63].
In the next section we will discuss a few important aspects of this screened exchange in more
detail.

2.5 Screened exchange : Hybrid functionals meet GW

Besides the computational convenience there is a formal justification for the incorporation of a
certain amount of screening in the hybrid functional formalism, based on the consideration that
in multi-electron systems the unscreened HF exchange is effectively reduced by the presence of
the other electrons in the system. The concept of screening immediately links hybrid functionals
to the GW approximation, in which the screening is a natural and fundamental ingredient [24,
31, 63, 67–70].
In the GW quasiparticle equations, written in a similar fashion to the DFT (Eq. (4)) and HF
(Eq. (13)) equations,(

− ~2

2me

∇2 + Vext(r) + VH(r)

)
φ(r) +

∫
dr′Σ(r, r′, ω)φ(r′) = εGWi φi(r) , (25)

the self-energy Σ is calculated explicitly in terms of the single-particle Green function G and
the screened Coulomb interaction W

Σ(ω) = iG(ω)W (ω), (26)

and the screened Coulomb interaction is given by

W (ω) = ε(ω)−1v , (27)
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where v is the bare Coulomb interaction 1/|r− r′| and ε is the frequency-dependent dielectric
function. By replacing the screening in W by an effective static (ω = 0) dielectric constant
ε∞ = 1/α, we obtain the effective W of HSE

WHSE = α
erfc(µ|r− r′|)
|r− r′|

. (28)

Inspired by the discussion in Ref. [68] we illustrate this connection by comparing in Fig. 3 the
diagonal part of the electronic contributions to the static dielectric function ε−1(g, ω = 0) as a
function of the reciprocal lattice vector g (|g|) at the GW and HSE levels for the wide-bandgap
material MgO. The GW calculation are done using the Vienna Ab Initio Simulation Package
(VASP) [71, 72]. In reciprocal space the relation between ε−1(g, ω = 0) and the screened
potential at zero frequency W is

W static(g,g) =
4π

|g|2
ε−1(|g|, ω = 0) , (29)

where 4π/|g|2 is the Coulomb kernel and ε−1(g) is the actual screening. At large g, ε−1(g)

approaches 1, meaning that nonlocal exchange is not screened and a purely HF picture is recov-
ered; for smaller g the dielectric function is progressively reduced indicating that a continuously
larger portion of the nonlocal exchange is screened by the other electrons. The value of ε−1(g)

at g = 0 (usually referred to as the ion-clamped dielectric constant ε∞) should be compared
with the inverse of the measured dielectric constant that is about 0.3 for MgO.
In HSE the model screening in reciprocal space (also plotted in Fig. 3) is given by the following
expression

ε−1(g) =
1

α

(
1− eg2/4µ2

)
. (30)

From Fig. 3 it is evident that HSE does not appear as an appropriate approximation. The first
problem is that at very short wave vector HSE does not include any exact exchange, thus mim-
icking an infinite dielectric constant ε∞. This is good for metals but fundamentally not correct
for insulators and in the vacuum. However, it has been shown that the removal of the long-range
part of the exact exchange does not severely affect the prediction of band gaps for semiconduc-
tors and insulators [68]. Rather, the main problem of HSE is the average amount of nonlocal
exchange. It is clear that HSE with only 1/4 of the exact exchange is not capable of describing
wide-bandgap materials such as MgO that have a generally small dielectric constant. In fact,
Fig. 3 shows that at any reciprocal lattice vector g (i.e. for any wavelength), the standard 0.25
HSE screening is always smaller than the MgO ε−1(g), indicating that the amount of nonlocal
exchange always exceeds 0.25. This problem could be solved by increasing α to a value at least
equal to the inverse dielectric constant ε∞, which represents the minimum of ε−1(g) (found at
g = 0). Kresse has proposed an alternative parametrization (µ=0.5, α=0.6) that improves the
band gaps from small to wide-band-gaps materials as compared to standard HSE [68]. The
shape of ε−1(g) corresponding to this parametrization is also included in Fig. 3: It incorporates
a larger amount of nonlocal exchange but the slope at small g is sizably lower. This parametriza-
tion is efficient for bandgap predictions but properties such as formation energies are worse than
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those obtained by conventional HSE, supporting the conclusions of Perdew, Ernzerhof in their
seminal paper [50].
The bottom line of the above discussion is that the link between GW and HSE provides a rough
instruction on how to set an optimal α parameter through the relation

αopt ≈
1

ε∞
. (31)

