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12.2 Robert Eder

1 The Hubbard model

The Hubbard model was proposed in the 1960’s to describe electrons in 3d transition metals.
In these elements, the radial wave function of the 3d-electrons has a very small spatial ex-
tent. Therefore, if the 3d shell is occupied by several electrons, these are forced to be close
to one another on the average so that the electrostatic energy will be large. The energy of a
given transition-metal ion therefore varies strongly with the number of electrons it contains.
To study the motion of conduction electrons under the influence of this strong Coulomb re-
pulsion Hubbard [1], Kanamori [2] and Gutzwiller [3] proposed a simplified model. Thereby
both the five-fold degeneracy of the 3d-orbital and the presence of other bands in the solid are
neglected. Rather, one considers a lattice of sites – whereby the geometry of the lattice is not
really specified – with one s-like orbital at each site. Orbitals on different sites are assumed
to be orthogonal, but for not too distant sites i and j there are nonvanishing matrix elements
ti,j of the Hamiltonian between the orbitals centered on these sites. The Coulomb interaction
between electrons in orbitals on different sites is neglected, but if two electrons – which then
necessarily have opposite spin – occupy the same orbital the energy is assumed to increase by
the large amount U to simulate the strong dependence of the energy on the occupation number.
If we denote the creation operator for an electron of spin σ in the orbital at the lattice site i by
c†i,σ the model thus can be written as

H =
∑
i,j

∑
σ

ti,j c
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ = Ht +HU . (1)

Here ni,σ = c†i,σci,σ counts the number of electrons with spin σ in the orbital at site i.

After the discovery of the cuprate superconductors in 1987 and after Zhang and Rice demon-
strated [4] that the CuO2 planes in these compounds can be described by the so-called t-J model
– which is equivalent to the Hubbard model in the limit U/t � 1 – there was renewed interest
in the 2-dimensional Hubbard model. However, the lightly doped Mott-insulator – which most
probably is the system to be understood in order to solve the many puzzles posed by the cuprate
superconductors – is still far from being solved. Accordingly, the purpose of this lecture is to
present basic approximations and to discuss some of the problems which so far precluded a full
solution.

We consider (1) for a two-dimensional square lattice with N sites and periodic boundary con-
ditions. The number of electrons with spin σ in the system is denoted by Nσ – whereby we
are mostly interested in the nonmagnetic case N↑ = N↓ – so that the number of electrons is
Ne = N↑ + N↓. In the following, densities per site will be denoted n, e.g., n↑ = N↑/N . For
ne = 1 we have N↑ = N↓ = N/2 so that precisely half of the k-points for each spin direction
are occupied and we have a half-filled band, i.e., a metal in conventional band theory. Instead
it will be shown below that for sufficiently large U/t the Hubbard model describes an insula-
tor, the so-called Mott-insulator. The region of primary concern for cuprate superconductors is
ne ≥ 0.8, i.e., the lightly doped Mott-insulator, and U/t ≈ 10.
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2 The Hubbard-I approximation

This is the ‘defining approximation’ of the Mott-insulator by which Hubbard for the first time
introduced central concepts of strongly correlated electron systems such as the two Hubbard
bands [1]. In the following we first give a sloppy re-derivation which is meant to clarify the
physical content of the Hubbard-I approximation and then present Hubbard’s rigorous deriva-
tion in terms of Green’s functions.
We consider the case of finite U and ti,j = 0, N↑ = N↓ = N/2 so that Ne = N . The ground
state has one electron per lattice site and the energy is E = 0. Since the spin of the electron at
any given site is arbitrary this ground state is highly degenerate. We ignore this degeneracy and
assume that there is a unique state |Ψ0〉 which may be thought of as a suitable superposition of
all these degenerate states and which we assume to be ‘disordered’ – it will become clear in a
moment what this means.
Next we assume that a small but finite ti,j is switched on. Then, an electron of spin σ can be
transferred from a site j to another site i resulting in an empty site at j and a double occupancy
at site i. The energy thereby increases by U . The hopping process is possible only if the
electron which was originally at the site i has the spin −σ and since our initial state |Ψ0〉 is
‘disordered’ the probability for this to be the case is 1/2, which is the definition of ‘disordered.’
We now interpret the original state |Ψ0〉 as the vacuum, denoted by |0〉, of our theory and the
state created by the hopping process as containing a fermionic hole-like particle at j and a
fermionic double-occupancy-like particle at site i: d†i,σ h†j,−σ|0〉. The order of the fermionic
operators in this state is due to the fact that in the original hopping term the annihilation operator
cj,σ which creates the hole stands to the right of the creation operator c†i,σ which creates the
double occupancy. Moreover we assign the negative spin to the operator which creates the hole
because replacement of, e.g., an ↑-electron by a hole decreases the z-spin by 1/2. We obtain
the following Hamiltonian to describe the holes and double occupancies:

Heff,1 =
1

2

∑
i,j

∑
σ

(
ti,j d

†
i,σh

†
j,−σ +H.c.

)
+ U

∑
i,σ

d†i,σdi,σ . (2)

Once a hole and a double occupancy have been created, each of these particles may be trans-
ported further by the hopping term. If we assume that the surplus or missing electron retains its
spin, which means that the double occupancies and holes propagate without ‘leaving a trace’ of
inverted spins, for example a surplus ↑-electron can hop from site i to site j only if the spin at
site j is ↓. Again, we assume that the probability for this is 1/2. We therefore can write down
the second term for the effective Hamiltonian

Heff,2 =
1

2

∑
i,j

∑
σ

ti,j

(
d†i,σdj,σ − h

†
i,−σhj,−σ

)
. (3)

The negative sign of the hopping term for holes is due to the fact that the original hopping term
has to be rewritten as −ti,j cj,σc

†
i,σ to describe the propagation of a hole. Addition of (2) and (3)

and Fourier transformation gives

Heff =
∑
k,σ

((εk
2

+ U
)
d†k,σdk,σ −

εk
2
h†k,σhk,σ

)
+
∑
k,σ

εk
2

(
d†k,σh

†
−k,−σ +H.c.

)
, (4)
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where εk is the Fourier transform of ti,j . Note that this now is a quadratic form where the
Coulomb interaction is described by the extra energy of U for the double-occupancy-like ‘par-
ticle.’ Via the Bogoliubov transformation

γ−,k,σ = ukdk,σ + vkh
†
−k,−σ

γ+,k,σ = −vkdk,σ + ukh
†
−k,−σ (5)

this can be solved resulting in the dispersion relations for the lower and upper Hubbard band

Ek,± =
1

2

(
εk + U ±

√
ε2
k + U2

)
. (6)

In the limit U/t � 1 this simplifies to Ek,− = εk/2, Ek,+ = εk/2 + U so that the original
band with dispersion εk is split into two bands, separated by a gap of U , each having half of
the original width. For the case of particle-hole symmetry, the chemical potential is U/2 [5], so
the lower band is completely filled and the upper one completely empty. Rather than being a
metal, as expected for the situation of a half-filled band, the presence of the Coulomb interaction
turns the system into an insulator. From the above we can see that this is the consequence of
‘expanding around’ the hypothetical ‘vacuum state’ |Ψ0〉 with one electron per site so that we
obtain a dilute gas of hole-like and double-occupancy-like particles that are created in pairs and
propagate, whereby the double-occupancies have a large ‘energy of formation’ of U .
To compute the spectral weight of the bands we translate the electron annihilation operator as
follows:

ck,σ =
1√
2

(
dk,σ + h†−k,−σ

)
=

1√
2

(
(uk + vk)γ−,k,σ + (uk − vk)γ+,k,σ

)
.

Namely, annihilation of an electron on a singly occupied site creates a hole, whereas annihila-
tion on a doubly occupied site annihilates a double occupancy. The factor of 1

√
2 takes into

account that both processes are possible with a probability of 1/2 in the disordered state. We
obtain

Z±(k) =
1

2

(
uk ∓ vk

)2
=

1

2

(
1± εk√

ε2
k + U2

)
. (7)

Taking again the limit U/t � 1, the spectral weight of each of the bands is only ≈ 1/2 per
k-point.
Next, we derive these results in a more rigorous fashion following Hubbard’s original paper [1].
We split the electron operator into the two eigenoperators of the interaction part HU in (1):

ci,σ = ci,σni,−σ + ci,σ(1− ni,−σ) = d̂i,σ + ĉi,σ, (8)

which obey [d̂i,σ, HU ] = Ud̂i,σ and [ĉi,σ, HU ] = 0. Then we define the four time-ordered zero-
temperature Green’s functions [6]

Gα,β(k, t) = −i〈 Tαk,σ(t) β
†
k,σ 〉, (9)
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where α, β ∈ {ĉ, d̂}. These Green’s functions obey the equations of motion (with ~ = 1)

i∂t Gα,β(~k, t) = δ(t) 〈 {β†k,σ, αk,σ} 〉 − i〈 T [αk,σ, H](t) β†k,σ 〉.

