
5 Numerical Renormalization Group and
Multi-Orbital Kondo Physics

T.A. Costi
Institute for Advanced Simulation (IAS-3)
Forschungszentrum Jülich
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5.2 T.A. Costi

1 Introduction

This lecture deals with a particular implementation of the renormalization group idea: Wilson’s
non-perturbative numerical renormalization group (NRG) method for quantum impurity models
[1]. The technique was originally developed in the context of the Kondo model for magnetic
impurities (such as Fe or Mn) in non-magnetic metals (such as Cu, Au, Ag etc).
The Kondo model is defined by the Hamiltonian

HKM = J ~S · ~s0 +
∑
kσ

εkσ c
†
kσckσ , (1)

and describes a localized impurity spin ~S interacting antiferromagnetically (J > 0) with the
conduction electrons of the host via their spin density ~s0 at the impurity site. Unlike the case
of non-magnetic impurities, or potential scatterers, magnetic impurities have internal dynami-
cal degrees of freedom that result in inelastic scattering of conduction electrons. This makes
the Kondo problem, the scattering of electrons from magnetic impurities, a genuine many-body
correlation problem. Wilson used the NRG to solve the many-body Hamiltonian (1) and demon-
strated conclusively that a S = 1/2 magnetic impurity embedded in a non-magnetic metal has
its magnetic moment completely screened by the surrounding conduction electrons, provided
the temperature is sufficiently low, namely for T � TK , where TK =

√
JNF e

−1/JNF is a dy-
namically generated low-energy scale called the Kondo scale (see Sec. 2). This pioneering work
established the formalism and gave a detailed analysis of the fixed points and thermodynamics
of the Kondo model and, later, also of the Anderson impurity model. The NRG has since been
applied to many more quantum impurity models [2–4]. In addition, it has been extended to the
calculation of equilibrium dynamical and transport properties [5–10], e.g., dynamical suscepti-
bilities, resistivities and thermopower or the conductance through quantum dots [11], thereby
making the NRG a useful tool for interpreting experiments that probe these quantities.
Despite this progress, the NRG is still under development, and important challenges remain
to be addressed. Two such challenges are (i) to extend it to more realistic multi-orbital and
multi-channel models (e.g., for use in realistic modeling of materials), and (ii) to extend it to
the transient and non-equilibrium steady state response of quantum impurity systems. Recent
progress and ideas in these two directions are outlined in Sec. 6.
The outline of this lecture is as follows: Quantum impurity models are introduced in Sec. 2;
the linear chain representation of such models is described, and the first step in the NRG pro-
cedure is also indicated there (the “zeroth approximation”). Anderson impurity and Kondo
models are described, as is the spin-boson model and its fermionic equivalents: the anisotropic
Kondo model (AKM) and the interacting resonant level model (IRLM). For a direct treatment
of bosonic models within NRG, see the Lecture by K. Ingersent.
Wilson’s NRG method is described in Sec. 3, and the calculation of physical properties is out-
lined in Sec. 4. In Sec. 5, we describe the recently introduced complete basis set [12] and its
use in constructing the full density matrix [10]. Applications to thermodynamics and Green
functions are given. An outline of some recent developments using the NRG is given in Sec. 6,
and Sec. 7 summarizes with possible future directions.
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2 Quantum impurity models

Quantum impurity models describe systems where the many-body interaction acts at one or only
a few sites, the “impurity,” and the impurity is coupled to a large system, the bath, consisting of a
macroscopically large number of non-interacting particles. These particles can be either bosons
(e.g., phonons, magnons, photons, particle-hole pairs, etc.) or fermions (e.g., electrons in the
conduction band or quasiparticles in superconductors). The “impurity” may be a real impurity,
such as an Fe impurity (in Au), or a two-level atom (coupled to the electromagnetic field), or
just a confined region behaving like an artificial atom, as in the case of semiconductor quantum
dots (coupled to leads). It may also simply represent the lowest two quantum mechanical states
of a system with a double-well potential, as in the case of quantum tunneling between macro-
scopic fluxoid states in a superconducting quantum interference device, which can be used to
realize a qubit for quantum computation. Two magnetic impurities in a non-magnetic metal at
a distance R apart, interacting via the RKKY indirect exchange JRKKY may also be regarded
as a quantum impurity system [13]. Analogues of this in nanostructures, such as double quan-
tum dots attached to leads, also exist. The transfer of electrons between donor and acceptor
molecules in photosynthesis and other biological processes may also be crudely described in
terms of a two-state system coupled to environmental degrees of freedom (solvent). Concrete
models describing the above situations go under the names of (isotropic and anisotropic) single
and multi-channel Kondo models, the Anderson impurity model, and the dissipative two-state
system [14,15]. They describe a large number of physical systems of current experimental and
theoretical interest. Quantum impurity models are also of relevance in the study of correlated
lattice models, such as the Hubbard or Kondo lattice models, since the latter are often well
approximated, via the dynamical mean-field theory, by a local impurity model embedded in a
medium that has to be determined self-consistently [16].
Historically, interest in quantum impurities arose when magnetic impurities were found to be
present, albeit in very low concentrations, even in apparently very pure metals such as Au or Ag.
In particular, measurements of the resistivity of Au as early as the 1930’s showed an unexpected
minimum at low temperature (Fig. 1). The puzzle of the resistivity minimum was resolved by
Kondo in 1964, who showed that a small concentration cimp of magnetic impurities modeled
by Eq. (1) gives rise to an additional temperature dependent term in the resistivity of the form
ρK = −cimp b ln (T/D), which increases with decreasing temperature. The balance between
the decreasing phonon contribution behaving as ρphonon = aT 5 and the increasing Kondo con-
tribution gives rise to the observed resistivity minimum. The logarithmic contribution to the
resistivity, found by Kondo in perturbation theory, cannot hold down to T = 0 as the total
scattering remains finite in this limit (unitarity limit). Wilson’s non-perturbative NRG provides
a way to obtain the correct behavior of the resistivity ρ(T ) from high temperatures through a
crossover regime at T ∼ TK all the way down to zero temperature [see Fig. 11a showing the
analogous quantity for a Kondo correlated quantum dot, the conductance G(T )].
The general form of the Hamiltonian for any quantum impurity system is given by

H = Himp +Hint +Hbath , (2)
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Fig. 1: Resistivity R(T ) versus
temperature T [K] of two samples of
“pure” Au showing the first observa-
tion of the resistivity minimum [17].
The expected behavior of R(T ) for a
pure metal with weak static disorder is
a T 5 term due to phonons and a satu-
ration to a constant value, ρ0, at T = 0
due to static disorder. The former is
seen in the experiment, but at low tem-
perature an additional logarithmically
increasing contribution is also found.

whereHimp describes the impurity, a small quantum mechanical system with only a few degrees
of freedom, Hbath represents the bath, and Hint is the interaction between the two.
We next consider explicit examples and introduce the linear-chain form of quantum impurity
models, which is the starting point for an NRG treatment.

Anderson impurity model

The prototype model for strongly correlated systems is the single-band non-degenerate Ander-
son model [18, 19],

HAM =
∑
σ

εd ndσ + U nd↑nd↓︸ ︷︷ ︸
Himp

+
∑
kσ

Vkd(c
†
kσdσ + d†σckσ)︸ ︷︷ ︸
Hint

+
∑
kσ

εk c
†
kσckσ︸ ︷︷ ︸

Hbath

. (3)

The first two terms describe the impurity, represented here by a non-degenerate s-level of energy
εd (see Sec. 6 for generalizations). Electrons in the local level are subject to a Coulomb repul-
sion U that acts between spin-up and spin-down electrons. The local level hybridizes with the
Bloch states of a non-interacting s-wave conduction band, the last term inHAM , with amplitude
Vkd. The properties of the model are determined by the hybridization function

∆(ω) = π
∑
k

|Vkd|2δ(ω − εk), (4)

which, like the conduction density of states ρ(ω) =
∑

k δ(ω − εk), will in general be a compli-
cated function of energy. In cases where the interest is in the very low-energy physics, it is a
good approximation to set ∆(ω) ≈ ∆(εF ) ≡ ∆. In applications to pseudogap systems [20, 21]
or to effective quantum impurities in dynamical mean-field theory, the full frequency depen-
dence has to be retained. In applications to quantum dots, the impurity is attached to two baths,
the left and right leads, as shown in Fig. 2.1

1Although such dots are attached to two baths (the left and right leads), for a single level on the dot, only
the even combination of left and right lead states couples to the dot. When several levels on the dot are active
in transport, one will have a two-channel multi-orbital Anderson model with intra- and inter-orbital Coulomb
interactions playing a role (e.g. Hund’s exchange).
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εd + U

εd 

~∆

~T0

Vg

V I

Fig. 2: A quantum dot with charg-
ing energy U � ∆ and level en-
ergy εd connected to left/right leads
Hα=L/R =

∑
k εkασc

†
kασckασ via

tunnel barriers. The gate voltage
Vg ∼ εd allows changing εd relative
to εF and thereby the dot occupa-
tion nd from nd = 1 for εd = −U/2
(Kondo regime) to nd = 0 through a
mixed valence regime with nd ≈ 0.5
for εd ≈ 0. [22, 23]

Kondo impurity model

Closely related to the Anderson model, is the Kondo model, which was briefly mentioned in the
introduction. We write its Hamiltonian as

HKM = − gµBBSz︸ ︷︷ ︸
Himp

+ J ~S · ~s0︸ ︷︷ ︸
Hint

+
∑
kσ

εkc
†
kσckσ︸ ︷︷ ︸

Hbath

, (5)

where we included a magnetic field term Himp = −gµBBSz to indicate the impurity spin
~S (taken here to be S = 1/2 for simplicity), which interacts via an exchange interaction of
strength J with the conduction electron spin-density ~s0 =

∑
σσ′ f

†
0σ ~σσσ′ f0σ′ at the impurity

site, where f0σ =
∑

k ckσ is the local Wannier state of the conduction electrons at the impurity
site. The connection to the Anderson model can be established formally via a Schrieffer-Wolff
transformation. In essence, provided εd < 0 and εd + U > 0 so that a single electron occupies
the local level in the Anderson model, the physics of both models will be the same at low
temperatures.2 In this case, one finds the correspondence J = 2V 2(1/(U + εd)− 1/εd), which
reduces to 8V 2/U for the symmetric case εd = −U/2 (see discussion of zero bandwidth limit
below).