The ε∞ dependent α has proven to yield good band gaps [65,73] but becomes impractical when
ε∞ is unknown due to the complexity of the procedure to compute the dielectric constant. In
addition, this choice is more justified for unscreened PBE0-like hybrid functionals than for
screened hybrid functionals (like HSE). In screened hybrids, screening is already present to
some extent in the range separation. In Ref. [32] the effect of the HSE screening on α is
quantified in a downward shift of about 0.07.
Several protocols have been proposed to obtain system-dependent parameters, either based
on the similarity between hybrid functionals and quasiparticle theory [32, 65, 73–77] (these
schemes rely on the α ≈ 1/ε∞ assumption, Eq. (31)) or by means of a systematic analysis of
the HSE parameter space [63] (for the SC/40 semiconductor set the best accuracy is achieved
for α=0.313 and µ = 0.185 Å−1 [63]).
As a practical illustration of the role of α and µ, Fig. 4 illustrates the dependence of the band gap
as a function of α and µ for one of the most studied strongly correlated perovskites, LaMnO3.
By increasing α for a fixed value of µ, we include more nonlocal exchange and reduce the
screening; as expected, the band gap increases linearly, approaching a HF-like description. On
the contrary, the increase of µ at fixed α reduces the already small nonlocal exchange at short
wave vector g (large distances) thus inducing a progressive reduction of the band gap.
As a final note before concluding this section, it should be emphasized that, although hybrid
functionals are a step forward with respect to standard local and semilocal functionals as they
incorporate a portion of nonlocal exchange, the treatment of correlation effects is not improved
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Fig. 5: Comparison between computed (PBE, PBE0 and HSE) and experimental band gaps for
a representative data set of insulators and semiconductors. Taken from Ref. [78].

with respect to conventional functionals. The fractional nonlocal exchange, however, is suffi-
cient to cure the LDA/GGA underestimation of the derivative discontinuities at integer numbers,
which is ultimately one of the core arguments in favor of hybrid functionals. Fig. 5 manifests
the improved estimation of band gaps obtained by HSE and PBE0 as compared to standard
PBE.

3 Applications: Hybrid functionals for perovskites

Hybrid functionals have been increasingly and successfully employed for a wide range of solid-
state problems. Initially, the applications were limited to monatomic systems or binary com-
pounds but the upsurge of interest in transition-metal perovskite-based compounds motivated by
their technological relevance and functional ductility has motivated the use of hybrid function-
als in this class of materials. Most of the applications of hybrid functionals to perovskites have
focused on the “classical” 3d subclass, in particular titanates, manganites, nickelates, ferrites,
aluminates, and to a lesser extent cobaltates and cuprates (See Ref. [31] and references therein).
The range of physical phenomena investigated includes band-gap prediction, orbital/charge or-
dering, metal-to-insulator transition (MIT), structural distortions, phonons, ordering temper-
atures, ferroelectricity and multiferroism, exchange integrals, dielectric properties, spin-orbit
coupling effects, etc.
In this section, we will present an ample number of examples, aiming to cover a wide variety of
physical effects. Most of the example will use the screened HSE method.
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Fig. 6: The perovskite structure.

3.1 The 3d perovskite data set

We start by presenting the structural, electronic, and magnetic properties of the series of 3d
transition-metal-oxide-perovskites LaMO3, withM ranging from Sc to Cu [32]. This data set is
representative of a large variety of behavior arising from the different filling of the 3d manifold
(from d0 to d8) and different values of the tolerance factor (from 0.91 to 1.01), as summarized
in Table 1. It comprises Mott-Hubbard (MH) and charge-transfer (CT) insulators; (correlated)
metals; A-type, C-type, and G-type antiferromagnets as well non-magnetic and paramagnetic
systems; and crystal symmetry spanning orthorhombic, monoclinic, rhombohedral, and tetrag-
onal symmetries with different degrees of Jahn-Teller distortions. The typical structure, general
for all perovskites, is given in Fig. 6.
From a statistical analysis of the structural properties (lattice constant and internal distortions),
band gaps, and magnetic properties (ordering and spin moment) computed by HSE for different
values of the mixing factor α we have constructed a mean absolute relative error (MARE, with
respect to experimentally available results) map (shown in Fig. 7) from which a few conclusions
can be drawn:

Table 1: Summary of the fundamental ground-state properties of LaMO3: (i) Crystal structure:
O=orthorhombic, M=monoclinic, R=rhombohedral, and T=tetragonal; (ii) 3d filling; (iii) elec-
tronic character: I=insulator and M=metal; (iv) Magnetic ordering: NM=non-magnetic, dif-
ferent type of AFM arrangements, and PM=paramagnetic.

LaScO3 LaTiO3 LaVO3 LaCrO3 LaMnO3 LaFeO3 LaCoO3 LaNiO3 LaCuO3

O-Pnma O-Pnma M-P21/b O-Pnma O-Pnma O-Pnma R-R3̄c R-R3̄c T-P4/m

d0 t2g
↑ t2g

↑↑ t2g
↑↑↑ t2g

↑↑↑eg
↑ t2g

↑↑↑eg
↑↑ t2g

↑↓↑↓↑↓ t2g
↑↓↑↓↑↓eg

↑ t2g
↑↓↑↓↑↓eg

↑↓

I I I I I I I M M
NM G-AFM C-AFM G-AFM A-AFM G-AFM PM PM PM
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Fig. 7: Summary of the MARE for the structural properties (top), band gap ∆ (middle), and
magnetic moment m (bottom) at the PBE and HSE level. For the band gap ∆ and the mag-
netic moment m, the MARE are indicated by the numbers associated with each bar. A few
comments for the labels ’OK’ and ’wrong’: (i) LaScO3, m: all methods correctly predict a non-
magnetic ground state; (ii) LaCoO3, m: all methods correctly predict zero magnetic moment;
(iii) LaNiO3, ∆: PBE is the only approach that correctly finds a metallic solution; (iv) LaNiO3,
m: all methods wrongly predict a magnetic ground state; (v) LaCuO3, ∆: all methods correctly
predict a metallic solution; (vi) LaCuO3, m: PBE and HSE (0.05, 0.15, and 0.25) correctly
predict zero magnetic moment, whereas HSE 0.35 wrongly stabilizes a magnetic ground state.