The commutators [αk,σ, HU ] are trivial but the commutators with the kinetic term Ht are in-
volved. After some algebra, using the identity ni,σ = ni/2 + σSzi . we find:

[ĉi,↑, Ht] =
∑
j

tij

[(
1− ne

2

)
cj,↑ + (cj,↑S

z
i + cj,↓S

−
i )−

1

2
cj,↑(ni − ne) + c†j,↓ci,↓ci,↑

]
,

[d̂i,↑, Ht] =
∑
j

tij

[
ne
2

cj,↑ − (cj,↑S
z
i + cj,↓S

−
i ) +

1

2
cj,↑(ni − ne)− c

†
j,↓ci,↓ci,↑

]
.

(10)

The first term on the right-hand side describes the ‘simple’ propagation of the hole. The sec-
ond term is the Clebsch-Gordan contraction of the spin-1 operator Si and the spinor cj,σ into
a spin-1/2 object. It describes how a hole moves to site j but leaves behind a spin-excitation
at site i. Similarly, the third term describes hopping combined with creation of a density exci-
tation at site j whereas the last term describes the coupling to a pair-excitation (this would be
important for negative U ). The Hubbard-I approximation is obtained by keeping only the first
term in each of the square brackets on the respective right-hand sides – obviously a rather crude
approximation. After Fourier transformation we obtain

[ĉk,↑, H] ≈
(
1− ne

2

)
εk

(
ĉk,↑ + d̂k,↑

)
[d̂k,↑, H] ≈ ne

2
εk

(
ĉk,↑ + d̂k,↑

)
+ U d̂k,↑

If we set ne = 1/2 and identify
√
2 d̂k,σ → dk,σ√
2 ĉk,σ → h†k,−σ (11)

exactly the same equations of motion are obtained from the heuristic Hamiltonian Heff (4) (the
significance of the factor

√
2 will become clear in a moment).

Using the anticommutator relations {d̂†i,σ, d̂i,σ} = ni−σ, {ĉ†i,σ, ĉi,σ} = (1− ni−σ), {d̂
†
i,σ, ĉi,σ} =

{ĉ†i,σ, d̂i,σ}=0 and putting 〈ni,σ〉=ne/2 we obtain the Fourier transformed equations of motion:(
ω − (1− ne/2) εk −(1− ne/2) εk

−ne/2 εk ω − ne/2 εk − U

)(
Gĉ,ĉ Gĉ,d̂

Gd̂,ĉ Gd̂,d̂

)
=

(
1− ne/2 0

0 ne/2

)
. (12)

If we consider again ne = 1/2 and multiply both sides of (12) by 2 we have the unit matrix on
the right while all Green’s functions are multiplied by a factor of 2 – which would originate from
the additional factor of

√
2 in (11). The Hamiltonian (4) would therefore produce exactly the

same equations of motion as the Hubbard-I approximation, which demonstrates the equivalence.
We continue with arbitrary ne and use the identity (which holds for any 2× 2 matrix)(

a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)
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Fig. 1: Left: Single particle spectral function obtained from the Green’s function (13) for two
different electron densities. The Fermi energy is at zero. Right: X-ray luminescence spectra
for La2−xSrxCuO4 show the unoccupied part of the lower Hubbard-band (A) and the upper
Hubbard-band (B). With decreasing ne ≈ 1−x the upper Hubbard-band rapidly loses intensity.
Reprinted with permission from [7], Copyright 1991 by the American Physical Society.

to solve for the Green’s function matrix G(k, ω). Recalling that ck,σ = ĉk,σ+ d̂k,σ, the standard
electron Green’s function G(k, ω) is given by G = Gĉ,ĉ + Gĉ,d̂ + Gd̂,ĉ + Gd̂,d̂ and after some
algebra this can be brought to the form

G(k, ω) =
1

ω − εk −Σ(ω)

Σ(ω) =
ne
2
U +

ne
2

(
1− ne

2

) U2

ω − (1− ne
2
) U

(13)

from which also the self-energy Σ(ω) corresponding to the Hubbard-I approximation can be
read off. In order to fix the Fermi energy EF we write the operator of electron number as

N̂e = 2
∑
i

ni,↑ni,↓ +
∑
i

(
ni,↑(1− ni,↓) + ni,↓(1− ni,↑)

)
=
∑
i,σ

(
d̂†i,σd̂i,σ + ĉ†i,σ ĉi,σ

)
.

The expectation value of N̂e then can be expressed in terms of the Green’s functions (9)

〈Ne〉 = −2i
∑
k

(
Gd̂,d̂(k, t = 0−) +Gĉ,ĉ(k, t = 0−)

)
= −2i

∑
k

1

2π

∫ ∞
−∞

dω eiω0+
(
Gd̂,d̂(k, ω) +Gĉ,ĉ(k, ω)

)
= 2

∑
k

∫ µ

−∞
dω

(
Ad̂,d̂(k, ω) + Aĉ,ĉ(k, ω)

)
, (14)
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Fig. 2: Left: Fermi surface for different electron densities. Right: Fermi surface volume as a
function of electron density ne.

where Ad̂,d̂ and Aĉ,ĉ are the spectral densities of the respective Green’s function. The resulting
expression for Ne is somewhat lengthy so we do not write it explicitly. Close to half-filling it
can be written as

Ne = Θ(EF − Ek,−) +O(1− ne).

For ne = 1 this means that the completely filled lower Hubbard band withN occupied momenta
per spin-direction corresponds to N electrons (as it has to be), whereas for ne < 1 it means that
the lower Hubbard band is doped with holes. Figure 1 shows the spectral density obtained from
the Green’s function (13) for U/t = 8 and two different band fillings, whereas Figure 2 shows
the resulting Fermi surfaces and the dependence of the Fermi surface volume, obtained from
(14), on the electron density. In Figure 1, one can recognize the two Hubbard bands separated
by an appreciable energy gap. For ne = 0.9, i.e. close to half-filling, the Fermi energy intersects
the lower Hubbard band close to (π, π) so that the Fermi surface takes the form of a small
pocket around X = (π, π), see Figure 2, whereby the area of the pocket is roughly proportional
to the hole density nh = 1− ne.
An interesting feature seen in Figure 1 is the transfer of spectral weight from the upper to the
lower Hubbard band upon hole doping: as the electron density ne decreases, the upper Hubbard
band persists but loses weight, whereas the lower Hubbard band becomes more intense. To un-
derstand this we note first that for ne ≤ 1 the upper Hubbard band always belongs to the inverse
photoemission or electron addition spectrum. Also, we have seen in the simplified derivation
that the upper band mainly has double-occupancy character. As electrons are removed from the
system, however, the probability that an added electron is placed at an occupied site to create
a double occupancy becomes smaller and consequently the weight of the upper band dimin-
ishes. This doping-dependent intensity of what would be the conduction band in an ordinary
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persionless ‘‘dressed hole’’ bands in Fig. 5. The spectrum of
the spin-3/2 string operator on the other hand has its peaks
with maximal spectral weight around momentum k�(� ,�),
indicating that also in the doped case there is an ‘‘antiferro-
magnetic mirror image’’ of the quasiparticle band �which,
however, consists of spin-3/2 states�. Again, coupling of
photoholes to thermally excited spin excitations may make
these states visible in ARPES spectra, thus explaining the
‘‘shadow bands’’ seen in photoemission experiments by
Aebi et al.25 Similarly, as for half-filling, one might specu-
late that a magnetic field, which would break spin symmetry
and thus allow for a coupling of ‘‘bands’’ with different total
spin, would enhance the spectral weight of these shadow
bands.

All in all we have seen that the ‘‘band structure’’ �four-
band structure, dispersion of regions of large spectral weight,
‘‘character’’ of the bands as measured by the diagnostic op-

erators� stays pretty much unchanged as long as we are in the
underdoped regime. At half-filling the four-band structure is
closely related to the sharp low-energy mode in the dynami-
cal spin correlation function, which naturally suggests to
study the spin response also as a function of doping. Figure
15 shows the spin-correlation function, �sz(k,�) �left col-
umn�, and the charge-correlation function, �cc(k,�) �right
column�, for T�0.33t and densities �n��0.95 �underdoped�,
�n��0.90 �nearly optimally doped�, and �n��0.80 �over-
doped�. The spin response is sharply confined in both mo-
mentum k�(� ,�) and energy ���� only in the under-
doped region, i.e., the regime where we also observe the
features associated with spin excitations in the single-particle
spectra. As was the case at half-filling for temperatures be-
low T�0.33t , the spin response can be fitted by the AF
spin-wave dispersion �19� in the underdoped regime. On the
other hand, as soon as the system enters the overdoped re-

FIG. 10. Single-particle spectral function for
all k points of the 8�8 cluster in the irreducible
wedge of the Brillouin zone. For each k the
weight wk is given.