Linear chain representation

For a numerical treatment of the Anderson and Kondo models, it is useful to reformulate them
in the form of linear chain models [2,3]. This will allow them to be iteratively diagonalized by a
procedure to be described in Sec. 3. We carry this out for the Anderson model: First notice that
the impurity state in the Anderson model hybridizes with a local Wannier state |0σ〉 = f †0σ|vac〉,

2Strictly speaking, one should also include a potential scattering term in the Kondo model, of the form∑
kk′σ V

pot
kk′ c

†
kσck′σ for this to be true.
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...
Himp

ε0 ε1 ε2 εm

t0 t1 t2 tm-1v

m ...

Fig. 3: The linear-chain form of the Anderson model (9). Himp = εd nd + U nd↑nd↓. The site
energies εn and hoppings tn follow from ∆(ω).

with |vac〉 the vacuum state, and f †0σ given by

V f †0σ =
∑
k

Vkdc
†
kσ. (6)

The value of V follows from the normalization {f0σ, f
†
0σ} = 1

V =

(∑
k

|Vkd|2
)1/2

. (7)

Using the above local state, one can apply the Lanczos procedure (Appendix B) for tridiagonal-
izing a Hermitian operator, such as Hbath, to obtain

Hbath =
∑
kσ

εk c
†
kσckσ →

∞∑
σ,n=0

[
εn f

†
nσfnσ + tn(f †nσfn+1σ +H.c.)

]
(8)

with site energies εn and hoppings tn depending only on the dispersion εk and hybridization Vkd
through the hybridization function ∆(ω), resulting in the linear chain form [2]

HAM =εd nd+U nd↑nd↓+V
∑
σ

(
f †0σdσ+ d†σf0σ

)
+
∞∑

σ,n=0

[
εn f

†
nσfnσ+ tn(f †nσfn+1σ+ f †n+1σfnσ)

]
(9)

depicted in Fig. 3 (with nd ≡
∑

σ ndσ). Although formally this model looks like the one-
dimensional real-space models treated by the DMRG method [24, 25], the interpretation here
is not in terms of electrons hopping on a one-dimensional lattice in real-space. Instead, as will
become clearer in Sec. 3, each successive site added along the chain corresponds to adding
lower-energy degrees of freedom, measured relative to the Fermi level. By considering longer
chains one can then access lower energies.
The same procedure can be used to reformulate any quantum impurity model in terms of an
impurity site with local interactions attached to a one-dimensional chain of non-interacting
sites. For example, the Kondo model (5) can be rewritten as

HKM = −gµBSz + J ~S · ~s0 +
∞∑

σ,n=0

[
εnf

†
nσfnσ + tn(f †nσfn+1σ + f †n+1σfnσ)

]
. (10)
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Zeroth-order approximation for Anderson/Kondo models

A zeroth-order (high energy) approximation to the spectrum of the Anderson model can be
obtained by considering just the coupling of the n = 0 Wannier state to the impurity and
neglecting all others (the zero-bandwidth limit),

HAM ≈ H0 ≡ εd nd + U nd↑nd↓ + V
∑
σ

(
f †0σdσ + d†σf0σ

)
. (11)

There are 16 many-electron states |nd, n0〉, which can be classified by the conserved quantum
numbers of total electron number Nel, total z-component of spin Stotz and total spin ~S. Us-
ing these symmetries we can diagonalize the block matrices H0

Ne,S,Sz
to obtain the many-body

eigenstates |Nel, S, Sz, r〉 and the corresponding eigenvalues. For example, in the product basis
|nd〉|n0〉, the Hamiltonian for Ne = 1, S = 1/2, Sz = ±1/2 is given by

HNe=1,S=1/2,Sz=±1/2 =

(
εd V

V 0

)

with eigenvalues

E± =

(
εd ±

√
ε2
d + 4V 2

)
/2 .

Proceeding similarly for the other Hilbert spaces (exercise), we find that for the particle-hole
symmetric case εd = −U/2 in the strong correlation limit U � V 2, the spectrum separates
into two groups of states, one group of low-energy states lying close to the (singlet) ground
state with spacings O(V 2/U) and one group of high-energy states lying at energies O(U/2)

higher and also split by O(V 2/U). This limit corresponds to a singly occupied impurity level
effectively behaving as S = 1/2. In fact, the 8 lowest states correspond to those obtained from
a zeroth-order approximation to the spectrum of the Kondo model via

HKM ≈ H0 ≡ J ~S · ~s0 =
J

2

[
(~S + ~s0)2 − ~S2 − ~s2

0

]
. (12)

The Kondo model is therefore the low-energy effective model of the Anderson model in the
limit of strong correlations and single occupancy. By comparing the splitting of the two lowest
levels in the Kondo model, the singlet and triplet states, with the corresponding splitting of
the same levels in the Anderson model one finds the relation between the bare parameters of
the models to be J = 8V 2/U , in agreement with the value obtained from the Schrieffer-Wolff
transformation J = 2V 2(1/(U + εd)− 1/εd) upon setting εd = −U/2 [26].
Within the above zeroth-order approximation, H ≈ H0, of the Kondo (and Anderson) model,
excitations are unrenormalized. The singlet-triplet excitation (splitting) takes the bare value
J . The key ingredient of Wilson’s NRG, to be discussed in the next section, is a controlled
procedure for adding the remaining states n = 1, 2, . . . neglected in the above zero band-
width approximation. As we shall see in the calculation of dynamical quantities below, this
leads to a drastic renormalization of the spin and single-particle excitations, such that the
relevant excitations of the Kondo model are not on the bare scale J but on the Kondo scale
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TK = D(ρJ)1/2 exp(−1/ρJ), where ρ = 1/2D is the density of conduction states. One can
interpret this large renormalization J → TK as a renormalization of a bare tunneling ampli-
tude (J⊥ = J) due to the dissipative effects of the bath of conduction electrons by a mapping
of the (anisotropic) Kondo model onto the dissipative two-state system (also called the spin-
boson model). We introduce this and its fermionic equivalents in the next subsection, partly
to make the above connection and partly to show that the linear chain representation, which is
the starting point for NRG calculations, applies also to bosonic quantum impurity models. For
a detailed discussion of the bosonic models within NRG, we refer the reader to the lecture by
K. Ingersent.

Spin-boson model and fermionic equivalents

The Hamiltonian of the spin-boson model (SBM) is given by,

HSB = − 1

2
∆0σx +

1

2
εσz︸ ︷︷ ︸

Himp

+
1

2
σz
∑
i

λi

(
ai + a†i

)
︸ ︷︷ ︸

Hint

+
∑
i

ωi

(
a†iai + 1/2

)
︸ ︷︷ ︸

Hbath

. (13)

The first term Himp describes a two-level system with bias splitting ε and bare tunneling am-
plitude ∆0. The σi=x,y,z are the Pauli spin matrices. The third term, Hbath, is the environment
and consists of an infinite set of harmonic oscillators (i = 1, 2, . . . ,∞) with ai(a

†
i ) the an-

nihilation (creation) operators for a harmonic oscillator of frequency ωi and 0 ≤ ωi ≤ ωc,
where ωc is an upper cut-off frequency. The non-interacting density of states of the environ-
ment is denoted by g(ω) =

∑
i δ(ω − ωi) and is finite in the interval [0, ωc] and zero otherwise.