1. The results clearly depend on the value of α, but as a general trend HSE is capable of
capturing the correct electronic and magnetic ground state for all insulating compounds
(M=Sc to Co), thereby improving the deficient DFT-based predictions (but DFT delivers
a better value of the magnetic moments for M=Ti, V, and Cr).

2. For the structural properties, on the other hand, PBE performs rather well, delivering
optimized geometry within 1%. So in this sense PBE would not need any adjustment.
The only important exception are the JT parameters in LaMnO3, which PBE finds 60%
smaller than experiment (not shown, see [31]).

3. The complex nature of the PM correlated metals LaNiO3 and LaCuO3 is only marginally
accounted for by PBE and rather poorly treated at the HSE level. This is mostly due to
underlying dynamical correlation effects which cannot be easily treated at the DFT/HF
level. For these compounds, PBE might be considered to be a good starting point for
more elaborated many-body approaches such as GW.

4. From this plot it is possible to derive a set of phenomenological optimum values of α,
αHSE . Fig. 8 shows a nice correlation between αHSE and the optimum values derived
from the inverse dielectric constant relation (1/ε∞) Eq. (31) using the experimental ε∞.
The 0.07 shift between the two curves should be attributed to the fact that Eq. (31) holds
for standard unscreened hybrid functionals such as PBE0, as discussed in the previous
section. HSE is a range-separated screened hybrid functional which already contains a
certain degree of screening (controlled by the screening factor µ).
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Fig. 8: (left) optimum values of α obtained from HSE, αHSE , compared to those derived from
the inverse dielectric constant relation (1/ε∞), Eq. (31). (right) Trend of selected structural
(Volume V, tilting angle θ, and JT distortions Q2 and Q3), electronic (band gap ∆), magnetic
(magnetic moment m), and dielectric (ε∞) quantities along the LaMO3 series from M=Sc to
M=Cu. We also show the trend of the tolerance factor t as well as RM . For LaTiO3 we used
α=0.1. The character of the insulating gap is also indicated (BI = band insulator, CT = charge
transfer, MH = Mott-Hubbard, CT/MH = mixed CT and MH character).

Within this set the overall comparison with available experimental data for a large set of quan-
tities is excellent. Figure 8 shows the remarkably good agreement between the calculated and
measured values of the volume (V ), tilting angle (θ), JT distortion, band gap (∆), magnetic mo-
ment (m), and dielectric constant (ε∞). From a physical point of view, the progressive reduction
of the volume from Sc to Cu is clearly associated with the almost monotonic decrease of the M
ionic radius RM , whose size is determined by the competition between the size of the 4s shell
(where extra protons are pulled in) and the additional screening due to the increasing number
of 3d electrons. Adding protons should lead to a decreased atom size, but this effect is hindered
by repulsion of the 3d and, to a lesser extent, 4s electrons. The V/RM curves show a plateau at
about half filling (Cr-Mn-Fe) indicating that for this trio of elements these two effects are essen-
tially balanced and atom size does not change much. The volume contraction is associated with
a rectification of the average ( ̂M −O1 −M+ ̂M −O2 −M )/2 tilting angle θ, which follows
the evolution of the tolerance factor t very well. This indicates that the tolerance factor is in-
deed a good measure of the overall stability and degree of distortion of perovskite compounds.
The variation of the magnetic moment as a function of M can be easily understood in terms of
the progressive t2g and eg band filling in the high-spin compounds LaTiO3 (t2g↑, m=0.51 µB),
LaVO3 (t2g↑↑, m=1.3 µB), LaCrO3 (t2g↑↑↑, m=2.63 µB), LaMnO3 (t2g↑↑↑eg↑, m=3.66 µB), and
LaFeO3 (t2g↑↑↑eg↑↑, m=3.9-4.6 µB).
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We conclude this overview of the 3d perovskite data set by showing the band structures (Fig. 9)
and associated orbital ordering for LaTiO3 (t2g), LaVO3 (t2g) and LaMnO3 (eg) (Fig. 10).
Starting from the d0 band insulator LaScO3, the addition of one d electron creates a highly
localized t2g state right below EF in LaTiO3. The gradual filling of this t2g manifold leads to
a continuous increase of the bandwidth from t2g