PRB 62 4347ANOMALOUS LOW-DOPING PHASE OF THE HUBBARD MODEL
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Fig. 3: Left: Single particle spectral function A(k, ω) obtained by Quantum Monte-Carlo sim-
ulations on an 8 × 8 cluster at kBT = t. Right: Fermi surface volume (15) deduced from
A(k, ω) versus electron density. The dashed line corresponds to free electrons. Reprinted with
permission from [8], Copyright 2000 by the American Physical Society.

semiconductor or insulator is one of the fingerprints of strong correlations and can be observed
experimentally in cuprate superconductors. An example is shown in Figure 1 [7]. It should be
noted, however, that the Hubbard-I approximation considerably underestimates the decrease of
the intensity of the upper Hubbard band with doping.
Figure 2 also shows the dependence of the Fermi surface volume VFermi on electron density ne.
More precisely, this is the fraction of the Brillouin zone where the lower Hubbard band is
below EF , i.e., ‘occupied.’ Also shown is the Fermi surface volume for free electrons, where
VFermi = ne/2. The Hubbard-I approximation gives VFermi → 1, a completely filled band,
as ne → 1, and approaches the free electron behavior for small ne. This leads to a peculiar
nonlinear dependence in VFermi(ne), which most probably is unphysical.
Let us now compare the Hubbard-I approximation to numerical simulations. As we saw in our
simplified derivation, an important assumption of the Hubbard-I approximation is the ‘disor-
dered’ ground state. This is best realized at high temperatures, more precisely at a tempera-
ture much higher than the characteristic energy of spin excitations, which will be seen to be
J = 4t2/U . Figure 3 shows the result of a quantum Monte-Carlo calculation of the spectral
density for an 8 × 8 cluster at the rather high temperature kBT = t. The 8 × 8 cluster has
the allowed momenta (nπ/4,mπ/4) with integer m and n and Figure 3 shows the part of the
spectral density near the chemical potential µ for all allowed momenta in the irreducible wedge
of the Brillouin zone for an electron densities close to ne = 1. Close to (π, π) a relatively
well-defined peak passes through µ as (π, π) is approached and forms a relatively small hole
pocket around (π, π) – similar to the prediction of the Hubbard-I approximation in Figure 1
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for ne = 0.9. To study VFermi, an ‘occupation number’ nk of 1, 0.5 or 0 was assigned to each
momentum k, depending on whether the dispersive peak is below, more or less on, or above the
chemical potential at k. The fractional Fermi surface volume then is

VFermi =
1

64

∑
k

nk, (15)

where 64 is the number of momenta in the 8 × 8 cluster. The obtained estimate for VFermi is
also shown in Figure 3 as a function of electron density and indeed has a rough similarity to the
result for the Hubbard-I approximation.

3 The Gutzwiller wave function

The Gutzwiller wave function is the second ‘classic’ approximation for the Hubbard model.
It starts from the Fermi sea |FS〉, i.e. the ground state for U = 0, and reduces the number of
double occupancies by acting with a suitable projection operator. More precisely, the Gutzwiller
wave function reads [3]

|ΦG〉 =
∏
i

(1− λ ni,↑ni,↓) |FS〉,

where λ is a variational parameter to be determined by minimizing the energy EG. First we
rewrite the Fermi sea as a superposition of real space configurations. Suppressing the spin
index we have

M∏
j=1

c†kj |0〉 =
1

√
N
M

∑
i1,i2,i3,...iM

exp

(
i
M∑
j=1

kj ·Rij

)
M∏
j=1

c†ij |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

∑
σ

exp

(
i
M∑
j=1

kj ·Riσ(j)

)
M∏
j=1

c†iσ(j) |0〉

In the second line we used the fact that instead of summing over allM -tuples of indices we may
as well sum only over ordered M -tuples of indices and then sum over all M ! permutations σ of
the M indices.
Next, in each of the products

∏M
j=1 c†iσ(j) we permute the c†i operators back to the ordered

sequence c†i1c
†
i2
. . . c†iM . The permutation that brings σ(i) → i obviously is σ−1 and since the

Fermi sign of σ−1 is equal to that of σ we obtain

1
√
N
M

∑
i1>i2>i3···>iM

∑
σ

(−1)σ exp

(
i

M∑
j=1

kj ·Riσ(j)

)
c†i1c

†
i2
. . . c†iM |0〉

=
1

√
N
M

∑
i1>i2>i3···>iM

D(k1,k2, . . . ,kM |i1, i2, . . . iM) c†i1c
†
i2
. . . c†iM |0〉,

where the second line is the definition of the symbol D(kj|ij). From the above we see that the
Fermi sea may be thought of as a superposition of real space configurations

c†i1,↑c
†
i2,↑c

†
i3,↑ . . . c

†
iN↑ ,↑

c†j1,↓c
†
j2,↓c

†
j3,↓ . . . c

†
jN↓,↓

|0〉
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that are multiplied by two determinants D, one for each spin direction. Each of these real
space configurations has a certain number Nd of doubly occupied sites and therefore gets an
additional factor of (1 − λ)Nd < 1 in the Gutzwiller wave function so that states with a larger
number of double occupancies have a smaller weight as compared to the original Fermi sea.
The Gutzwiller function can be decomposed into components with fixed Nd

|ΦG〉 =
∑
Nd

|Φ(Nd)〉 ,

where |Φ(Nd)〉 is the sum over all real-space configurations with Nd double occupancies, each
multiplied by its proper prefactor. The total norm 〈ΦG|ΦG〉 can be rewritten as the sum over Nd

of W (Nd) = 〈Φ(Nd)|Φ(Nd)〉 and we consider which Nd gives the largest contribution in this
sum. To compute norms, we need to evaluate expressions such as

D∗(kj|ij) D(kj|ij) =
∑
σ,σ′

(−1)σ (−1)σ′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)

=M ! +
∑
σ 6=σ′

(−1)σ (−1)σ′
exp

(
i
M∑
j=1

kj · (Riσ(j) −Riσ′(j)
)

)
. (16)

where in the first term we have collected the M ! terms with σ = σ′. At this point, we make
an important approximation: (16) still has to be summed over i1, i2, i3 . . . iM . The terms for
σ 6= σ′ thereby have a rapidly oscillating phase and a large degree of cancellation will occur in
the summation. Accordingly we retain only the first term, i.e., we replace

D∗(kj|ij) D(kj|ij) ≈M ! .

With this approximation the contribution of all states with Nd double occupancies becomes

W (Nd) =
N↑! N↓!

NN↑+N↓
(1− λ)2Nd C(N↑, N↓, Nd)

where C(N↑, N↓, Nd) is the number of ways in whichN↑ electrons with spin ↑ andN↓ electrons
with spin ↓ can be distributed over theN lattice sites such as to generateNd double occupancies.
This is a straightforward combinatorical problem with the result

C(N↑, N↓, Nd) =
N !

Nd!(N↑ −Nd)! (N↓ −Nd)! (N −N↑ −N↓ +Nd)!
.

Next, we take the logarithm of W (Nd), use the Stirling formula log(N !) ≈ N log(N)−N and
differentiate with respect to Nd. Introducing the densities nd = Nd/N etc. we obtain

d

dNd

log (W (Nd)) = log

(
(1− λ)2 (n↑ − nd) (n↓ − nd)

nd (1− n↑ − n↓ + nd)

)
,

d2

dN2
d

log (W (Nd)) = −
1

N

(
1

nd
+

1

n↑ − nd
+

1

n↓ − nd
+

1

1− n↑ − n↓ + nd

)
= − c

N
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where c > 0 in the last line is of order unity. The first of these equations gives us the nd
where the contribution to the norm, W (Nd) is a maximum. For the general case, the formula is
somewhat involved, so we specialize to the case n↑ = n↓ = 1/2 where

nd,0 =
1− λ

2(2− λ)
. (17)

For the noninteracting case λ → 0 this gives nd,0 = 1/4 as it has to be. From the second
equation we find

log (W (Nd)) = log (W (Nd,0))−
c

2N
(N −Nd,0)

2 + . . .

W (Nd) = W (Nd,0) exp
(
− c

2N
(Nd −Nd,0)

2
)
= W (Nd,0) exp

(
−Nc

2
(nd − nd,0)2

)
,

which shows that as a function of nd the weight W (Nd) is a Gaussian with a width ∝ N−1/2.
This means, however, that in the thermodynamical limit only states with nd = nd,0 have an
appreciable weight in the Gutzwiller wave function and variation of λ simply shifts this sharp
peak of W (Nd) to a different nd,0 An immediate consequence is that the computation of the
expectation value of the interaction Hamiltonian becomes trivial, namely 〈HU〉 = N U nd,0.
The expectation value of the kinetic energy is more involved. The above discussion showed that
the Gutzwiller wave function is composed of real-space configurations for which the number of
double occupancies is close to a certain value Nd,0, which is smaller than for the noninteracting
Fermi sea. This means, however, that the expectation value of the kinetic energy is smaller as
well. Namely, using again the operators d̂ and ĉ we have

c†i,σcj,σ = d̂†i,σd̂j,σ + ĉ†i,σd̂j,σ + d̂†i,σ ĉj,σ + ĉ†i,σ ĉj,σ .