Finally, Hint = 1
2
σz
∑

i λi(ai + a†i ) describes the coupling of the two-state system coordi-
nate σz to the oscillators, with λi denoting the coupling strength to oscillator i. The function
Γ (ω + iδ) =

∑
i(λi/2)2/(ω − ωi + iδ) =

∫
dω′ (λ(ω′)/2)2 g(ω′)/(ω − ω′ + iδ) characterizes

the system-environment interaction. For a numerical treatment using the NRG, one proceeds
to re-formulate the model (13) in a linear chain form as in (9) and (10) for the Anderson and
Kondo models. Thus, one uses the Lanczos procedure and applies Hbath repeatedly on the local
bosonic orbital λ b0 =

∑
i λi ai to tridiagonalize Hbath. The resulting linear chain model

HSB = − 1

2
∆0σx +

1

2
εσz︸ ︷︷ ︸

Himp

+
1

2
σzλ

(
b0 + b†0

)
︸ ︷︷ ︸

Hint

+
∞∑
m=0

εm b
†
mbm + tm

(
b†mbm+1 + b†m+1bm

)
︸ ︷︷ ︸

Hbath

(14)

may then be treated within NRG in a similar way to the treatment of the Anderson and Kondo
models [27], see the lecture by K. Ingersent for details. One difference is that the number of
bosons in the eigenstates of HSB is arbitrary, requiring an additional approximation even at the
first iteration for H0 = Himp + 1

2
σzλ(b0 + b†0) to restrict the maximum number of bosons to a

finite number nb (typically 8− 10).
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Anisotropic Kondo model

It may be shown via bosonization [28] that the ohmic two-state system, specified by Eq. (13)
with a spectral function J(ω)= − 1

π
ImΓ (ω+iδ) ∼ αω for ω → 0, where α is the dimensionless

dissipation strength, is equivalent to the anisotropic Kondo model

HAKM =
J⊥
2

(S+s−0 + S−s+
0 )− gµBBSz︸ ︷︷ ︸

Himp

+ J‖Szs
z
0︸ ︷︷ ︸

Hint

+
∑
kσ

εk c
†
kσckσ︸ ︷︷ ︸

Hbath

, (15)

where J⊥(J‖) is the transverse (longitudinal) part of the Kondo exchange interaction and B

is a local magnetic field. The correspondence is given by ρJ⊥ = −∆0/ωc, −gµBB = ε,
and α = (1 + 2δ/π)2 where δ = arctan(−πρJ‖/4) and ρ = 1/ωc is the density of states
of the conduction electrons in the anisotropic Kondo model [29–31, 14, 15]. The natural low-
energy scale of the ohmic two-state system is the renormalized tunneling amplitude ∆r/ωc ≈
(∆0/ωc)

1/(1−α). A more precise estimate is ∆r/ωc = [
√
Γ (1− 2α) cos(πα)∆0/ωc]

1/(1−α),
yielding the known limits ∆r(α → 0) = ∆0 and ∆r(α → 1/2) = π

2
(∆0/ωc)

2 ωc [15]. For
α > 1/2, further corrections are needed [15,32]. It is related to the low-energy Kondo scale TK

of the Anisotropic Kondo model. The connection between the (anisotropic) Kondo and ohmic
two-state system provides another viewpoint on the local dynamics of a Kondo spin in terms
of tunneling and dissipation: The two levels concerned are the two lowest Sz = 0 states of
Himp, i.e., |±〉 = 1/

√
2(| ↑〉| ↓〉 ± | ↓〉 ↑〉) which are connected by J⊥ and tunnel-split by

∆0 = J⊥ when J‖ = +∞, corresponding to α = 0 (decoupled two-level system). A finite
J‖ < +∞, resulting in a finite α > 0, couples these states to the environment and leads to a
renormalization of the bare tunneling amplitude ∆0 = J⊥ → ∆r = TK, which is particularly
drastic in the limit of strong dissipation α → 1−. Indeed, for α > 1, the above correspondence
states that J‖ < 0, which corresponds to the ferromagnetic sector of the Kondo model (see the
lecture by A. Nevidomskyy). Since in this limit, J⊥ is irrelevant [19,26], it follows that TK and
hence ∆r vanish for α > 1, i.e., the frictional effects of the environment are so large for α > 1

that quantum mechanical tunneling is destroyed at T = 0 and tunneling between the two states
is possible only via thermal activation. Of interest also is the transition from quantum coherent
dynamics at weak dissipation α� 1 to incoherent dynamics at strong dissipation α→ 1−, see
the time-dependent NRG section.

Interacting resonant level model

Finally, the ohmic spin-boson model (SBM) is equivalent to an even simpler fermionic model,
the so-called interacting resonant level model (IRLM),

HIRLM = εd nd + V
(
f †0d+ d†f0

)
︸ ︷︷ ︸

Himp

+Udc(nd − 1/2)(n0 − 1/2)︸ ︷︷ ︸
Hint

+
∑
k

εk c
†
kck︸ ︷︷ ︸

Hbath

. (16)

This model describes a spinless resonant level with energy εd hybridizing with a spinless bath
of electrons (where we wrote f0 =

∑
k ck and n0 = f †0f0) and interacting with the latter via a
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non-local Coulomb interaction Udc. Denoting by Γ = πρV 2 the width of the resonant level at
Udc = 0, the correspondence of the SBM to this model is given by ∆0 = 2V ∼ Γ 1/2, εd = ε/2,
and α = (1 + 2δ/π)2/2 where δ = arctan(−πρUdc/2). The equivalence between the models
can be shown via bosonization and is valid for all −∞ ≤ Udc ≤ +∞ (describing the sector
2 ≥ α ≥ 0) with Udc = 0 corresponding to α = 1/2 in the SBM. This point marks the crossover
from quantum coherent oscillations of the two-level system at α < 1/2 to incoherent dynamics
at α > 1/2, e.g., in the quantity P (t > 0) ≡ 〈σz(t)〉 subject to an initial state preparation
σz = +1. The physics here is again that of a two-level system (consisting of the single-electron
states |±〉 = (|1〉d|0〉0 ± |0〉d|1〉0)/

√
2 of Himp) tunnel-coupled by ∆0 =

√
ε2
d + 4V 2. Note

that the non-interacting limit α = 0 describing the isolated two level system Himp corresponds
to Udc = +∞. Strong dissipation (α > 1/2) in this model, corresponds to negative Udc and
the quantum critical point α = 1 occurs at U∗dc = −(2/πρ) tan[π(

√
2 − 1)/2] ≈ −0.969. For

Udc < U∗dc and α > 1, quantum mechanical tunneling is absent (∆r = 0), and only tunneling
via thermal activation is possible (i.e. at T > 0). The IRLM is interesting since it is the simplest
model that can capture a part of the Kondo physics contained in the Anderson and Kondo
models, in particular, the thermodynamic properties and the spin dynamics of the latter: To
capture the spin dynamics of the latter within the IRLM, one notes that under the equivalence
Sz → nd − 1/2 the dynamic spin susceptibility of the AKM χzz(ω) = 〈〈Sz;Sz〉〉 corresponds
to the dynamic charge susceptibility χdd(ω) = 〈〈nd;nd〉〉 of the IRLM. Since the IRLM is a
spinless model, it is simpler to deal with than the Anderson and Kondo models and we shall use
it to illustrate much of the NRG in the next section.

3 Wilson’s Numerical Renormalization Group method

Wilson’s formulation of the RG for the Kondo model is similar in spirit to Anderson’s scaling
approach (see Hewson’s book [26], Ref. [19] or Nevidomskyy’s lecture). The main difference
lies in the non-perturbative construction of the RG transformation using a numerical representa-
tion of the effective Hamiltonians. The scaling approach uses perturbation theory in the initially
small dimensionless coupling (J/D in the Kondo model, or V in the Anderson and IRLM mod-
els) to construct such a transformation, but since J/D increases with decreasing energy scale,
this approach eventually becomes inaccurate. In the Wilson approach, the RG transformation is
perturbative only via a small parameter Λ−1/2 < 1, which is related to the momentum rescaling
factor Λ > 1. The accuracy of the transformation is the same at each step and is independent
of the size of the running couplings. For this reason, it gave the first correct description of the
crossover from the weak-coupling to the strong-coupling regime of the Kondo model. The NRG
procedure involves three steps, illustrated schematically in Fig. 4a-c.

Separation of scales and logarithmic discretization approximation

In quantum impurity problems, the behavior of the system typically changes qualitatively over
many energy scales as it passes through a crossover between fixed points. In order to describe
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−Λ
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Fig. 4: Steps in the NRG procedure for
a quantum impurity model, here shown
for the IRLM. The level (filled circle) hy-
bridizes with strength V to a continuum of
conduction states and interacts with these
via the Coulomb term Udc (∆(ω) = πρV 2

is here constant). (a) Logarithmic dis-
cretization of the continuum conduction
band about the Fermi level εF = 0 into
discrete intervals D†n = [Λ−(n+1), Λ−n]
and D−n = [−Λ−n,−Λ−(n+1)], n =
0, 1, . . . . (b) Within each discrete inter-
val, choose the conduction state most lo-
calized on the impurity. (c) Transform this
discretized model to linear-chain form,
with hoppings now decreasing along the
chain and iteratively diagonalize.

this crossover quantitatively the idea is to separate out the many energy scales in the problem,
which arise from the conduction band [−D,+D], and to set up a procedure for treating each
scale in turn. We saw in the previous section that it is always possible to rewrite a quantum
impurity model in the form of a (semi-infinite) linear chain, see Fig. 3. Truncating this chain to
include orbitals n = 0, . . . ,m, we have for the IRLM

HIRLM ≈ Hm = εd nd + V
(
f †0d+ d†f0

)
+ Udc(nd − 1/2)(n0 − 1/2)

+
m∑
n=0

εn f
†
nfn +

m−1∑
n=0

tn

(
f †nfn+1 + f †n+1fn

)
(17)

with the truncated Hamiltonians Hm satisfying the recursion relation

Hm+1 = Hm + εmf
†
mfm + tm

(
f †mfm+1 + f †m+1fm

)
. (18)

Hence, it appears that with this recursion relation, one can iteratively diagonalize the IRLM (and
indeed any other QIM) starting from H0. For the IRLM, H0 has four eigenstates classified into
three Hilbert spaces by the total electron number Ne = 0, 1, 2, a conserved quantity (work them
out in the product basis |nd〉|n0〉). The two one-electron states form the two-level system and
are split by the tunnel splitting ∆0 =

√
ε2
d + 4V 2. At some point, for sufficiently large m, we

will only be able to retain the lowest many-body states of Hm since the Hilbert space grows as
2× 2m+1. The validity of this procedure then depends on whether the perturbation in Eq. (18),
the last term involving tm, is small, once we start neglecting some higher-energy states.3 In
practice, for a quasi-continuous band Hbath =