1 (LaTiO3) to t2g3 (LaCrO3), connected with a
gradual increase of the crystal-field splitting. In LaMnO3, the fully occupied t2g band is pushed
down in energy and the valence band maxima are dominated by the half-filled eg1 subbands.
The eg orbital gets completely filled in LaFeO3, which is the last member of the series having a
predominantly MH gap. The inclusion of one additional electron yields a sudden change of the
band structure characterized by a high increase of p-d hybridization and bandwidth around EF,
which finally leads to the onset of a metallic state in LaNiO3 and LaCuO3.
Three members of the LaMO3 family (LaTiO3, LaVO3, and LaMnO3) are known to display
orbital-ordering (OO) associated with the partially filled t2g and eg orbitals located at the top of
the valence band (enclosed by thick lines in Fig. 9). In the following we describe briefly the
most important characteristics of the observed OO states.
(i) In LaTiO3, where the OO originates from the single t2g electron, the lobes have a quasi
cigar-like shape with asymmetric contributions along the two main directions, indicating an
almost identical occupation of the three xy, xz, and yz t2g-shells. Coplanar lobes are arranged
in a checkerboard-like way with a sign alternation along z, in good agreement with previously
reported theoretical [79] and experimental works [80]. There is a clear connection between this
checkerboard-like Ti d1 ordering and the JT structural instability, which is manifested by the
tendency of the occupied t2g state to lie along the longer Ti-O bond. This also explains why
the checkerboard-like OO in LaTiO3 is not as evident as in LaMnO3: In LaTiO3 the difference
between the distinct Ti-O bond lengths Ti-Os, Ti-Om, and Ti-Ol, quantified by the JT parameters
Q2 and Q3, is about one order of magnitude smaller than in LaMnO3 [31].
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Fig. 10: Isosurfaces of the magnetic orbitally ordered charge density for LaTiO3, LaVO3, and
LaMnO3 associated with the topmost occupied bands highlighted in the insets of Fig. 9. Light
(yellow) and dark (blue) areas represent spin down and spin up, respectively, indicating the
different types of spin orderings in LaTiO3 (G-type), LaVO3 (C-type), and LaMnO3 (A-type).
Top panel: three dimensional view; Bottom: projection onto the xy plane.

(ii) The V3+ ions in LaVO3 can accommodate two electrons in the three possible orbital states
dxy, dxz, and dyz. The spins are arranged according to C-type ordering, whereas the OO state is
found to be G-type, in accordance with the Goodenough-Kanamori rules [81] and in agreement
with X-ray diffraction [82] and previous GGA [83] and HF [84] calculations. The distribution of
the t2g orbitals in the G-type OO state follows the cooperative JT-induced V-O bond-alternation
in the xy plane and along the z axis, i.e., the t2g charge density in one specific V site is rotated
by 90◦ with respect to that in the 6 neighboring V sites (four in-plane and two in the adjacent
vertical planes). As already observed for LaTiO3, the t2g orbitals are preferentially occupied
along the long-bond direction.

(iii) The C-type OO in LaMnO3, originating from the singly occupied eg state of the Mn+3

3d electrons in the high-spin configuration t2g3eg
1 has been extensively studied both experi-

mentally [85], and theoretically [86]. We have also recently addressed this issue through a
maximally localized Wannier function representation of the eg states [37]. This C-type OO
state can be written in the form |θ〉 = cos θ

2
|3z2− r2〉+ sin θ

2
|x2− y2〉 with the sign of θ ∼ 108◦

alternating along x and y and repeating along z, as correctly represented by our HSE charge
density plots.
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3.2 4d and 5d perovskites

In recent years there has been an upsurge of interest in 4d and 5d transition metal oxides in
which exotic states may emerge from the subtle interplay between Hubbard’s U , Hund’s J , the
bandwidth, the spin-orbit coupling (SOC), and the splitting of the crystal field. It is commonly
expected that 4d and 5d oxides are more metallic and less magnetic than their 3d counterparts
because of the more extended nature of the 4d and 5d orbitals. In contrast with these expec-
tations, many ruthenates, technetiates, and iridates are found to be magnetic insulators and
to display a large array of phenomena rarely or never seen in other materials, including rela-
tivistic Mott-insulators, Slater insulators, Hund’s correlated metals, molecular insulators, etc.
Considering the complexity of the issues at hand, hybrid functionals appear again to be partic-
ularly adequate, but so far their application to 4d and 5d perovskites has been very limited (see
Ref. [31] and references therein).