If the number of double occupancies is decreased, the expectation value of the first term on
the right-hand side clearly must decrease. Second, since the number of electrons is constant,
reducing the number of double occupancies necessarily results in a reduction of the number of
empty sites by the same number so that the expectation value of the last term on the right-hand
side also must decrease.
The Gutzwiller approximation assumes that these effects can be taken into account by reducing
the expectation value of the kinetic energy of the uncorrelated Fermi sea by suitable renormal-
ization factors η:

〈ΦG|Ht|ΦG〉
〈ΦG|ΦG〉

=
∑
σ

ησ 〈FS, σ|Ht|FS, σ〉

where |FS, σ〉 is the Fermi sea for σ-electrons (if N↑ = N↓ the two terms are of course iden-
tical). These renormalization factors ησ thereby are evaluated for an ‘auxiliary wave function’
in which the determinants D(k1,k2, . . . ,kM |i1, i2, . . . iM) are replaced by a constant (which
would have to be

√
M ! if the auxiliary wave function is supposed to have the same norm as

the Gutzwiller wave function) and where the Fermi sign is ignored in the calculation of all ma-
trix elements of the hopping term (this is because the Fermi sign is supposed to be taken care
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of already by the filling of the uncorrelated Fermi sea according to the Pauli principle!). The
evaluation of the η by combinatorical considerations is discussed in a very transparent way by
Ogawa, Kanda, and Matsubara [9]. Here we use an even simpler way of calculating η by intro-
ducing four ‘book-keeping kets’ for every site i: |i, 0〉, |i, ↑〉, |i, ↓〉 and |i, ↑↓〉. They represent
in an obvious way the four possible configurations of the site i. Then we define

Bi =
|i, 0〉+ α↑|i, ↑〉+ α↓|i, ↓〉+ β|i, ↑↓〉√

1 + α2
↑ + α2

↓ + β2

|Ψ〉 =
∏
i

Bi

with real ασ and β. The state |Ψ〉 has norm 1, and if it were translated into a true state of
electrons, the numbers of electrons and double occupancies would be

〈Nσ〉 = N
α2
σ + β2

1 + α2
↑ + α2

↓ + β2
,

〈Nd〉 = N
β2

1 + α2
↑ + α2

↓ + β2
. (18)

These equations can be reverted to give

ασ =

√
nσ − nd

1− n↑ − n↓ + nd
,

β =

√
nd

1− n↑ − n↓ + nd
. (19)

On the other hand, |Ψ〉 does not correspond to a state with a fixed number of electrons, so we
introduce

|Ψ ′〉 = P(N↑, N↓, Nd) |Ψ〉 ,

where the projection operator P projects onto the component of |Ψ〉 that has precisely 〈N↑〉
↑-electrons, etc. Next, the representation of the electron annihilation operator ci,σ is

c̃i,σ = |i, 0〉 〈i, σ|+ |i,−σ〉 〈i, ↑↓ | .

Here a subtle detail should be noted: in the expression on the right-hand side it is assumed that
a double occupancy is always converted into the state |i,−σ〉 with a positive sign. This would
not be the case for the true fermion operator, where the sign would depend on the sequence of
the two electron creation operators on the doubly occupied site. This is precisely the neglect of
the Fermi sign that was mentioned above. Then, to estimate the reduction of the kinetic energy
due to the reduction of the number of doubly occupied and empty sites we evaluate

r(σ, n↑, n↓, nd) =
〈Ψ ′|c̃†i,σ c̃j,σ|Ψ ′〉
〈Ψ ′|Ψ ′〉

. (20)
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So far our auxiliary wave function has not brought about much simplification because the pres-
ence of the projection operator P makes the computation of r very tedious. It is straightforward
to see, however, that if |Ψ〉 is decomposed into components of fixed N↑, N↓, and Nd, only those
components with values of N↑, N↓, and Nd that deviate by at most N−1/2 from the average
values (18) have an appreciable weight. This means, however, that P simply can be dropped
so that we replace |Ψ ′〉 → |Ψ〉 in (20). Then, since |Ψ〉 is normalized, the denominator can be
dropped. Since |Ψ〉 is a product state, the expectation value of the two operators factorizes, and
since all sites are equivalent and the coefficients ασ and β are real, the expectation values of c̃†i,σ
and c̃j,σ are identical. So

r(σ, n↑, n↓, nd) = 〈Ψ |c̃†i,σ|Ψ〉2 =

(
ασ + α−σβ

1 + α2
↑ + α2

↓ + β2

)2

=
(√

nσ − nd
√

1− n↑ − n↓ + nd +
√
nd
√
n−σ − nd

)2

,

where the second line has been obtained by inserting (19). In this way we have expressed
r(nσ, nd) in terms of nd, which in turn is given as a function of λ by (17). Lastly, we divide r
by the value for U → 0 where nd = n↑ · n↓ to obtain the proper limiting value for U = 0 and
finally obtain

η(σ, n↑, n↓, nd) =

(√
nσ − nd

√
1− n↑ − n↓ + nd +

√
nd
√
n−σ − nd√

nσ(1− nσ)

)2

. (21)

In varying the energy it is actually easier to switch from λ to nd as variational parameter. Spe-
cializing to the paramagnetic case n↑ = n↓, the energy per site thus becomes

eG = η(nσ, nd) t0 + nd U. (22)

where eG = EG/N and t0 is the (kinetic) energy of the Fermi sea per site. Using (21) this is
now readily minimized with respect to nd.
The Gutzwiller wave function gives us strictly speaking only the ground state energies and some
ground state expectation values, but not a band structure. However, we may consider states like

|ΦG(k)〉 =
∏
i

(1− λ ni,↑ni,↓) ck,↑ |FS〉,

i.e. a state with one hole in the Fermi sea (it is understood that k is an occupied momentum).
The Fermi sea with a hole has energy EFS − εk. It thus seems plausible that the energy of
|ΦG(k)〉 is EG − ε̃k, i.e., the energy of the Gutzwiller wave function minus the ‘quasiparticle
energy.’ Performing the variational procedure for the new state |ΦG(k)〉 amounts to replacing
eG → eG − ε̃k/N , t0 → t0 − εk/N , n↑ → n↑ − 1/N and nd → nd + δnd/N where δnd is the
as-yet-unknown shift of nd. Inserting into (22) and expanding we find

eG −
1

N
ε̃k =

(
η − 1

N

∂η

∂n↑
+

1

N

∂η

∂nd
δnd

)(
t0 −

1

N
εk

)
+ nd U +

1

N
δnd U .
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The terms of zeroth order in 1/N cancel due to (22), and collecting the first order terms gives

ε̃k = η εk + t0
∂η

∂n↑
−
(
∂η

∂nd
t0 + U

)
δnd .

The last term on the right-hand side vanishes because the expression in the bracket is deG
dnd

. The
second term on the right-hand side is a k-independent shift that can be absorbed into a shift of
EF . The quasiparticle dispersion ε̃k therefore follows the original dispersion but is renormalized
by the factor η < 1. This is an effect known as ‘correlation narrowing.’
Next we consider the ground state momentum distribution function, i.e., the ground state ex-
pectation value nk = 2〈c†k,↑ck,↑〉. This may be obtained as the functional derivative of the
ground state energy with respect to εk, which means under a change tij → tij + δtij so that
εk → εk + δεk, the change of the ground state energy is

eG → eG + 2
∑
k

nk δεk .

From (22), we obtain the variation of eG as

δeG = 2η
∑
k

n
(0)
k δεk + δnd

(
∂η

∂nd
t0 + U

)
,

where n(0)
k = Θ(EF − εk) is the momentum distribution of the Fermi sea. Again, the second

term on the right-hand side vanishes due to the extremum condition for nd so that nk = η n
(0)
k .

This cannot be entirely correct, however, because we have the sum-rule 2
∑

k nk = Ne, and
since this is fulfilled by n

(0)
k and η < 1, it cannot be fulfilled for nk. The solution is that

the ‘missing nk’ takes the form of a k-independent additive constant, which then has to be
(1 − η)ne/2. In fact, for any εk that can be represented by hopping integrals ti,j , one has∑

k εk = 0, so such a k-independent additive constant would not contribute to the variation
of eG. The momentum distribution obtained by the Gutzwiller approximation thus has step of
magnitude η at the position of the original Fermi surface. Let us now consider in more detail
the case nσ = 1/2 in which the Mott-insulator should be realized for large U/t. We find from
Eq. (21)

η(nd) = 16 nd

(
1

2
− nd

)
.

Minimizing (22) this gives

nd =
1

4
− U

32 |t0|

whereby we have taken into account that t0 < 0 for a half-filled band. Starting from the
noninteracting value 1/4, nd decreases linearly with U and reaches zero at the critical value
Uc = 8 |t0|. For nd = 0 we have η = 0, so that the bandwidth of the quasiparticles becomes
zero, i.e., the band mass diverges, and the step in the momentum distribution vanishes as well.
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Fig. 4: Dispersion relation (left) and momentum distribution function (middle) obtained from
the Gutzwiller wave function compared to the free electron case. The right part shows the
dependence η(ne) for the two-dimensional Hubbard model with U/t = 16.

This is commonly interpreted as a metal-to-insulator transition as a function of increasing U , the
so-called Brinkman-Rice transition [10]. Brinkman and Rice also could show that the magnetic
susceptibility diverges at the transition as one would expect for a diverging effective mass.
Let us now consider the two-dimensional model with nearest-neighbor hopping −t. Then,
t0 = −1.621 t so that the critical Uc = 12.969 t. Figure 4 then shows the dependence of η on
ne for U/t = 16, i.e., for U > Uc. As ne → 1 the renormalization factor η → 0 so that both
the bandwidth and the step in nk vanish for the half-filled band. The Hubbard-I approximation
and the Gutzwiller wave function thus give completely different predictions about what happens
when the half-filled band case is approached by increasing the electron density for constant U/t:
whereas the Hubbard-I approximation predicts a lower Hubbard band with (almost) constant
bandwidth and a hole-pocket-like Fermi surface with a volume ∝ (1 − ne) so that the Fermi
surface vanishes at ne → 1, the Gutzwiller wave function predicts a Fermi surface with a
volume equal to that obtained for free electrons, but with a vanishing bandwidth and spectral
weight as ne → 1.