∑
k εk c

†
kck =

∫ +D

−D dε ε c
†
εcε the hoppings tm do

3If we keep extending the system by one orbital at a time without neglecting any states, no error is made. The
onsite term in εm is diagonal and shifts the low-energy levels of Hm.
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not decay with increasing m, and the above procedure breaks down after some iterations. For
example, it can be easily shown for a semi-elliptic density of states ρ(ε) = 2

πD2

√
D2 − ε2, that

tm = D/2 for all m (see Hewson’s book [26]).
In order to have a working procedure involving decreasing hoppings tm along the chain, and
at the same time achieve the energy scale separation described above, Wilson discretized the
conduction band into positive and negative energy intervals, D†n = [Λ−(n+1), Λ−n] and D−n =

[−Λ−n,−Λ−(n+1)], n = 0, 1, . . . , about the Fermi level εF = 0 as shown in Fig. 4a.
The quasi-continuous band is then approximated by a discrete one by keeping only a single
conduction state from each interval D±n ,

Hbath =

∫ +D

−D
dε ε c†εcε ≈

∞∑
n=0

(
ε−n c

†
−nc−n + ε+n c

†
+nc+n

)
(19)

with
ε±n = ±1

2
D
(
Λ−n + Λ−(n+1)

)
= ±1

2
DΛ−n

(
1 + Λ−1

)
. (20)

The states c†±n|vac〉 appearing above are the states in each interval D±−n which are most lo-
calized near the impurity [2], while the neglected states being orthogonal to these have their
wavefunctions localized away from the impurity and are consequently less important (for a
more detailed derivation and justification of the logarithmic discretization approximation see
Appendix A). By formulating the IRLM as a linear chain using the above logarithmically dis-
cretized conduction band, we obtain the same equations (17-18) as above, but, crucially, with
hopping parameters tm (and onsite energies εm) that now decay exponentially along the chain.
For example, for a constant density of states ρ(ω) = 1/2D and constant hybridization function
∆(ω) = πρ(ω)V 2 = ∆0 and εF = 0 one finds for m = 0, 1, . . . [1]

εm = 0, (21)

tm =
1

2
D
(
1 + Λ−1

)
Λ−m/2ξm, (22)

ξm =
1− Λ−m−1√

(1− Λ−2m−1)(1− Λ−2m−3)
. (23)

The ξm converge rapidly to 1 with increasing m and we may write tm ≈ 1
2
D(1 + Λ−1)Λ−m/2,

so that the IRLM becomes

HIRLM = εd nd + V
(
f †0d+ d†f0

)
+ Udc(nd − 1/2)(n0 − 1/2)

+
1

2
D(1 + Λ−1)

∞∑
n=0

Λ−n/2
(
f †nfn+1 + f †n+1fn

)
. (24)

This Hamiltonian provides a clear separation of the energy scales 1
2
(1+Λ−1)Λ−n/2, n = 1, 2, . . .

in H and allows the diagonalization of the Hamiltonian in a sequence of controlled steps, each
step corresponding to adding an orbital fn, which is a relative perturbation of strength Λ−1/2 <

1, thereby ensuring convergence of the method. This procedure is described in the following two
subsections, where we henceforth restrict ourselves to a constant hybridization with hoppings
tm ≈ 1

2
D(1 + Λ−1)Λ−m/2. The procedure is easily generalized to any hybridization function

∆(ω) with hoppings tm decaying sufficiently fast along the chain.
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Renormalization group transformation

A renormalization group transformation relating effective Hamiltonians on successive energy
scales Λ−n/2 and Λ−(n+1)/2 can be set up as follows. First, HIRLM in (24) is truncated to Hm,
whose lowest scale is Dm = 1

2
D(1 + Λ−1)Λ−(m−1)/2. In order to look for fixed points, we

define rescaled Hamiltonians H̄m ≡ Hm/Dm such that the lowest energy scale of H̄m is always
of order O(1):

H̄m = Λ(m−1)/2

[
m−1∑
n=0

Λ−n/2(f †nfn+1+ f †n+1fn)+ε̃d nd+Ṽ(f †0d+d†f0)+Ũdc

(
nd−

1

2

)(
n0−

1

2

)]
(25)

ε̃d =
εd

1
2
D(1 + Λ−1)

, Ṽ =
V

1
2
D(1 + Λ−1)

, Ũdc =
Udc

1
2
D(1 + Λ−1)

, (26)

from which we can recover H as

H = lim
m→∞

1

2
D
(
1 + Λ−1

)
Λ−(m−1)/2H̄m . (27)

The sequence of rescaled Hamiltonians H̄m satisfies the recursion relation

H̄m+1 = Λ1/2H̄m +
(
f †mfm+1 + f †m+1fm

)
(28)

and allows a RG transformation T to be defined:

H̄m+1 = T [H̄m] ≡ Λ1/2H̄m +
(
f †mfm+1 + f †m+1fm

)
− ĒG,m+1 (29)

with ĒG,m+1 the ground-state energy of H̄m+1. In fact T defined in (29) may not have fixed
points since it relates a Hamiltonian with an even number of orbitals to a Hamiltonian with an
odd number of orbitals. If this happens, thenR = T 2 can be defined as the RG transformation,
and this will have fixed points, a set of even m fixed points and a set of odd m fixed points:

H̄m+2 = R[H̄m] ≡ T 2[H̄m] . (30)

Iterative diagonalization scheme

The transformation R relates effective Hamiltonians Hm = DmH̄m and Hm+1 = Dm+1H̄m+1

on decreasing scales Dm > Dm+1. It can be used to iteratively diagonalize the Anderson
Hamiltonian by the following sequence of steps:

1. the local part

H̄0 = Λ−1/2
[
ε̃d nd + Ṽ

(
f †0d+ d†f0

)
+ Ũdc(nd − 1/2)(n0 − 1/2)

]
, (31)

which contains the many-body interactions, is diagonalized to yield the eigenstates |q〉
(the “zeroth” order step described above and in Sec. 2),
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2. assuming that H̄m has been diagonalized for some m ≥ 0,

H̄m =
∑
q

Ēm
q |q〉〈q|

we add a “site” and use Eq. (29) to set up the matrix for H̄m+1 within a product basis
|q, αm+1〉 = |q〉m|αm+1〉 consisting of the eigenstates |q〉m of H̄m and the states of the
next orbital along the chain |αm+1〉 (|0〉 for αm+1 = 1 and |1〉 for αm+1 = 2),

〈q, αm+1|H̄m+1|q′, α′m+1〉 = Λ1/2 δαm+1,α′m+1
δq,q′ Ē

m
q

+ (−1)Ne,q′ m〈q|f †m|q′〉m 〈αm+1|fm+1|α′m+1〉
+ (−1)Ne,q 〈αm+1|f †m+1|α′m+1〉m 〈q|fm|q′〉m , (32)

with Ne,q, Ne,q′ the number of electrons in |q〉 and |q′〉, respectively. This is diagonalized
and the procedure is repeated for the next energy shell as depicted in Fig. 4c. Since
H̄m is already diagonalized, the off-diagonal matrix elements, involving m〈q|f †mσ|q′〉m =

m〈q′|fmσ|q〉†m, can be expressed in terms of the known eigenstates of H̄m by using the
unitary transformation relating product states |q〉m−1|αm〉 to eigenstates |q〉m of H̄m

|q〉m =
∑
r,αm

Um(rαm, q)|q〉m−1|αm〉, (33)

where Um is the matrix of eigenvectors of H̄m.

Equation (33) also shows that the NRG eigenstates have the form of so called matrix
product states (MPS) [33], a feature of NRG shared also by the density matrix renormal-
ization group method (DMRG) for one-dimensional quantum systems [24, 25]. In order
to see this, we introduce the notation Aαmqmqm−1

≡ Um(qm−1αm, qm) with |qm〉 ≡ |q〉m and
repeatedly apply Eq. (33) to obtain

|qm〉 =
∑

qm−1,αm

Aαmqm−1qm
|qm−1〉|αm〉

=
∑

qm−1,αm

Aαmqm−1qm

[ ∑
qm−2αm−1

Aαm−1
qm−2qm−1

|αm−1〉

]
|αm〉

=
∑

qm0 ,αm0+1...αm

(Aαm0+1 ...Aαm)qm0qm
|αm0+1〉...|αm〉, (34)

where m0 ≥ 0.