3.2.1 RTcO3 (R=Ca, Sr and Ba)

A few years ago, antiferromagnetism with a huge ordering temperature of up to 1000 K was
found for CaTcO3 and SrTcO3. This is surprising not only because magnetism in 4d materials
with more extended orbitals has been rarely found, but also because the reported Néel temper-
ature (TN) is by far the highest among materials not incorporating 3d transition metals. Since
Tc is a radioactive element, those perovskites have been rarely investigated, and for many of
them only the structural properties are known. This represents a great challenge for ab-initio
schemes, and indeed several groups have in the last few years intensively studied this class of
materials [35,87–89]. These studies have shown that the proper treatment of the attenuated (but
still important) electronic correlation and its coupling with the magnetic exchange interactions
is capable of explaining the onset of the remarkable magnetic ordering temperatures.
Here we summarized the HSE results discussed in more detail in Ref. [35]. The main objective
is to be able to predict the Néel temperature. From an ab-initio perspective, this can be achieved
in a simple way by mapping total energies for different magnetic configurations onto a general
Heisenberg Hamiltonian, extracting the nearest-neighbor (NN, J1) and next-nearest-neighbor
(NNN, J2) magnetic exchange parameters, and then using Monte Carlo simulations to compute
TN. To obtain good results, very accurate total energies and spin moments are needed. In this
case LDA/PBE are not of great help as the magnetic moments for some magnetic orderings are
seriously underestimated [90]. HSE provides very stable magnetic solutions for different types
of spin orderings with almost identical values of the magnetic moment of Tc (≈ 2 µB).
The first question is Why is TN so large? DMFT attributes this large TN to the fact that SrTcO3

is on the border between the itinerant-metallic and localized-insulating regimes [88]. From
an ab-initio point of view it is instructive to start from Anderson’s theory of super-exchange
(SE) interactions [91], which links the strength of the SE coupling constant to the actual hy-
bridization between the metal and the mediating atom, and from Van Vleck’s theory of antifer-
romagnetism [92], which connects the strength of the SE interaction to the magnetic ordering
temperature. In this case, the HSE antiferromagnetic NN J1 coupling constant is the dominant
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Fig. 11: (left) Density of states. (right) Dependence of the relevant magnetic (TN and J1)
and structural [Volume and Q=1/2(Q1+Q2)] quantities on the ̂Tc−O− Tc angle (average
between ̂Tc−O1− Tc and ̂Tc−O2− Tc) in the RTcO3 series.

parameter (∼ −30 meV), almost two orders of magnitude larger than J2 (∼ −0.5 meV). The
calculated density of states (DOS) displayed in Fig. 11 shows that this huge J1 value arises from
the strong covalency between the Tc t2g and O p orbitals evolving along the wide 4d t2g man-
ifold, in particular for the topmost valence states spreading from -1.5/2 eV to the Fermi level
(EF). The increasing bandwidth (w) of this group of hybridized bands observed when going
from CaTcO3 (w = 1.5 eV) to SrTcO3 and BaTcO3 (w = 2.0 eV) associated with the enhanced
t2g-p hybridization in the 3-eV-wide t2g band around −5.5 eV explains the larger J1 and the
correspondingly larger TN for SrTcO3 and BaTcO3.

The next fundamental question is Why does the Tc-O hybridization increase along the RTcO3

series when rR get larger? The answer comes from the interpretation of the right panel of
Fig. 11. Going from Ca to Ba we observe (i) volume enhancement; (ii) quenching of the JT
distortions Q2 and Q3 (Q2 = 2(l − s)/

√
(2) and Q3 = 2(2m − l − s)/

√
(6) with l, s, and

m being the long, short, and medium Tc-O distances, respectively); (iii) the decrease of the
cooperative rotation of the TcO6 octahedra represented by the ̂Tc−O− Tc bond angles. The
monotonic increase of the ̂Tc−O− Tc bond angles leads to the progressive rectification of
the NN super-exchange paths. This generates, in a tight-binding framework, an enhanced Tc-
t2g/O-p hybridization, as confirmed by the DOS. TN steeply increases from CaTcO3 (750 K)
to SrTcO3 (1135 K) as a consequence of the observed larger change in ̂Tc−O− Tc, which
goes from 151◦ to 167◦. When moving from SrTcO3 to BaTcO3 (1218 K) the rise of TN is
weaker due to a smaller change in ̂Tc−O− Tc (from 167◦ to 179◦) and to a further reduction
and sign change in J2. In analogy with the RMnO3 perovskites, the increase of TN for larger
Tc-O-Tc angles correlates with a progressive reduction of the JT distortions (i.e., a decrease of
the associated structural ordering temperature).
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Fig. 12: Band structure and minimal phase diagram of BaIrO3. The relativistic Mott-Hubbard
insulating state emerges from the inclusion of a small fraction of exact-exchange at HSE level
and spin-orbit coupling.

3.2.2 BaIrO3

As another example we discuss BaIrO3. Iridium oxides are a primary class of materials which
has recently attracted a great attention. Iridates lie at the intersection of strong SOC and electron
correlation, in which the electrons entangle the orbital and spin degrees of freedom. One of the
most stunning examples is the Ruddlesden-Popper compound Srn+1IrnO3n+1 (n = 1, 2, · · · ∞).
The origin of the unusual insulating state in the parent n = 1 compound was long debated, but
a general consensus exists in attributing the opening of the gap to a relativistic Mott-Hubbard
type mechanism [93]. This compound has not yet been studied at the HSE level.