4 Strong coupling theory

The approximations we have considered so far – Hubbard-I and Gutzwiller wave functions
– neglect the coupling of the electrons to the collective excitations of the strongly correlated
electron system. This interaction with collective excitations on the one hand has a massive
impact on the dispersion and lifetimes of the electrons, but on the other hand is very hard to
treat. In the following, we illustrate this effect by studying the problem of a single hole in a
quantum antiferromagnet, a problem for which a reasonably accurate solution is possible. As a
first step, we derive an effective Hamiltonian that describes only the lower Hubbard band.
As usual, we consider the limit U/t� 1. In this limit most of the sites are occupied by at most
one electron of either spin direction and double occupancies exist only as short-lived interme-
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diate states. In this section we derive an effective Hamiltonian that operates in the sector of the
Hilbert space with at most one electron per site but takes into account the effect of the ‘virtual’
double occupancies by suitable correction terms. This can be achieved by a technique called
canonical perturbation theory. The basic assumption of this approximation is that the Hilbert
space can be decomposed into ‘sectors’ that are energetically well separated. For the Hubbard
model an obvious decomposition is according to the number Nd of double occupancies. Ac-
cordingly, we decompose the Hamiltonian into a part H0 having matrix elements only between
states in the same sector and a part H1 that connects different sectors [11]:

H0 =
∑
i,j

∑
σ

ti,j

(
ĉ†i,σ ĉj,σ + d̂†i,σd̂j,σ

)
+ U

∑
i

ni,↑ni,↓,

H1 =
∑
i,j

∑
σ

ti,j

(
d̂†i,σ ĉj,σ + ĉ†i,σd̂j,σ

)
. (23)

Obviously, H0 does not change the number of double occupancies whereas H1 decreases or
increases this number by one. We now consider unitary transformations within the Hilbert
space that act on the states |Ψ〉 and operators Ô as follows

|Ψ ′〉 = eS |Ψ〉

Ô′ = eSÔ e−S = Ô + [S, Ô] +
1

2!
[S, [S, Ô]] +

1

3!
[S, [S, [S, Ô]]] + . . . ,

where the second line is the Baker-Campbell-Hausdorff theorem. Unitarity of eS requires that
the so-called generator S is anti-Hermitian, S† = −S (for this reason one can often see this
written as S → iS ′ with a Hermitian S ′ in the literature). We now seek a generator S such
that the ‘inter sector part’ H1 in (23) is eliminated from the transformed Hamiltonian H ′. The
approach obviously makes sense only if S is small so that the expansion of the transformed
operators can be terminated after some low order, usually second order in S. Since

H ′ = H0 +H1 + [S,H0] + [S,H1] +
1

2!
[S, [S,H0]] +

1

2!
[S, [S,H1]] + . . .

the generator S obviously has to fulfill H1 + [S,H0] = 0 in order to eliminate H1. To second
order in S the transformed Hamiltonian then becomes

H ′ = H0 + [S,H1] +
1

2!
[S, [S,H0]] +

1

2!
[S, [S,H1]] +

1

3!
[S, [S, [S,H0]]] + . . .

= H0 − 1

2
[S,H1] +

1

2!
[S, [S,H1]] + . . .

For the Hubbard model an additional complication occurs: namely H0 in (23) contains two
terms of different orders of magnitude, i.e., a part of the hopping term ∝ tij and the Coulomb
term HU ∝ U � tij . Accordingly, we demand H1 + [S,HU ] = 0. Using [HU , d̂

†
i,σ] = Ud̂†i,σ it

is easy to see that S is given by

S =
∑
i,j

∑
σ

ti,j
U

(
d̂†i,σ ĉj,σ − ĉ

†
i,σd̂j,σ

)
,
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so that indeed S ∼ t
U
� 1 and the truncation of the expansion in powers of S is meaningful.

The correction term to the Hamiltonian then becomes

H ′c =
1

2
[S,H1] =

1

2

∑
i,j,l,m

∑
σ,σ′

ti,j tl,m
U

[
d̂†i,σ ĉj,σ − ĉ

†
i,σd̂j,σ , d̂

†
l,σ′ ĉm,σ′ + ĉ†l,σ′ d̂m,σ′

]
(24)

Expanding the commutator on the right-hand side will produce a considerable number of terms.
However, keeping in mind the goal of the present calculation, namely the derivation of an
effective Hamiltonian that describes the lower Hubbard band, i.e., the sector of the Hilbert
space with Nd = 0, most of these terms can be discarded. Namely each of the products of
four operators resulting from writing out (24) contains two d̂-operators, and these must appear
exactly in the sequence d̂i,σ′ d̂

†
i,σ. This is because neither the initial nor the final state must

contain a double occupancy and the above combination is the only one that obeys this constraint
(for the same reason, we neglect the commutator of the kinetic part ∝ tij of H0 with S; this
would produce terms with one d̂-operator). Dropping the undesired terms we obtain

H ′c = −
1

2

∑
i,j,l

∑
σ,σ′

ti,j tl,i
U

ĉ†l,σ′ d̂i,σ′ d̂
†
i,σ ĉj,σ −

1

2

∑
i,j,m

∑
σ,σ′

ti,j tj,m
U

ĉ†i,σd̂j,σ d̂
†
j,σ′ ĉm,σ′

= −
∑
i,j,l

∑
σ,σ′

ti,l tl,j
U

ĉ†i,σ′ d̂l,σ′ d̂
†
l,σ ĉj,σ

where the second line was obtained by exchanging (i, l)→ (l, i) in the first term and (j,m)→
(l, j) in the second. Next we use d̂l,↑ d̂

†
l,↑ = nl,↓ and d̂l,↓ d̂

†
l,↑ = −S

+
i and find

H ′ = −
∑
i,j,l

ti,l tl,j
U

(
(ĉ†i,↑ nl,↓ ĉj,↑ − ĉ

†
i,↓ S

+
l ĉj,↑) + (ĉ†i,↓ nl,↑ ĉj,↓ − ĉ

†
i,↑ S

−
l ĉj,↓)

)
In the special case where i = j there is an additional factor of 2 because the ‘intermediate’
double occupancy may be formed either at i or at j. The respective terms become

H ′ = −2
∑
i,j

t2i,j
U

(
ni,↑nj,↓ + ni,↓nj,↑ − S+

i S
−
j − S−i S+

j

)
= 4

∑
i,j

t2i,j
U

(
Si · Sj −

ninj
4

)
where we used n↑ = n/2 + Sz and n↓ = n/2 − Sz. With the abbreviation Jij = 4t2i,j/U , the
complete effective Hamiltonian for the lower Hubbard band thus becomes

Hsc =
∑
i,j

∑
σ

ti,j ĉ
†
i,σ ĉj,σ +

∑
i,j

Ji,j

(
Si · Sj −

ninj
4

)
−
∑
i,j,l

ti,l tl,j
U

(
(ĉ†i,↑nl,↓ĉj,↑ − ĉ

†
i,↓S

+
l ĉj,↑) + (↑ ↔ ↓)

)
, (25)

The first two terms together are called the t-J model. It has been proposed by Zhang and Rice
as an effective model for the CuO2 planes of cuprate superconductors [4]. The second line is
frequently referred to as the ‘conditional hopping terms’ or ‘three-site hopping terms.’
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5 Spin waves

We first recall the goal of the present discussion, which is the study of the interaction between
electrons and collective modes in a doped Mott insulator. In the following, we discuss the most
important collective excitations of the undoped Mott insulator, namely spin waves. Spin waves
are frequently discussed using the Holstein-Primakoff transformation [12] but for the case of
spin 1/2 a simpler and more transparent derivation is possible, which is outlined below.
We consider the strong-coupling Hamiltonian (25) for the case of exactly one electron per site.
Since no empty site is present, the terms in (25) that transport an electron from one site to
another can be dropped and we are left with

Hsc =
∑
i,j

Ji,j

(
Si · Sj −

ninj
4

)
We assume that there are nonvanishing ti,j , and hence also Ji,j , only between nearest neighbors.
The terms ∝ ninj give only an unimportant constant shift of −J/4 per bond, so we omit them.
Finally we arrive at the Heisenberg antiferromagnet (note that by definition Ji,j > 0)

HHAF = J
∑
〈i,j〉

(
Szi S

z
j +

1

2

(
S+
i S
−
j + S−i S

+
j

))
, (26)

where 〈i, j〉 denotes a sum over pairs of nearest neighbors. If only the term ∝ Szi S
z
j were

present, the ground state of (26) would be the Néel state, shown in Figure 5 (a). In this state, the
square lattice is divided into two sublattices and all sites of the A-sublattice are occupied by an
↑-electron, whereas all sites of theB-sublattice are occupied by a ↓-electron. However, the Néel
state is not an eigenstate of the total Hamiltonian: acting, e.g., with the term S−i S

+
j contained

in the second term of (26), the spins at the sites i and j are inverted, see Figure 5 (b), and the
resulting state is orthogonal to the Néel state. To deal with these so-called quantum fluctuations
we proceed as follows: we interpret the Néel state as the vacuum |0〉 and we model an inverted
spin on the site i of the A sublattice as the presence of a Boson, created by a†i . Similarly, an
inverted spin on the site j of the B sublattice is modelled by the presence of a Boson created by
b†j . The state Figure 5 (b) thus would be a†i b

†
j |0〉. We use Bosons to represent the inverted spins

because the spin-flip operators acting on different sites commute. Since any given spin can be
inverted only once, a state like (a†i )

2|0〉 is meaningless. Accordingly, we have to impose the
additional constraint that at most one Boson can occupy a given site. We call this the hard-core
constraint. An inverted spin on either sublattice is parallel to its z = 4 nearest neighbors and
the energy changes from −J/4 to +J/4 for each of these z bonds. Accordingly, we ascribe
an ‘energy of formation’ of zJ/2 to each Boson. The transverse part creates pairs of inverted
spins on nearest neighbors, with the matrix element being J/2 and we can thus write down the
following Hamiltonian to describe the quantum fluctuations:

HSW =
zJ

2

(∑
i∈A

a†iai +
∑
i∈B

b†i bi

)
+
J

2

∑
i∈A

∑
n

(
a†i b

†
i+n + bi+nai

)
. (27)
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i j

(a) (b)

Fig. 5: The Néel state (a) is not the ground state of the Heisenberg antiferromagnet. By acting,
e.g., with the term J/2 S−i S

+
j in (26) the state (b) is generated, which is orthogonal to (a).