3. In order to reduce the size of the matrices that need to be diagonalized, one uses available
symmetries, such as conservation of total electron number, or in models with spin de-
grees of freedom with rotational symmetry, conservation of total spin. For multi-channel
models, such as the three-channel Kondo model, additional symmetries, such as SU(3),
may be used to significantly reduce the numerical effort [34, 35]. The use of symmetries,
beyond the advantage of reducing the computational cost, also improves the accuracy of
the calculations once one starts to neglect high-energy states (see next subsection), since
it avoids the possibility of splitting up degenerate states within a multiplet carrying the
same conserved quantum numbers.
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Truncation

In practice, since the number of many-body states in H̄m grows as 2× 2m+1 for the IRLM and
as 4 × 4m+1 for the Anderson or Kondo models, it is not possible to retain all states after a
given iteration m = m0. Keeping 1024 states results in m0 = 8 for the IRLM and m0 = 3

for the Anderson model. We denote the retained states of H̄m by |k〉m, while the higher-energy
states neglected are denoted by |l〉m, see Fig. 12 in Sec. 5. While only kept states are used to set
up and diagonalize the sequence of Hamiltonians H̄m,m = m0,m0 + 1, ... up to a maximum
chain size of length m = N , we shall see later that the discarded states |l〉m from each iteration
m ≥ m0 prove to be very useful for calculating physical properties.
The truncation of the spectrum of H̄m restricts the range of eigenvalues in Hm = DmH̄m to be
such that 0 ≤ Em

q ≤ KDm where K = K(Λ) depends on Λ and the number of states retained.
For 1000 states and Λ = 3, K(Λ) ≈ 10. However, eigenvalues below Dm are only approximate
eigenvalues of the infinite system H , since states with energies below Dm are calculated more
accurately in subsequent iterations m+ 1,m+ 2, . . . . Therefore the part of the spectrum of Hm

that is close to the spectrum of H is restricted to Dm ≤ Em
q ≤ K(Λ)Dm. This allows the whole

spectrum of H to be recovered by considering the spectra of the sequence of Hamiltonians Hm,
m = 0, 1, . . . . In this way, the many–body eigenvalues and eigenstates are obtained on all
energy scales. Due to the smallness of the perturbation (of O(Λ−1/2) < 1) in adding an energy
shell to go from Hm to Hm+1, the truncation of the high-energy states turns out, in practice, to
be a very good approximation.

Fixed points

The analysis of fixed points is important to gain a conceptual understanding of the model and
for accurate analytic calculations in the vicinity of a fixed point [2].
From (30), a fixed point H∗ ofR = T 2 is defined by

H∗ = R[H∗]. (35)

Proximity to a fixed point is identified by ranges of m, m1 ≤ m ≤ m2, where the energy levels
Ēm
p of H̄m are approximately independent ofm: Ēm

p ≈ Ēp form1 ≤ m ≤ m2. A typical energy
level flow diagram showing regions of m where the energy levels are approximately constant is
shown in Fig. 5a for the anisotropic Kondo model (AKM) [30]

HAKM =
∑
kσ

εk c
†
kσckσ +

J⊥
2

(
S+f †0↓f0↑ + S−f †0↑f0↓

)
+
J‖
2
Sz

(
f †0↑f0↑ − f

†
0↓f0↓

)
. (36)

There is an unstable high-energy fixed point (small m) and a stable low-energy fixed point
(large m). The low-energy spectrum is identical to that of the isotropic Kondo model at the
strong-coupling fixed point J = ∞ in [1] (e.g. the lowest single-particle excitations in Fig. 5a,
η1 = 0.6555, η2 = 1.976 agree with the Λ = 2 results of the isotropic model in [1]). The
crossover from the high-energy to the low-energy fixed point is associated with the Kondo scale
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Fig. 5: (a) The lowest rescaled energy levels of the AKM for J‖ = 0.443 and J⊥ = 0.01. The
states are labeled by conserved pseudospin j and total Sz (adapted from [30]). (b) The flow of
the lowest many-body energy levels of the Anderson model for εd = −U/2, U/π∆0 = 12.66,
and Λ = 2.5. States are labeled by quantum numbers for total charge Q and total spin S
(adapted from [4, 2]).

TK. Spin-rotational invariance, broken at high energies, is restored below this scale (e.g., the
j = 0 states with Sz = 0 and Sz = ±1 become degenerate below TK and can be classified
by the same total spin S as indicated in Fig. 5a). In Fig. 5b typical energy level flows for
the symmetric Anderson impurity model εd = −U/2 in the strongly correlated Kondo regime
are shown. Here, one sees three fixed points: an unstable free orbital fixed point for m < 10, a
marginal fixed point for 10 < m < 50 corresponding to formation of a local moment interacting
weakly via the antiferromagnetic Kondo exchange with the conduction electrons. In this region,
the effective Hamiltonian is essentially the Kondo model. Finally, for m > 50 there is a flow
to the stable strong-coupling fixed point, characterized by a fixed-point spectrum obtained by
setting J = ∞, i.e., the local spin and local conduction orbital are frozen out. The fixed-point
spectrum is then that of a free electron chain with one site removed, i.e., there is a crossover to an
even m fixed-point spectrum. The freezing out of the local spin implies that inelastic scattering
processes are blocked asm→∞ (T → 0), and one obtains the picture of a renormalized Fermi
liquid at low temperatures.

Analytic calculations can be carried out in the vicinity of these various fixed points by setting
up effective Hamiltonians Heff = H∗ +

∑
λ ωλOλ, where the leading deviations Oλ about H∗

can be obtained from general symmetry arguments. This allows, for example, thermodynamic
properties to be calculated in a restricted range of temperatures, corresponding to the restricted
range of m where H̄m can be described by a simple effective HamiltonianHeff. In this way Wil-
son could show that the ratio of the impurity susceptibility, χimp, and the impurity contribution
to the linear coefficient of specific heat, γimp, at T = 0, is twice the value of a non-interacting
Fermi liquid: R = 4π2χimp/3γimp = 2. We refer the reader to the detailed description of
such calculations in [1, 2], and we turn now to the numerical procedure for calculating physical
properties, which can give results at all temperatures, including the crossover regions.
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4 Calculation of physical properties

The ability of the method to yield thermodynamic, dynamic, and transport properties makes
it very useful for interpreting experimental results.4 We shall first describe the calculation of
thermodynamics and dynamics using conventional approaches (without use of the complete
basis set, but including reduced density matrices for dynamics) [2, 7, 8]. In Sec. 5 we shall then
discuss more recent approaches using the complete basis set and full density matrix [12, 10]
(this division, however, is somewhat arbitrary).

Thermodynamics: conventional approach

Suppose we have diagonalized exactly the Hamiltonian for a quantum impurity model such as
the Kondo model and have all the many-body eigenvalues Eq and eigenstates |q〉

H =
∑
q

Eq |q〉〈q| ≡
∑
q

EqXqq . (37)

We can then calculate the partition function

Z(T ) ≡ Tr e−H/kBT =
∑
q

e−Eq/kBT (38)

and hence the thermodynamics via the impurity contribution to the free energy Fimp(T ) =

−kBT lnZ/Zc, where Zc = Tr e−Hc/kBT is the partition function for the non-interacting con-
duction electrons. In the NRG procedure we can only calculate the “shell partition functions”
Zm for the sequence of truncated Hamiltonians Hm

Zm(T ) ≡ Tr e−Hm/kBT =
∑
q

e−E
m
q /kBT =

∑
q

e−DmĒ
m
q /kBT . (39)

We will have Zm(T ) ≈ Z(T ) provided

1. we choose kBT = kBTm � Em
max = DmK(Λ) so that the contribution to the partition

function from excited states Em
q > DmK(Λ), not contained in Zm, is negligible, and

2. the truncation error made in replacing H by Hm in equating (38) and (39) is small. This
error has been estimated in [2] to be approximately Λ−1Dm/kBTm.

Combining these two conditions requires that

1

Λ
� kBTm

Dm

� K(Λ). (40)

The choice kBT = kBTm ≈ Dm is reasonable and allows the thermodynamics to be calculated
at a sequence of decreasing temperatures kBTm ∼ Dm, N = 0, 1, . . . from the truncated parti-
tion functions Zm. The procedure yields essentially exact results. For small Λ . 3, the window

4Spatial correlations may also be investigated, see Ref. [36]
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Fig. 6: Temperature dependence of, (a), the impurity entropy, Simp(T ), and, (b), the impurity
specific heat, Cimp(T ), for the symmetric Anderson model with U/∆0 = 12 and ∆0 = 0.001D.
The calculations are for Λ = 4, without z-averaging [nz = 1, z = 1 (dashed lines)], and
with z-averaging [nz = 2, z = 1/4, 3/4 (solid lines)]. For Λ = 4 two z values suffice to
eliminate the discretization oscillations [37]. (c) Impurity susceptibility, χimp(T ), vs T/TK for
the asymmetric Anderson model with the same parameters as above and several values of εd/∆0

with TK for the symmetric model. Broken lines: FDM approach. Solid lines: conventional
approach. Symbols: Bethe ansatz (for selected values of εd/∆0 = −5,−3,−1, 0,+1,+3).
NRG parameters: Λ = 10 with z-averaging [nz = 4, z = 1/8, 1/2, 3/8, 3/4] [38].

for choosing the temperature Tm to satisfy Eq. (40) is small, and typically only one such temper-
ature is used for each shell. For larger Λ� 1 one can use many temperatures T im, i = 1, ..., nT
that satisfy the above condition; however, for large Λ = 4 − 10, discretization oscillations
become important [39, 40]. This problem is overcome by averaging the results over several
discretizations of the band, i.e., one carries out several calculations with discretizations of the
band ±D,±DΛ−(1−zk),±DΛ−(2−zk), ... and averages the results for several zk, k = 1, ..., Nz.
Figures 6a and b illustrate this for the entropy and specific heat of the Anderson model. In
this way, the conventional approach can recover essentially exact results for thermodynamics.
Fig. 6c shows a comparison for the impurity static spin susceptibility of the Anderson impurity
model

χimp(T ) =
(gµB)2

kBT

[
1

Z
Tr (Stot

z )2e−H/kBT − 1

Zc
Tr (Stot

z,c )
2e−Hc/kBT

]
to both Bethe-ansatz results and results obtained within the more recent full density matrix ap-
proach to be described below.
Figure 7a illustrates the evolution of the impurity specific heat of the IRLM with increasing dis-
sipation strength α: for α � 1 the specific heat curve fits that of an isolated two-level system
C(T ) ∼ (T0/T )2/ cosh2(T0/T ) except at T � T0 where the behavior is linear in T (as ex-
pected for any finite α), while for α→ 1 the specific heat curves approach the universal Kondo
specific heat curve for the isotropic Kondo model. Fig. 7b demonstrates also the very good
agreement of the IRLM results with corresponding Bethe Ansatz calculations for the AKM,
further illustrating the equivalence of these models for thermodynamic properties.
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Fig. 7: (a) Evolution of the impurity specific heat, Cimp(T ), of the IRLM with increasing dissi-
pation strength α, and, (b), Cimp(T )/(T/T0), for the IRLM at several α (symbols) compared to
the corresponding Bethe Ansatz results for the equivalent AKM [31] (lines). The conventional
approach was used for the NRG calculations with Λ = 4 and z-averaging with nz = 8. The low-
energy scale T0 was extracted from the local charge susceptibility of the IRLM and corresponds
to the renormalized tunneling amplitude ∆r of this model, up to factors of order unity.