BaIrO3 does not crystallize in the usual perovskite structure, as its tolerance factor is substan-
tially larger than 1; it assumes a quasi one-dimensional phase consisting of two characteristic
nonequivalent Ir3O12 clusters, each of which is made of three face-sharing IrO6 octahedra [94].
In Fig. 12, we show an unpublished HSE+SOC band structure and a minimal PBE/HSE-SOC
phase diagram showing the onset of a SOC-Mott state in BaIrO3. Similar conclusions have
been deduced from a recent LDA+U study [95]. At the PBE level (with and without SOC, not
shown) the system is metallic, in disagreement with the expected insulating ground state (with
a very small band gap). An equally wrong picture is obtained by HSE if SOC is not included.
Only the inclusion of SOC within a beyond-DFT level calculation (HSE or LDA+U) leads to a
correct description of this compound, which is categorized as a relativistic Mott insulator, i.e.,
the gap is opened by the concerted action of both electronic correlation and spin-orbit coupling.

It has been proposed that this is another example of a Jeff = 1/2 state, similar to the one
observed in Sr2IrO4 [93]. The diagram of this Jeff = 1/2 state is schematized in Fig. 13:
The crystal field splitting separates the eg and teg manifold; the bonding between oxygen and
inequivalent Ir sites yields the formation of two continuous subbands (i.e. without band gap);
the strong SOC splits the teg band into effective Jeff = 3/2 and Jeff = 1/2 bands with the
Jeff = 1/2 energetically higher then the Jeff = 3/2; finally the Hubbard U opens up a gap
among Jeff = 1/2 states.
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Fig. 13: Schematic diagram of the Jeff = 1/2 state in BaIrO3.
(a) Crystal field splitting; (b) Chemical bonding; (c) SOC; (d) Hubbard U.

3.3 Metal to insulator transition: LaMnO3 and BaBiO3

Metal-insulator transitions are among the most studied processes in solid state physics and in
particular in oxides. The driving force behind this type of transition can have different origins:
electronic correlation, magnetic ordering, spin-orbit coupling, temperature, pressure, chemical
doping, electron-phonon coupling, etc. [6]. For a method aiming to describe the MIT it is
necessary to provide a sound description of both the insulating and the metallic regime. In this
sense, DFT approximations are not apt, as the insulating state is often treated incorrectly. Hybrid
functionals, specifically HSE and PBE0, represent a convenient solution as they can attain the
homogeneous electron gas limit and are in principle applicable to the metallic state. Clearly, due
to the dense k-point integration required to describe the metallic state and the associated huge
computational cost, screened hybrids like HSE are highly preferable over PBE0 for practical
applications, especially for perovskites.
Here we discuss two paradigmatic metal-to-insulator transitions: the well-known pressure-
induced MIT in the prototypical Mott-Hubbard/JT perovskite LaMnO3 [37] and the more exotic
electron-phonon mediated MIT in BaBiO3 [33, 34].

3.3.1 LaMnO3 under pressure

At zero pressure (volume V0) and low temperature, LaMnO3 is a type-A AFM insulator char-
acterized by staggered JT and GdFeO3-type (GFO) distortions, manifested by long and short
Mn-O in-plane distances and medium Mn-O vertical ones and by the tilting of the Mn3+O6

octahedra (see Fig. 14(d)).
The application of hydrostatic pressure progressively quenches the cooperative JT distortions
and leads to a MIT at Pc = 32 GPa [96]. The persistence of the structural distortions up to Pc
indicates that the MIT is not of Mott-Hubbard type. This conclusion was initially proposed by
LDA+U and dynamical mean-field theory studies [97, 98] and only very recently confirmed by
high-pressure Raman measurements [99]. Baldini and coworkers [99] have also reported the
coexistence of domains of distorted and regular octahedra in the pressure range 3-34 GPa, and
connected the onset of metallicity with the increase of undistorted MnO6 octahedra beyond a
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cooperative Jahn-Teller local modes Q2 = 2(l − s)/
√

2 and Q3 = 2(2m − l − s)/
√

6 with
increasing pressure, where l, s, andm indicate the long, short, and medium Mn-O bond lengths;
the JT modes are almost completely quenched at the onset of metallicity, marked by the vertical
line at υ2 = 0.82; (d) Side (top) and top (bottom) view of the Pnma (left, V/V0 = 1) and
cubic (right, V/V0 < 0.76) phases of LaMnO3, underlining the suppression of the JT and GFO
structural distortion in the perfect cubic phase.

critical threshold. The concomitant presence of two distinct phases in this pressure range was
confirmed by the X-ray absorption spectroscopy experiments of Ramos et al. [100].

The progression of the structural properties of compressed LaMnO3 computed by HSE as a
function of υ = V/V0 is summarized in Fig. 14, whereas the corresponding trends in the elec-
tronic and magnetic properties are shown in Figs. 15. The MIT can be described as follows.