Here n are the z vectors which connect a given site with its z nearest neighbors. The Hamil-
tonian (27) is in quadratic form, but we recall that the Bosons are not free particles but have to
obey the hard-core constraint. However, we now simply ignore this and treat the Bosons as free
particles – we will return to this issue later on. Fourier transformation of (27) gives

HSW =
zJ

2

∑
k

(
a†kak + b†kbk + γk (a

†
kb
†
−k + b−kak)

)
,

γk =
1

z

∑
n

eik·n =
1

4

(
2 cos(kx) + 2 cos(ky)

)
(28)

where k is a wave vector in the antiferromagnetic Brillouin zone. We can solve (28) by a
Bosonic Bogoliubov transformation, i.e., we make the ansatz

γ†a,k = uka
†
k + vkb−k

γ†b,−k = ukb
†
−k + vkak. (29)

Demanding that [γa,k, γ
†
a,k] = [γb,k, γ

†
b,k] = 1 gives the condition u2

k − v2
k = 1. An equation

for uk and vk is obtained by demanding [H, γ†a,k] = ωkγ
†
a,k. This is explained in detail in the

Appendix. Using the formulae from the Appendix, we find the spin wave dispersion and the
coefficients uk and vk:

ωk =
zJ

2

√
1− γ2

k , uk =

√
1 + νk
2νk

, vk =

√
1− νk
2νk

,

where νk =
√

1− γ2
k. For k → 0 we have γk → 1 − (k2

x + k2
y)/4 so that ωk →

√
2J |k|, i.e.,

the spin waves have a cone-shaped dispersion and reach zero frequency at k = (0, 0) but also
at k = (π, π). To compute observables we revert the transformation

a†k = ukγ
†
a,k − vkγb,−k ,

b−k = −vkγ†a,k + ukγb,−k . (30)
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Fig. 6: Comparison of spin-wave theory to experiments on La2CuO4. Panel A shows the dis-
persion of the frequency ωk of the spin waves, panel B the k-dependence of the peak intensity,
which is easily expressed in terms of the coefficients uk and vk. The dots are experimental data,
the lines the prediction of spin-wave theory. Reprinted with permission from [14], Copyright
2001 by the American Physical Society.

As an application, let us consider the ground state energy. The energy of the Néel state, which
was the zero of energy for the spin wave Hamiltonian (28), was −J/4 per bond, and there are
z N/2 bonds in the system. To this we add the expectation value of (28) calculated in the ground
state, i.e., the vacuum for the γ’s, thereby using (30). We obtain

〈Hsw〉 =
zJ

2

∑
bfk

(
2v2

k − 2γkukvk
)
=
zJN

4

[
2

N

∑
k

(√
1− γ2

k − 1

)]
.

The expression in the square bracket can be converted to an integral over the antiferromagnetic
zone and evaluated numerically. The result is that for the two-dimensional square lattice the
ground state energy per bond is lowered from−0.25 J to−0.328974 J due to the quantum fluc-
tuations. Monte-Carlo simulations for the two-dimensional Heisenberg antiferromagnet give a
ground state energy of−0.33 J per bond [13]. The spin waves can also be observed experimen-
tally by inelastic neutron scattering. An example is shown in Figure 6. It is quite obvious that
the agreement with experiment is excellent and in fact spin-wave theory is an extraordinarily
successful description of many properties of magnetic Mott insulators.
To conclude this section, we return to the issue of the hard-core constraint which the a† and b†

Bosons had to obey and which we simply ignored. To address this question, we calculate the
density of these Bosons, i.e.,

na =
2

N

∑
k

〈a†kak〉 =
2

N

∑
k

v2
k =

2

N

∑
k

1− νk
2νk

.

Numerical evaluation for a 2D square lattice gives na = 0.19. The probability that two of the
Bosons occupy the same site and violate the constraint therefore is ≈ n2

a = 0.04 � 1 and our
assumption of relaxing the constraint is justified a posteriori.
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i j

(a) (b)

Fig. 7: A hole hopping in the Néel state displaces spins, which thus become misaligned.

6 Single hole problem

In the preceding section, we considered the strong coupling Hamiltonian (25) for Ne = N ,
where it reduces to the Heisenberg antiferromagnet, and we studied the collective excitations of
the Mott insulator, i.e., the spin waves. Now we consider the case Ne = N − 1, i.e., a single
mobile hole in an antiferromagnet, and we study the interaction between this hole and the spin
waves. Again we assume that there is a nonvanishing hopping element, denoted by −t, only
between nearest neighbors, and for simplicity we drop the three-site hopping terms in (25); that
means we study the t-J model. Since we saw that the ground state still has antiferromagnetic
order – although reduced – we again start from the Néel state and assume that the electron on
site i, belonging to the ↑-sublattice, is removed – see Figure 7 (a). Then, the hopping terms in
(25) become active and an electron from a neighboring site j can hop to i, resulting in the state
in Figure 7 (b). Since this electron has ‘switched sublattices’, however, its spin now is opposite
to that of the electron originally at site i. This inverted spin at site i then may be viewed as a
spin wave as discussed in the preceding section. In other words, the propagating hole ‘radiates
off’ spin waves and thus is coupled to the spin excitations. This process would be described
precisely by the term cj,↓S

−
i in the commutator relations (10) – which were neglected in the

Hubbard-I approximation. In the following we will see, however, that the coupling of the single
hole to the spin excitations modifies the ‘band structure’ drastically.

We continue to use the Bosons a†i and b†j defined in the preceding section and introduce an
additional ‘particle’ namely a hole created by the fermionic creation operators h†a,i for i ∈ A

and h†b,j for j ∈ B. We have introduced two species of hole creation operators, h†a,i and h†b,j ,
because we continue to use the antiferromagnetic Brillouin zone, which in turn necessitates
the two-sublattice structure. However, both particles simply stand for a ‘hole.’ Since we are
considering only a single hole the statistics of h†i moreover is irrelevant and we might as well
describe it by a Bosonic operator. The two states shown in Figure 7 would then be expressed
as h†a,i|0〉 and h†b,j a

†
i |0〉, and generalizing this we can immediately write down the Hamiltonian
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G (k+q ,ω+ν)bG (k−q ,ω−ν)b

B( q ,ν) B( q ,ν)

Fig. 8: Simplest Feynman diagrams for the self-energy of a hole.

for the interaction between the hole and the spin defects:

Hint = t
∑
i∈A

∑
n

(
h†b,i+nha,i a

†
i +H.c.

)
+ t
∑
j∈B

∑
n

(
h†a,j+nhb,j b

†
j +H.c.

)
.

Note that the hopping integral for a hole is +t. Upon Fourier transformation this becomes

Hint =

√
2

N

∑
k,q

((
εk−q h

†
b,k−qha,k a

†
q +H.c.

)
+ (a↔ b)

)
.

where εk = 2t(cos(kx) + cos(ky)). Next, we use the inverse Bogoliubov transformation (19) to
replace a† and b† by γ†i and add the spin-wave Hamiltonian to describe the dynamics of the γ†i .
The total Hamiltonian for the coupled hole-magnon system then reads

Htot =

√
2

N

∑
k,q

((
M(k,q)h†b,k−qha,kγ

†
a,q+H.c.

)
+ (a↔ b)

)
+
∑
q

ωq

(
γ†a,qγa,q + γ†b,qγb,q

)
,

(31)
whereM(k,q) = εk−quq−εkvq. Obviously the first term describes how a hole with momentum
k ‘radiates off’ a spin wave with momentum q thereby changing its own momentum to k− q.
The Hamiltonian (31) no longer is a quadratic form and requires more sophisticated techniques
for its solution. More precisely, we will use the so-called self-consistent Born approximation
(SCB) to derive an equation for the self-energy of the hole. We again define the time-ordered
zero-temperature Green’s functions [6]

Gα(k, t) = −i〈T hα,k(t)h,k(0)
†〉

Bα(q, t) = −i〈T γα,q(t)γ,q(0)
†〉,

where 〈. . . 〉 denotes the expectation value in the empty state containing neither spin waves nor
a hole. The simplest Feynman diagrams for the self-energy of the hole are shown in Fig. 8, and
the corresponding expression is [6]

Σa(k, ω) =
i

2π

2

N

∑
q

∫
dν M2(k,q) [Ba(q, ν)Gb(k−q, ω−ν) +Ba(q, ν)Gb(k+q, ω+ν)] .