Dynamics: conventional approach without reduced density matrices

We consider now the application of the NRG method to the calculation of dynamic properties of
quantum impurity models [41,6–8]. For definiteness we consider the Anderson impurity model
and illustrate the procedure for the impurity spectral densityAdσ(ω, T )=− 1

π
ImGdσ(ω, T ) with

Gdσ(ω, T ) =

∫ +∞

−∞
d(t− t′) eiω(t−t′)Gdσ(t− t′) (41)

Gdσ(t− t′) = −iθ(t− t′)
〈
[dσ(t), d†σ(t′)]+

〉
%

(42)

with the density matrix % of the system.
Suppose we have all the many-body eigenstates |q〉 and eigenvalues Eq of the Anderson impu-
rity HamiltonianH . Then the density matrix, %(T ), of the full system at temperature kBT =1/β

can be written
%(T ) =

1

Z(T )

∑
q

e−βEq |q〉〈q| , (43)

the impurity Green function can be written in the Lehmann representation as

Gdσ(ω, T ) =
1

Z(T )

∑
q,q′

|〈q|dσ|q′〉|2
e−Eq/kBT + e−Eq′/kBT

ω − (Eq′ − Eq)
(44)

and the corresponding impurity spectral density Adσ as

Adσ(ω, T ) =
1

Z(T )

∑
q,q′

|Mq,q′ |2(e−Eq/kBT + e−Eq′/kBT ) δ(ω − (Eq′ − Eq)) (45)

with Mq,q′ = 〈q|dµ|q′〉.
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Consider first the case T = 0 (T > 0 is described in the next section), then

Adσ(ω, T = 0) =
1

Z(0)

∑
q

|Mq,0|2 δ(ω+(Eq−E0))+
1

Z(0)

∑
q′

|M0,q′|2 δ(ω−(Eq′−E0), (46)

with E0 = 0 the ground-state energy. In order to evaluate this from the information which
we actually obtain from an iterative diagonalization of H , we consider the impurity spectral
densities corresponding to the sequence of Hamiltonians Hm, m = 0, 1, . . . , N ,

Amdσ(ω, T = 0) =
1

Zm(0)

∑
q

|Mm
q,0|2 δ(ω + Em

q ) +
1

Zm(0)

∑
q′

|Mm
0,q′|2 δ(ω − Em

q′ ) . (47)

From the discussion on the spectrum of Hm in the previous section, it follows that the ground-
state excitations of Hm that are representative of the infinite system H are those in the range
Dm ≤ ω ≤ K(Λ)Dm. Lower energy excitations and eigenstates are calculated more accurately
at subsequent iterations, and higher energy excitations are not contained inHm due to the elimi-
nation of the higher energy states at eachm. Hence, for fixedm, we can approximately evaluate
the spectral density at a characteristic frequency ω ≈ ωm ≡ kBTm via

Adσ(ω, T = 0) ≈ Amdσ(ω, T = 0), m = 0, 1, . . . , N. (48)

In making this approximation, we are assuming that the matrix elements Mm
0,q′ of the finite-

system Hamiltonian are the same as those of the infinite system M0,q′ . This assumption fails
when an applied field strongly affects the groundstate and low lying excited states, thereby mak-
ing also the matrix elements for the finite-size system Mm

0,q′ appreciably different from those of
the infinite system. We shall come back to this point below, when we introduce the reduced
density matrix approach to Green functions [8]. Returning to the calculation of spectral den-
sities, a typical choice for the characteristic frequency to evaluate Adσ(ω, 0) from Amdσ(ω, 0) is
ω = 2ωm for Λ = 2. In this way Adσ(ω, T = 0) can be calculated at a sequence of decreas-
ing frequencies ω = 2ωm,m = 0, 1, . . . , N from the quantities Amdσ. In practice we are not
interested in the discrete spectra Amdσ(ω) =

∑
q w

m
q δ(ω − Em

q ) of the Hamiltonians Hm but
in continuous spectra that can be compared with experiment. Smooth spectra can be obtained
from the discrete spectra by replacing the delta functions δ(ω − Em

q ) by smooth distributions
Pm(ω − Em

q ). A natural choice for the width ηm of Pm is Dm, the characteristic scale for the
energy level structure of Hm. Two commonly used choices for P are the Gaussian and the
Logarithmic Gaussian distributions [7,41,42]. More refined schemes also exist [43,44], as well
as different band discretizations to reduce artifacts close to band edges [45]. A peak of intrinsic
width Γ at frequency Ω0 will be well resolved by the above procedure provided that Ω0 � Γ ,
which is the case for the Kondo resonance and other low-energy resonances. In the opposite
case, the low (logarithmic) resolution at higher frequencies may be insufficient to resolve the
intrinsic widths and heights of such peaks. Usually such higher frequency peaks are due to
single-particle processes and can be adequately described by other methods (exceptions include
interaction dominated features in the ohmic two-state system, see below, and in strongly corre-
lated lattice models in high dimensions [16, 46–48]). In both cases, Ω0 � Γ and Ω0 � Γ , the
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Fig. 8: (a) The impurity spectral density for the symmetric Anderson model for U/∆0 = 12 at
large Λ = 10 showing discretization oscillations for two values of z. Averaging over 8 z-values
yields the smooth curve. (b). Longitudinal spin relaxation function S(ω)/S(0) versus ω/TK for
the isotropic Kondo model, showing that the spin relaxes incoherently.

positions and intensities of such peaks are given correctly. An alternative procedure for obtain-
ing smooth spectra, which in principle resolves finite frequency peaks with the same resolution
as the low-energy peaks, has been proposed in [49] and uses the averaging over several band
discretizations, described above for the thermodynamics. This procedure allows carrying out
calculations for spectral functions at larger Λ. An example is shown in Fig. 8a for the symmetric
Anderson model. As in the thermodynamics, calculations of the dynamics at large Λ � 1 ex-
hibit discretization oscillations, see Fig. 8a, which may be eliminated by averaging over several
band discretizations.
How accurate is the NRG for dynamic properties? A good measure of the accuracy of the
procedure is given by the Friedel sum rule, a Fermi liquid relation which states that [26]

Adσ(0) =
1

π∆0

sin2(πnd/2), nd =

∫ 0

−∞
dω Adσ(ω) . (49)

From Fig. 8a we find that π∆0Adσ(0, 0) = 1 ± 10−3, i.e., the Friedel sum rule is satisfied
to within 0.1% relative error. More important, however, is that this error remains small inde-
pendent of the interaction strength 0 ≤ U ≤ ∞. Two-particle Green functions and response
functions, such as the longitudinal dynamical spin susceptibility χzz = 〈〈Sz;Sz〉〉, and the cor-
responding relaxation function, S(ω) = − 1

π
χ′′zz(ω)/ω, of the Anderson impurity model and

of the (anisotropic) Kondo model can also be calculated with comparable accuracy to single-
particle spectral functions [30]. The spin relaxation function for the Kondo model is shown in
Fig. 8b and illustrates the statement made in Sec. 2 that the spin excitations of the Kondo model
are drastically renormalized from the bare value of J down to the Kondo scale TK due to the
frictional effects of the environment.
The procedure for calculating finite temperature dynamical quantities, like Adσ(ω, T ), required
as input for calculating transport properties is similar to that for the T = 0 dynamics described
above [7]. The spectral density Adσ(ω, T ) at fixed temperature T is evaluated as above at
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Fig. 9: The Hilbert space of Hm is supplemented with N −m environment degrees of freedom
e = (αm+1, ..., αN) [8].

frequencies ω ≈ 2ωm,m = 0, 1, . . . ,M ≤ N until 2ωM becomes of order kBT , i.e., 2ωM =

αkBT with α ≈ 1. To calculate the spectral density at frequencies ω < kBT a smaller “cluster”
is used. This is done because when kBT is larger than the frequency at which the spectral
density is being evaluated, it is the excited states of order kBT contained in previous clusters
that are important and not the excitations very much below kBT . This approach suffers from
the same criticism as the T = 0 approach above, namely one is using a finite cluster Hm to
approximate Mq′,q ≈ Mm

q′,q (and also Z(T ) ≈ Zm(T )). In particular, for ω < kBT , the use
of a small cluster of size M < N does not capture the full information available, a deficiency
that is corrected by the full density matrix approach. Nevertheless, this early approach gives
remarkably good results for finite temperature spectra and transport properties [7].