In the pressure range 0–35 GPa, HSE results are in very good agreement with measurements in
terms of (i) the pressure-volume equations of state and bulk modulus B0 (BExpt

0 = 108 GPa,
BHSE

0 = 104 GPa, see Fig. 14(a)), (ii) the pressure-induced changes in the structural parameters
(Fig. 14(b)), and (iii) the concurrent suppression of the JT modes Q2 and Q3 and the band gap
at the same compression (υ2 = 0.82, slightly smaller than the experimental one, V/V0 = 0.86,
see Fig. 14(b) and Fig. 15(a)); the P = 0 HSE gap opened between occupied and empty eg
states, Eg = 1.45 eV (Fig. 15(c)), is well within the measured range, 1.1–1.7 eV. Similarly the
HSE ground state values of Q2 and Q3 match exactly the experimental values. The incremental
compression of LaMnO3 leads to a continuous structural transformation from the P = 0 dis-
torted Pnma phase to a perfect cubic structure via a gradual quenching of the JT modes, the
rectification of the GFO tilting angles,x and the alignment of the a, b, and c lattice parameters
towards the same value, ≈ 5.1 Å at υ3 = 0.76 as outlined in Fig. 14(b-d).
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As for the electronic properties, eg bands around the Fermi energy (EF ) come progressively
closer until the gap is closed (Fig. 15(c-f)). Concomitantly, the unoccupied t2g bands are
pushed down in energy and ultimately cross EF at υ2 = 0.82, the onset of metallicity (see
Fig. 15(f)). At this critical volume HSE predicts a jump in the relative stability between the
AFM and FM ordering, with the latter becoming the more favorable by about 90 meV/f.u.,
as illustrated in Fig. 15(b). At low/intermediate compressions (V/V0 > υ2 = 0.82) the
data displayed in Fig. 15(b) shows a strong competition between the AFM and FM phases.
HSE predicts a crossover between the AFM and FM phases at υ1 = 0.95 (corresponding to
a pressure of 11 GPa), below which the AFM and FM ordering become almost degenerate
(∆E < 12 meV/f.u.). Considering that in the FM phase the JT/GFO distortions are almost
completely inhibited, this result strongly supports the latest Raman [99] and X-ray absorption
spectroscopy [100] studies reporting the formation of a mixed state of domains of distorted and
regular MnO6 octahedra in the range 13–34 GPa, which compare well with the corresponding
theoretical pressure range, 11–50 GPa (υ2 < V/V0 < υ1).

The FM transition at V/V0 = 0.82 comes right before a high spin (HS, S = 2) to low spin
(LS, S = 1) moment collapse, which is correlated with the eg and t2g orbital occupations:
Under compression the Mn3+ ion retains its P = 0 (t2g)

↑↑↑(eg)↑ orbital configuration down to
V/V0 = 0.80, with a magnetic moment of 3.7 µB; further compression yields a rapid reduction
of the magnetic moment down to 1.7 µB due the redistribution of electrons within the 3d shell
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that ultimately leads to the low-spin configuration (t2g)
↑↑↑↓(eg)0. This HS-orthorhombic to LS-

cubic transition is reflected in the DOS (Fig. 15 (g-i)), whose evolution from V/V0 = 0.79 to
V/V0 = 0.73 clearly indicates the transfer of one electron from the eg to the t2g sub-bands and
the subsequent realization of a nearly FM half-metallic state with a metallic minority t2g band
and a quasi-insulating majority channel with a residual density of eg electrons at the bottom of
the conduction band.
Finally, by computing spin-dependent transport properties of the FM phase, we found a spin
polarizations of 80%-90%, values very similar to those reported for the doped colossal magne-
toresistance (CMR) manganite La0.7Sr0.3MnO3. Thus, it can be concluded that the high pressure
FM cubic phase of LaMnO3 is a transport half-metal (tHM). The FM-tHM regime being the
crucial common ingredient of all CMR manganites, its realization in the undoped (stoichiomet-
ric) phase of the CMR parent compound LaMnO3 in a wide interval of compressions could give
new fundamental insights into the elusive phenomenon of CMR.

3.3.2 Hole-doped BaBiO3

We now focus on the charge-ordered mixed-valence insulating perovskite BaBiO3. Despite its
apparently simple sp nature, BaBiO3 exhibits a plethora of fascinating and unique behaviors,
including charge-density-wave (CDW) formation, superconductivity, polaron formation, two-
dimensional electron gas, and topological effects.
Let us start with the ground state. BaBiO3 is a prime example of a multivalent Peierls com-
pound, whose semiconducting nature can be tuned into a metallic/superconducting one by
chemical doping [101]. The primitive cell of BaBiO3 can be described as Ba2+

2 Bi3+Bi5+O2−
6 ,

where Bi5+ and Bi3+ cations occur in equal parts. The two Bi species are alternatingly ordered
in a distorted cubic (monoclinic) structure, in which Bi5+ is surrounded by Bi3+ neighbors
(and vice versa), with alternate breathing-in and breathing-out distortions of oxygen octahedra
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octahedron at the converted Bi3+ →Bi5+ atom [33].

around inequivalent Bi sites, as sketched in Fig. 16. As a consequence of this charge order-
ing, the formally expected metallic state for the cubic perovskite BaBi4+O3 is replaced by an
insulating regime characterized by a large direct optical response Ed ≈ 2.0 eV and an indirect
optical transition Ei, which is well described by HSE, as shown in the band structure of Fig. 16.