(32)
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Since a single hole in a macroscopic system is not expected to have any effect on the spin wave
spectrum we may use the noninteracting Green’s function for the spin waves, which is given by

B(0)
α (q, t) = −ie−iωqt

(
Θ(t) 〈γα,qγ†α,q〉+Θ(−t) 〈γ†α,qγα,q〉

)
= −iΘ(t) e−iωqt,

with Fourier transform B
(0)
α (q, ω) = (ω − ωq + i0+)−1. Next, we note that (with α ∈ a, b)

0 = 〈h†α,khα,k〉 = −iGα(k, t = 0−) = − i

2π

∫ ∞
−∞

dωeiω0+ Gα(k, ω) .

Due to the presence of the factor eiω0+ we can close the integration path around the upper ω
half-plane. Since the integral must vanish, we can conclude that the hole Green’s function
is analytical in the upper half-plane (this also would have followed from the fact that for the
special case of an empty ground state the time-ordered Green’s function is equal to the retarded
one, and the retarded Green’s function is analytical in the upper half-plane). We now insert
B

(0)
α (q, ω) into the expression for the self-energy, (32), and obtain

Σa(k, ω) =
i

2π

2

N

∑
q

∫
dν M2(k,q)

[
Gb(k− q, ω − ν)
ν − ωq + i0+

+
Gb(k+ q, ω + ν)

ν − ωq + i0+

]
.

Since Gb ∝ |ω|−1 for large |ω| the integrand behaves like |ν|−2 and we can close the integration
contour around either the upper or the lower ν-half-plane. For the first term we choose the lower
half-plane, where the integrand has a pole at ν = ωq − i0+. If ν has a negative imaginary part
and ω is real, the frequency argument ω − ν of Gb in this term has a positive imaginary part,
and since Gb is regular in the upper half-plane there are no singularities from the factor of Gb.
In the second term, we close the integration contour around the upper half-plane. For ν in the
upper half-plane, both B(ν) and G(ω + ν) are regular. The second term thus vanishes and the
result is

Σa(k, ω) =
2

N

∑
q

M2(k,q)Gb(k− q, ω − ωq)

Since we expect that Ga = Gb = G and hence Σa = Σb = Σ and G−1(k, ω) = ω − Σ(k, ω)

we finally obtain the self-consistency equation for Σ(k, ω) [15]

Σ(k, ω) =
2

N

∑
q

M2(k,q)

ω − ωq −Σ(k− q, ω − ωq)
.

This can be solved numerically on a finite k-mesh and ω-grid [15], whence the hole spectral
density A(k, ω) = − 1

π
ImG(k, ω + i0+) of the hole Green’s function can be calculated. This

can in principle be compared to the ARPES spectra of a Mott-insulator. Figure 9 shows the
result of such a calculation, taken from Ref. [15]. The spectrum is spread out over an energy
range of several t, and a considerable amount of spectral weight is distributed over this range.
The spread-out weight is frequently referred to as ‘incoherent continua.’ At the bottom of the
spectrum, around ω ≈ −2t, there is a relatively intense isolated peak, often referred to as the
‘quasiparticle peak.’ The corresponding eigenstate is the ground state of the hole for the re-
spective momentum. Figure 9 also shows A(k, ω) obtained by Lanczos diagonalization of a
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Fig. 9: (a) Single-particle spectral function A(k, ω) obtained from the SCB for the t-J model
[15] with J/t = 0.3 for k = (0, 0) and k = (π/2, π/2). (b) Single particle spectral function
of the t-J model obtained by exact diagonalization of a 32-site cluster [16]. Note that this
Figure has an inverted ω-axis and actually shows A(k,−ω). Repinted with permission from
[15], Copyright 1991 by the American Physical Society and from [16] Copyright 1995 by the
American Physical Society

32-site cluster [16]. Note that the Lanczos spectra are ‘upside down’ as compared to the SCB
spectra, which means the quasiparticle peak is at the top, rather than the bottom of the spectra.
The Lanczos spectra also show the quasiparticle peak and the incoherent continua, and in fact
even the k-dependence of the incoherent continua shows some similarity with the results of the
SCB-approximation. Figure 10 compares the dispersion of the quasiparticle peak as obtained
by Lanczos (dots) and SCB (line). Obviously the agreement is very good. The whole spec-
trum – quasiparticle peak plus incoherent continua – would now replace the lower Hubbard
band in the Mott-insulator, whereby the quasiparticle peak would form the top of the photoe-
mission spectrum, as in the Lanczos spectra. Comparing with the prediction of the Hubbard-I
approximation, the width of the quasiparticle band is reduced drastically. Moreover one can see
from Figure 10 that the band maximum is shifted from (π, π) to (π/2, π/2). The hole pocket
predicted by the Hubbard-I approximation therefore should form around this momentum.

The self-consistent Born approximation in fact not only agrees very well with numerical spectra
but also with experiments on insulating cuprates. After the publication of ARPES spectra for
the antiferromagnetic Mott-insulator Sr2CuO2Cl2 by Wells et al. [17], considerable theoretical
effort was put into reproducing these spectra, and after adding additional hopping integrals
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Fig. 10: Dispersion of the quasiparticle peak from the SCB (line) and by Lanczos diagonaliza-
tion of a 32-site cluster. Reprinted with permission from [16], Copyright 1995 by the American
Physical Society.

between 2nd and 3rd nearest neighbors, good agreement with experiment could be achieved
using the self-consistent Born approximation; see for example Ref. [18].
The self-consistent Born approximation thus is quite successful but somewhat technical. For
this reason we now give a simplified discussion of the states that form the quasiparticle band.
We decompose the t-J Hamiltonian as H = H0 +H1 whereby

H0 = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c

)
+ J

∑
〈i,j〉

(
Szi S

z
j −

ninj
4

)
,

H1 =
J

2

∑
〈i,j〉

(
S+
i S
−
j +H.c.

)
. (33)

In the absence of any hole, the ground state of H0 is again the Néel state with energy NJ ,
and we choose this as the zero of energy. We assume that a hole is created at some site i,
which raises the energy by zJ/2. By the action of the hopping term, the hole then starts to
propagate. As was discussed above, however, in every step the hole shifts one electron to the
opposite sublattice where its spin is opposite to the Néel order; see Figure 11. The hole thus

i1

i2

i3 i4

i i

Fig. 11: A hole hopping in the Néel state creates a ‘string’ of misaligned spins.
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leaves behind a trace of misaligned spins so that the magnetic energy increases roughly linearly
with the distance travelled by the hole. We call such a state that is created by a hole hopping
in the Néel state a ‘string’ and denote it by |i0, i1, . . . , iν〉, where i1, i2, iν−1 are the sites which
the hole has visited, and the hole itself is at the site iν . In the first step the hole generates z
different string states, whereas any subsequent hop from any string of length ν generates z − 1

strings of length ν + 1. The number of strings of length ν thus is nν = z(z − 1)ν−1 for ν ≥ 1,
while n0 = 1. Since each displaced spin is parallel to z − 2 neighbors – compare Figure 11 –
the magnetic energy increases by J(z − 2)/2. The only exception is the first hop away from
i where the energy increases by J(z − 1)/2. Accordingly, the exchange energy for a string of
length ν > 0 is

Iν =
(z + 1)J

2
+ ν

(z − 2)J

2
, (34)

where I0 = zJ/2. It may happen that the path that the hole has taken is folded or self-
intersecting, and in this case (34) is not correct. However, it will be correct for most possible
paths of the hole: in particular, it is correct for ν ≤ 2, so we will use this expression. Neglect-
ing the possibility of self-intersection or folding of the string is an approximation known as the
Bethe lattice. Since the magnetic energy increases linearly with the number of hops the hole
has taken, we conclude that the hole is self-trapped. To describe the resulting localized state we
make the ansatz

|Ψi〉 =
∞∑
ν=0

αν
∑

i1,i2,...,iν

|i, i1, i2, . . . , iν〉 (35)

where it is understood that the second sum runs only over those ν-tuples of sites that correspond
to a true string starting at i. Since we assume that the magnetic energy is the same for all strings
of length ν, the coefficient αν also depends only on the length of the string. The αν in (35) are
to be determined by minimizing the energy. The norm and magnetic energy are

〈Ψi|Ψi〉 =
∞∑
ν=0

nν |αν |2, (36)

〈Ψi|HI |Ψi〉 =
∞∑
ν=0

nν Iν |αν |2. (37)

To obtain the expectation value of the kinetic energy, we consider a string of length ν ≥ 1 with
coefficient αν . By acting with the hopping term, we obtain z − 1 strings of length ν + 1 with
coefficient αν+1 and one string of length ν − 1 with coefficient αν−1. For ν = 0, we obtain z
strings of length 1. In this way, we find

〈Ψi|Ht|Ψi〉 = t

(
z α0α1 +

∞∑
ν=1

nν αν (αν−1 + (z − 1)αν+1)

)
= 2t

∞∑
ν=0

nν+1αν αν+1 . (38)
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i j i j

Fig. 12: By acting with the term J/2S+
i S
−
j , the first two defects created by the hole can be

‘healed’ and the starting point of the string be shifted to a neighbor.