Dynamics: conventional approach with reduced density matrices

A way of reducing finite-size errors, inherent in the above approach to Green functions, has been
proposed by Hofstetter [8] and further developed within the full density matrix approach. As
mentioned above, there are situations when a small field can strongly polarize the low-energy
states of Hm, thereby strongly affecting the matrix elements Mm

q′,q and hence the spectra. For
example, a magnetic field B ≈ TK in the Anderson model is sufficiently strong to polarize the
groundstate such that nd↑ ≈ 1 and nd↓ ≈ 0 at T � TK. In this case, the use of the canonical
density matrix %(T ) ≈ %m(T ) = 1

Zm(T )

∑
q e
−βEmq |q〉〈q| in evaluating the spectra on scales

ωm � TK can result in large errors. A solution to this is to use %N(T ) = 1
ZN (T )

∑
q |q〉e−βE

N
q 〈q|

for the longest chain diagonalized and to evaluate the Green functions on scales ωm > ωN by
tracing out intermediate degrees of freedom e = (αm+1, ..., αN) in %N . Since the longest chain
HN is close to the infinite system limit, this should provide a better description of the spectra,
particularly at higher frequencies. In order to carry out this procedure, the Hilbert space of each
Hm is extended to that of HN by adding the N − m environment degrees of freedom e, see
Fig. 9. Evaluating the reduced density matrix %red

m = Tre [%N ] appearing in Eq. (42) leads to a
Lehmann representation for the spectral density at T = 0

Adσ(ω, T = 0) =
∑
kk′

CN
kk′M

N
kk′ δ

(
ω − (EN

κ − EN
k′ )
)

(50)

CN
kk′ =

∑
p

%red
pk′M

N
pκ +

∑
p

%red
kp M

N
k′p (51)

in place of (46). In Fig. 10 we show a comparison of this approach with results from the



Numerical Renormalization Group: Fermions 5.23

-10 -5 0 5 10 15 20
ω/TK

0

0.05

0.1

0.15

0.2

A
(ω
)

B/TK = 0
B/TK = 1
B/TK = 2
B/TK = 5
B/TK = 10

(a) (b)

Fig. 10: Spin-up spectral density A(ω, T = 0) for, (a), the symmetric Anderson model, with
U/∆0 = 10, ∆0 = 0.01 and B = ∆0/10, with and without reduced density matrices (DM-
NRG/NRG) [8], and, (b), for the Kondo model in several magnetic fields B, with and without
reduced density matrices (dashed/solid lines, respectively) [11,50], showing that the low-energy
Kondo resonance is sufficiently well captured in the conventional approach.

previous approach for the Anderson and Kondo models in a magnetic field. A field-induced re-
arrangement of spectral weight at ω ≈ εd, εd+U is well captured by the reduced density matrix
approach (Fig. 10a). The low-energy Kondo resonance is less subject to finite size corrections,
since this part of the spectrum is already calculated from sufficiently long chains, such that the
corrections in using reduced density matrices are small (Fig. 10b).

Transport properties

The transport properties of quantum impurity models require knowledge of both the frequency
and temperature dependence of the impurity spectral density, a topic that was addressed above.
The linear-response conductance G(T ) and thermopower S(T ) through a quantum dot de-
scribed by the Anderson model are given by the following expressions

G(T ) =
e2

h

∫
dω

(
−∂f
∂ω

) ∑
σ

Tσ(ω, T,B) , (52)

S(T ) = − 1

|e|T

∫
dω ω (−∂f/∂ω)

∑
σ Tσ(ω)∫

dω (−∂f/∂ω)
∑

σ Tσ(ω)
, (53)

where the transmission function Tσ(ω, T ) through a quantum dot symmetrically coupled to left
and right leads is related to Adσ(ω, T ) via

Tσ(ω, T ) = 2π∆0Adσ(ωT ) .

Note that the discrete form of the spectral function may be directly substituted into the expres-
sions for G(T ) and S(T ) above without the necessity of broadening [51]. For the conductance,
this leads to

G(T ) =
γβ

Z

∑
σ

∑
m,n

|Mσ
mn|2

1

eβEm + eβEn
, (54)
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Fig. 11: (a) Linear conductance G(T ) versus T/TK for U/∆0 = 16 and several values of
εd = −U/2, 0, +U/2 using the approach of Yoshida et al. [51]. The resistivity of a Kondo
impurity ρ(T ) is similar to G(T ) for the εd = −U/2 curve. NRG parameters were for Λ = 4,
nz = 2 [52]. (b). Thermopower of a negative U = −16∆0 quantum dot, exhibiting a large
enhancement for gate voltages Vg ≥ TK [53] (calculated within the full density matrix approach
to spectral functions).

with γ = 2π∆0
e2

h
. Results for the temperature dependence of the conductance of the Anderson

model using this procedure are shown in Fig. 11a. Thermoelectric properties have also been
investigated for quantum dots with repulsive onsite Coulomb interactions [54] and for attractive
onsite interactions [53]. The latter provide a mechanism for enhancing thermopower, as shown
in Fig. 11b. The method gives uniformly accurate results at high and low temperatures, as well
as correctly describing the crossover region T ≈ TK (detailed comparisons of the resistivity of
dilute magnetic impurities with known results at high and low temperature can be found in [7]).
These calculations, as well as similar resistivity calculations for dilute impurities, provide a
quantitative interpretation of experiments for S = 1/2 realizations of the Kondo effect. They
have also been extended using the full density matrix approach to describe the resistivity and
dephasing rates of real Fe impurities in Au and Ag by using a 3-channel Kondo model [35,55].

5 Complete basis set and full density matrix

We noted in Sec. 3 that at each m, the states generated, denoted |qm〉, are partitioned into
the lowest-energy retained states, denoted |km〉, and the high-energy eliminated (or discarded)
states, |lm〉. In order to avoid an exponential increase in the dimension of the Hilbert space, only
the former are used to set up and diagonalize the Hamiltonian for the next iteration m+ 1. The
eliminated states, while not used in the iterative NRG procedure, may be used to set up a com-
plete orthonormal basis set [12]. This complete basis set is very powerful and allows evaluating
correlation functions 〈A(t)B(0)〉, transient quantities, and even thermodynamic expressions in
an unambiguous way, avoiding any possible double counting of excitations. Eliminated states
from different iterations have no overlap, see Fig. 12, in contrast to the retained states. Hence,
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Fig. 12: For iterations m < m0 all states are kept, while for m ≥ m0 only the lowest 1000 or
so states generated are used to set up the Hamiltonian for the next iteration m + 1 (adapted
from [57]).

using the latter to carry out calculations of physical quantities restricts one to using excitations
from a single shell only. However, for finite-temperature Green functions and non-equilibrium
quantities, multiple-shell contributions become important [56], and the complete basis set offers
a way to evaluate these quantities [12].
The complete basis set is defined by the product states |lem〉 = |lm〉|e〉,m = m0, . . . , N ,
where m0 is the first iteration at which truncation occurs, and |e〉 = |αm+1〉|αm+2〉 . . . |αN〉 are
environment states at iteration m such that the product states |lem〉, for each m = m0,m0 +

1, . . . , N , reside in the same Fock space (that of the largest system diagonalized, m = N ). By
“e” we shall henceforth denote the collection e = {αm+1...αN}. The eliminated states satisfy
the completeness relation [12, 58]

N∑
m=m0

∑
le

|lem〉〈lem| = 1, (55)

where for m = N all states are counted as discarded (i.e., there are no kept states at iteration
m = N ). We shall also use the following representations of this relation [12, 58]

1 = 1−m + 1+
m, (56)

1−m =
m∑

m′=m0

∑
l′e′

|l′e′m′〉〈l′e′m′| (57)

1+
m =

N∑
m′=m+1

∑
l′e′

|l′e′m′〉〈l′e′m′| =
∑
ke

|kem〉〈 kem| . (58)

By using the complete basis set, we can construct the full density matrix FDM [10, 59]

ρ =
1

Z(T )

N∑
m=m0

∑
le

e−βE
m
l |lem〉〈lem|, Tr ρ = 1⇒ (59)

Z(T ) =
N∑

m=m0

4N−m
∑
l

e−βE
m
l ≡

N∑
m=m0

4N−mZm(T ) (60)
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where Z(T ) is the partition function made up of the complete spectrum, i.e., it contains the
eliminated states from all Hm, m = m0,m0 + 1, ..., N . Consequently, it can be used to evaluate
the impurity thermodynamics at arbitrary temperatures.
Consider the following density matrix for the m-th shell (defined, however, in the Hilbert space
of HN ),

ρ̃m =
∑
le

|lem〉e
−βEml

Z̃m
〈lem| . (61)

Normalization Tr [ρ̃m] = 1 implies that

1 =
∑
l

e−βE
m
l

Z̃m
4N−m = 4N−m

Zm

Z̃m
, (62)

where Zm =
∑

l e
−βEml . Then the FDM can be written as a sum of weighted density matrices

for shells m = m0, . . . , N

ρ =
N∑

m=m0

wmρ̃m (63)

wm = 4N−m
Zm
Z

;
N∑

m=m0

wm = 1 (64)

Application to thermodynamics

Substituting ρ =
∑

mwmρ̃m into the expression for the thermodynamic average 〈Ô〉 of a local
observable of the impurity (e.g., nd or nd↑nd↓) and making use of the decomposition of unity
Eq. (55), we have

〈Ô〉ρ = Tr
[
ρÔ
]