Upon hole doping through Ba→K substitution Ba1−xKxBiO3 undergoes an insulating to metal
transition for x ≈ 0.33, eventually turning into a superconductor for higher doping. HSE
explains this MIT as a progressive reduction of the Bi-O distortions modulated by the formation
of hole-polarons , i.e., the coupling between the excess holes induced by the K-doping trapped
in Bi3+ sites and the surrounding phonon field [102].

This is shown in Figure 17: (i) At x = 0 a band gap is opened between the occupied Bi3+

s states and the unoccupied Bi5+ s band. The optical spectrum is characterized by a main peak
in agreement with experiment. (ii) At x = 0.125 a very localized bi-polaronic mid gap states
emerges, which is also recognizable in the optical spectrum. (iii) Upon further hole doping
additional bi-polaronic states are formed, which start to interact among each other as reflected
by the width of the mid-gap states, consistent with the experimental signal. As a consequence
the band gap is progressively reduced and ultimately closes for x > 0.25, in good agreement
with experiment.

The hole trapping is accompanied by a fairly large local relaxation involving the breaking of the
perfectly checkerboard CDW (x = 0) and the rearrangement of the oxygen octahedra around
the Bi ions, since each single Bi3+ cation captures two holes and therefore tends to attract the
negatively charged oxygens more.
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The electron-phonon mechanism behind the formation of the superconducting state has been
discussed by Yin et al. by combining HSE (along with other theoretical schemes) with a model
approach to evaluate the electron-phonon coupling and the critical temperature (TC) based on
the McMillan equation [103]. It was shown that HSE corrects the LDA/GGA overscreening
(which causes the underestimation of the electron-phonon coupling) and leads to a nice agree-
ment with experiment in terms of TC for a Coulomb pseudopotential of µ∗ = 0.1.

3.4 Multiferroics

Multiferroics constitute an important class of compounds in which different ferroic orders such
as ferromagnetism, ferroelectricity and/or ferroelasticity may coexist in a single compound.
Many multiferroics are transition-metal oxides with perovskite crystal structure, including,
among others, rare-earth manganites and the famous BiFeO3, and BiMnO3.
The application of hybrid functionals to the classical model ferroelectric oxides SrTiO3 and
BaTiO3 has been discussed in detail in the early works of Bilc et al. [104] and Wahl et al. [105],
as well as in the more recent study of the Scuseria group [106]. A further valid illustration of the
applicability of HSE to multiferroic materials is supplied by the work of Stroppa and Picozzi, in
particular the detailed study of the structural, electronic, magnetic, and ferroelectric properties
of the two prototypical proper and improper multiferroic systems BiFeO3 and orthorhombic
HoMnO3, respectively [107].
In recent times, it has been found that pressure can be used as a means to alter the elec-
tronic bonding state, the lattice, and thus the physical properties of perovskite compounds,
and thereby to induce the onset of multiferroic behaviors. As an example, Inaguma et al. have
synthesized two novel high-pressure polymorphs of the transition metal perovskites PbNiO3

and CdPbO3 characterized by a hexagonal lithium niobate (LiNbO3)-type (LNO) structure with
space group R3c [108, 109]. The application of HSE has revealed that both these compounds
are electrically polarized with a pretty large electric polarization of ∼ 100 µC/cm2 [38, 40] and
∼ 52.3 µC/cm2 [39], respectively.
As a final example we discuss the multiferroic character of PbNiO3 as predicted by HSE.
The low-pressure phase of PbNiO3 has a rhombohedrally non-centrosymmetric structure with
space group R3c, which is isostructural to the most common multiferroic material BiFeO3 (see
Fig. 18). More interestingly, the rhombohedral phase undergoes an antiferromagnetic transition
at 205 K and exhibits semiconducting transport properties. This therefore suggests a possible
multiferroic behavior, i.e., co-existence of ferroelectric and magnetic properties.
A compact representation of the structural, electronic and ferroelectric properties of PbNiO3 is
given in Figure 18. In this compound the polarization is driven by the large Pb-O polar displace-
ment along the [111] direction, which is typical of the acentric LNO structure (like BiFeO3).
The origin of the electric polarization in PbNiO3 is revealed by the comparison between the
paraelectric and ferroelectric density of states (see Figure 18(b)) showing the 2 eV downshift
and broadening of Pb 6s-O 2p spectral weight occurring along with the centrosymmetric-to-
ferroelectric transformation. For PbNiO3 GGA not only gives inaccurate ferroelectric distor-
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tions (with errors exceeding 2 %) but also yields an incorrect metallic ground state, which pre-
vents any further possibility of exploring ferroelectric features [38]. In contrast, both HSE and
PBE+U lead to the correct picture, ultimately delivering an almost identical electric polariza-
tion of about 100 C/cm2 (see Figure 18(c)). The spontaneous polarization P of rhombohedral
PbNiO3 was calculated by HSE considering as centrosymmetric structural reference the R3̄c

symmetry, and we linearly interpolate the atomic positions between the centric and the polar
phase, i.e., the so-called adiabatic path.
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