Then we demand

0 =
∂Eloc

∂αν
=

∂

∂αν

〈Ψi|H0|Ψi〉
〈Ψi|Ψi〉

=
1

〈Ψi|Ψi〉2

[
∂〈Ψi|H0|Ψi〉

∂αν
〈Ψi|Ψi〉 − 〈Ψi|H0|Ψi〉

∂〈Ψi|Ψi〉
∂αν

]
=

1

〈Ψi|Ψi〉

[
∂〈Ψi|H0|Ψi〉

∂αν
− Eloc

∂〈Ψi|Ψi〉
∂αν

]
whence

∂〈Ψi|H0|Ψi〉
∂αν

− Eloc
∂〈Ψi|Ψi〉
∂αν

= 0.

Inserting equations (37), (38), and (36) we obtain [19]

Iν αν + t (αν−1 + (z − 1)αν+1) = Eloc αν for ν ≥ 1

I0 α0 + z t α1 = Eloc α0 .

This is a non-Hermitian eigenvalue problem, but by introducing βν =
√
nναν it can be made

Hermitian. So far it seems that the hole in the Néel state is localized. However, it is easy to see
that the part H1 in (33) that was neglected so far can assist the trapped hole in escaping from
the string potential, see Figure 12. Namely, by acting on the first two sites of a string, the spins
that were inverted by the hole are inverted a second time and thus fit with the Néel order again:

H1|i, i1, i2, i3, . . . , iν〉 =
J

2
|i2, i3, . . . , iν〉

The initial site of the string thus is shifted to a (2, 0)- or (1, 1)-like neighbor while simultane-
ously the length ν is increased or decreased by two. This suggests that there is a nonvanishing
matrix element of H1 between states |Ψi〉 and |Ψj〉, and it is straightforward to see that

〈Φi|H1|Φi+ 2x̂ 〉 = J

∞∑
ν=0

(z − 1)ν αν αν+2 = J ·m,

〈Φi|H1|Φi+x̂+ŷ〉 = 2J ·m.

The factor of 2 in the second matrix element is due to the fact that a string to a (1, 1)-like
neighbor can pass either trough (1, 0) or (0, 1) and the contributions from these two different
paths are additive.
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Fig. 13: Center of gravity Ec and bandwidth W of the quasiparticle band as obtained from the
variational calculation in the string basis.

If the full Hamiltonian H0 +H1 is taken into account, the hole therefore can propagate through
the entire lattice, and we describe this by the Bloch state

|Ψk〉 =

√
2

N

∑
i∈A

e−ik·Rj |Φi〉 . (39)

Since the matrix element for a (1, 1)-like neighbor is twice that for a (2, 0)-like neighbor we
obtain the dispersion

E(k) = Eloc + 2Jm · 4 cos(kx) cos(ky) + Jm · 2(cos(2kx) + cos(2ky))

= Eloc + 4Jm (cos(kx) + cos(ky))
2 − 4Jm .

This has a degenerate minimum along the line ky = π − kx (i.e. (π, 0) → (0, π)) and the
symmetry equivalent lines, the maxima are at (0, 0) and (π, π). This is very similar to the
dispersion in Figure 10 (note that the dispersion from SCB is upside down in this Figure!). The
center of the band is Ec = Eloc +4Jm, where Eloc is relatively large, of order 2–3 t. The width
of the band is W = 16mJ . Both quantities are shown in Figure 13. At J/t = 0.3 we have
Ec = −2 t andW = 0.83 t – in fact Figure 9 (a) shows that the center of the band is around−2 t
and Figure 10 shows that the bandwidth is ≈ 0.7 t. The trial wave function (39) thus describes
the single hole ground state that gives rise to the quasiparticle peak quite well.

The above derivation shows that due to the interaction with the spin waves the motion of the
hole in an antiferromagnet is very different from free propagation: the hole executes a rapid
‘zig-zag’ motion around a given site i with hopping integral t under the influence of the string
potential thereby forming the quasi-localized states |Ψi〉. The spin-flip part of the Hamiltonian
then enables tunneling between such quasi-localized states with the much smaller energy scale
∝ J , which accordingly determines the bandwidth of the quasiparticle.
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Fig. 14: Left: Fermi surface volume as obtained from the Hubbard-I approximation and the
Gutzwiller wave function. Right: a possible compromise with a phase transition between two
phases with different VFermi(ne).

7 Summary and discussion

Since a generally accepted theory of the lightly doped 2-dimensional Hubbard model does not
exist so far, so that also the cuprate superconductors are not really understood as yet, maybe the
best one can do at present is to outline the problems that would have to be solved.

The first one of these is the Fermi surface close to half-filling. As we have seen, the Hubbard-I
approximation and the Gutzwiller wave function predict completely different behavior close to
half-filling: a hole-like Fermi surface with a volume ∝ nh = 1 − ne in the lower Hubbard-
band whose volume tends to zero as ne → 1 versus a free-electron-like Fermi surface with
volume ne/2 formed by a band whose mass diverges as ne → 1. It should be noted that for
ne very close to 1 antiferromagnetic order sets in, but superconductivity is observed at values
of ne where there is no more antiferromagnetism. The more relevant question therefore is,
which Fermi surface is realized up to the onset of antiferromagnetism. A possible compromise
between the two approximations could be as shown in Figure 14: near ne = 1 but outside the
antiferromagnetic doping range there are hole pockets with a volume that is strictly proportional
to the hole number nh = 1−ne, i.e., the doped Hubbard-band, and then at some critical density
a phase transition occurs to a phase where the Fermi surface volume is ne/2. This might be
one scenario which the Hubbard-I approximation ‘tries to reproduce.’ Viewed this way, the
‘pseudogap phase’ of cuprate superconductors could be identified with the hole-pocket phase
and the quantum critical point, which is surrounded by the superconducting dome, corresponds
to the transition to the free-electron-like Fermi surface. A theory which is supposed to describe
this transition first of all must reproduce the two Hubbard bands – otherwise the hole-doped
lower Hubbard band cannot be reproduced. Next, the two different phases and the transition
between them would have to be described, which is a considerable problem because there is no
obvious order parameter for the transition between a paramagnetic small Fermi surface and a
paramagnetic large Fermi surface.
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The second major problem is that – as we have seen above – the particles in the Hubbard bands
are heavily renormalized due to their interaction with, mainly, spin excitations. The quasi-
particle band produced by the self-consistent Born approximation or the string wave function
describes a very complicated state in which the hole is heavily dressed by spin excitations. It
is this strong dressing with spin waves which leads for example to the shift of the band maxi-
mum from (π, π), where it is predicted by the Hubbard-I approximation, to (π/2, π/2), where
the self-consistent Born approximation puts it. It is likely that similar effects will also occur
in the lightly doped Mott insulator, and clearly it is rather hopeless to try and reproduce these
heavily renormalized quasiparticles by any ‘simple’ theory, such as a mean-field theory. From
the calculation with the string states it appears that long-range antiferromagnetic order is not
absolutely necessary – rather a similar formation of strings may already occur in a state that has
antiferromagnetic correlations with a range of a few lattice spacings. However, for the situation
without antiferromagnetic order but only short ranged antiferromagnetic correlations, there is
no state analogous to the Néel state that would allow for a similarly simple development as in
the single-hole theory.
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A The bosonic Bogoliubov transformation

We consider the following Hamiltonian, whereby a† and b† are bosonic operators that satisfy
[a, a†] = [b, b†] = 1:

H = ε (a†a + b†b) + V a†b† + V ∗ ba, (40)

To solve this we make the ansatz

γ†1 = u a† + v b (41)

γ†2 = u b† + v a (42)

In order for the γ′s to fulfil the bosonic commutator relations [γi, γ
†
i ] = 1, we must have |u|2 −

|v|2 = 1. The relation [γ†1, γ
†
2] = 0 on the other hand is fulfilled automatically. Moreover, we

require that when expressed in terms of the γ′s the Hamiltonian should take the simple form

H =
2∑
i=1

ω γ†i γi + const

which means that the γ′s obey

[H, γ†i ] = ωγ†i (43)

We now insert (40) and γ†1 from (42) into (43), use the commutator relations for a† and b†, and
equate the coefficients of a† and b on both sides of (43. This gives the non-Hermitian eigenvalue
problem (

ε −V
V ∗ −ε

)(
u

v

)
= ω

(
u

v

)

which is easily solved to give

ω =
√
ε2 − |V |2

u =
V√

2ω(ε− ω)

v =

√
ε− ω
2ω

The eigenvalue problem has the property that if (u, v) is an eigenvector with eigenvalue ω then
(v∗, u∗) is an eigenvector with eigenvalue −ω. This guarantees that automatically [H, γ1] =

−ωγ1. Since H is symmetric under a ↔ b the requirement [H, γ†2] = ωγ†2 gives the same
system of equations. To apply this to the spin wave Hamiltonian (28), we obviously need to set
ε = 1 and V = γk.
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