=
∑
l′e′m′

〈
l′e′m′

∣∣∣∣∣Ô∑
lem

wm

∣∣∣∣∣ lem
〉
e−βE

m
l

Z̃m
〈lem|l′e′m′〉

=
∑
lem

Om
ll wm

e−βE
m
l

Z̃m
=

∑
lm

4N−mwmO
m
ll

e−βE
m
l

4N−mZm
=

N∑
m=m0,l

wmO
m
ll

e−βE
m
l

Zm
, (65)

where orthonormality 〈lem|l′e′m′〉 = δll′δee′δmm′ , and the trace over the N −m environment
degrees of freedom

∑
lem · · · =

∑
lm 4N−m . . . has been used, andOm

ll = 〈lm|Ô|lm〉. For other
observables, such as the specific heat or the susceptibility, one requires a similar calculation for
the conduction band contribution 〈Ô〉ρ0 , with ρ0 the FDM of the non-interacting band. The
impurity contribution is then obtained as Oimp = 〈Ô〉ρ − 〈Ô〉ρ0 .
For each temperature T and shell m, we require wm(T ) and the factor Bm

l (T ) = e−βE
m
l /Zm

where Zm =
∑

l e
−βEml . Numerical problems due to large exponentials are avoided by calcu-

lating Bm
l (T ) = e−β(Eml −E

m
0 )/Z ′m where Z ′m = eβE

m
0 Zm and Em

0 is the lowest discarded energy
for shell m. Figure 13 shows results for the double occupancy of the Anderson model obtained
within the FDM approach and comparisons with the conventional approach of Sec. 4.
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Application to dynamics

We consider a general fermionic/bosonic (s = ±1) retarded Green function

GAB(t) = −iθ(t)〈[A(t), B]s〉 ≡ −iθ(t) Tr [ρ(A(t)B + sBA(t))]

= −iθ(t)
[
CA(t)B + sCBA(t)

]
, (66)

where A and B are fermionic/bosonic operators, e.g., for the d-level Green function of our
quantum dot A = dσ and B = d†σ. The trace is evaluated using the complete basis set. We
outline the derivation of CA(t)B, with the expression for CBA(t) obtained in a similar manner.
We have

CA(t)B = Tr [ρA(t)B] =
∑
lem

〈lem|eiHtAe−iHtBρ|lem〉

=
∑
lem

∑
l′e′m′

〈lem|eiHtAe−iHt|l′e′m′〉〈l′e′m′|Bρ|lem〉 , (67)

which consists of three contributions with m′ = m, m′ > m and m′ < m. Consider the first
contribution (m′ = m), denoted by C(i)

A(t)B. Using the NRG approximation e−iHt |l′e′m〉 ≈
e−iHmt |l′e′m〉 = e−iE

m
l′ t |l′e′m〉 and 〈lem|A|l′e′m〉 = δee′〈lm|A|l′m〉 = δee′A

m
ll′ , we have

C
(i)
A(t)B =

∑
lm

∑
l′

e−i(E
m
l′ −E

m
l )tAmll′

∑
e

〈l′em|Bρ|lem〉︸ ︷︷ ︸
(Bρ)m

l′e,le

.

Inserting the FDM expression ρ =
∑

mwmρ̃m into (Bρ)ml′e,le yields∑
e

(Bρ)ml′e,le = Bm
l′lwme

−βEml /Zm ,

hence we have

C
(i)
A(t)B =

∑
m

wm
Zm

∑
l

∑
l′

e−i(E
m
l′ −E

m
l )tAmll′B

m
l′le
−βEml . (68)

The off-diagonal contributions with m′ > m and m′ < m in Eq. (67), which we label by C(ii)
A(t)B

and C(iii)
A(t)B, may be put into diagonal form by using 1+

m =
∑N

m′=m+1

∑
l′e′ |l′e′m′〉〈l′e′m′| =
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∑
ke |kem〉〈 kem| [Eq. (58)], thereby introducing kept states at iteration m (or m′) in place of

discarded states at iterations m′ > m (or m > m′),

C
(ii)
A(t)B =

∑
l′e′m′>m

∑
lem

〈lem|eiHtAe−iHt|l′e′m′〉〈l′e′m′|Bρ|lem〉

=
∑
lem

∑
ke′

〈lem|eiHtAe−iHt|ke′m〉〈ke′m|Bρ|lem〉

≈
∑
lm

∑
k

e−i(E
m
k −E

m
l )tAmlk

∑
e

(Bρ)mke,le

=
∑
lm

∑
k

e−i(E
m
k −E

m
l )tAmlkB

m
kle
−βEml

wm
Zm

(69)

C
(iii)
A(t)B =

∑
lem>m′

∑
l′e′m′

〈lem|eiHtAe−iHt|l′e′m′〉〈l′e′m′|Bρ|lem〉

=
∑
l′e′m′

∑
ke′

〈l′e′m′|Bρ|ke′m〉〈ke′m|eiHtAe−iHt|l′e′m′〉

≈
∑
l′m′

(Bρ)l′e′,ke′e
−i(Em′

l′ −E
m′
k )tAm

′

kl′ (70)

where the NRG approximation has been used together with
∑

e(Bρ)mke,le = Bm
kle
−βEml wm

Zm
. It is

also easy to show that [54],

Tre
[
(Bρ)mle,ke

]
≡
∑
e

(Bρ)mle,ke =
∑
k′

Bm
lk′

∑
e

〈k′em|ρ|kem〉︸ ︷︷ ︸
Rmred(k′,k)

(71)

where Rm
red(k′, k) is the reduced density matrix obtained from the FDM ρ by tracing out the

degrees of freedom e = (αm+1, ..., αN) [10, 54], hence the contribution C(iii)
A(t)B may be written

as

C
(iii)
A(t)B =

∑
lm

(Bρ)le,kee
−i(Eml −E

m
k )tAmkl =

∑
lkk′m

e−i(E
m
l −E

m
k )tAmklB

m
lk′R

m
red(k′, k), (72)

and

CA(t)B = C
(i)
A(t)B + C

(ii)
A(t)B + C

(iii)
A(t)B =

∑
m

wm
Zm

∑
ll′

e−i(E
m
l′ −E

m
l )tAmll′B

m
l′le
−βEml

+
∑
m

wm
Zm

∑
lk

e−i(E
m
k −E

m
l )tAmlkB

m
kle
−βEml

+
∑
m

∑
lkk′

e−i(E
m
l −E

m
k )tAmklB

m
lk′R

m
red(k′, k) .

(73)

Similar arguments lead to an expression for CBA(t) (exercise),

CBA(t) = C
(i)
BA(t) + C

(ii)
BA(t) + C

(iii)
BA(t) =

∑
m

wm
Zm

∑
ll′

e−i(E
m
l′ −E

m
l )tAmll′B

m
l′le
−βEm

l′

+
∑
m

wm
Zm

∑
lk

e−i(E
m
l −E

m
k )tAmklB

m
lke
−βEml

+
∑
m

∑
lkk′

e−i(E
m
k −E

m
l )tAmlkB

m
k′lR

m
red(k, k′) .

(74)
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Fourier transforming −iθ(t)(CA(t)B + sCBA(t)) using

∫ +∞

−∞
−iθ(t)e−i(Eq′−Eq)ei(ω+iδ) = 1/(ω + iδ − (Eq′ − Eq)) (75)

finally yields the Green function

GAB(ω + iδ) =
N∑

m=m0

wm
Zm

∑
ll′

Amll′B
m
l′l

e−βE
m
l + se−βE

m
l′

ω + iδ − (Em
l′ − Em

l )

+
N−1∑
m=m0

wm
Zm

∑
lk

AmlkB
m
kl

e−βE
m
l

ω + iδ − (Em
k − Em

l )

+ s
N−1∑
m=m0

wm
Zm

∑
lk

AmklB
m
lk

e−βE
m
l

ω + iδ − (Em
l − Em

k )

+
N−1∑
m=m0

∑
lkk′

AmklB
m
lk′

Rm
red(k′, k)

ω + iδ − (Em
l − Em

k )

+ s

N−1∑
m=m0

∑
lkk′

AmlkB
m
k′l

Rm
red(k, k′)

ω + iδ − (Em
k − Em

l )
.

(76)

The reduced density matrices appearing in Eq. (76) can be evaluated efficiently at all tempera-
tures in a recursive manner [10]. The use of the complete basis set to calculate finite-temperature
Green functions ensures that the spectral sum rule

∫
dω Aσ(ω, T ) = 1 holds as an identity [10].

Furthermore, calculations at ω < T may be carried out without the need to restrict to a smaller
cluster M < N , as was the case with the approach described in Sec. 4. Fig. 14 shows the
spectral function of the negative-U Anderson model calculated from Eq. (76) at several temper-
atures.

For an application of this approach to thermoelectric properties of quantum dots see Ref. [54],
and for a recent application to the magnetoresistivity and dephasing rate of multi-channel Kondo
models see Ref. [35].
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6 Recent developments:
TDNRG and multiorbital Kondo physics

The NRG has proved to be a reliable method for dealing with equilibrium properties of strongly
correlated quantum impurity systems. Nevertheless, the method is still under development. In
this section, we describe two areas where significant progress has been made but where further
work is needed. The first is in the transient response of a quantum impurity following either
a quantum quench, a pulse of finite duration, or a periodic train of pulses [12, 56, 58, 60, 61].
This is relevant, for example, in many pump-probe experiments [62, 63]. The second area
is in developing ways to deal with real quantum impurities in metals or on surfaces, such as
impurities with partially filled d- or f -levels, in which multiple channels (or bands) of the host
may couple to the impurity.

Time-dependent NRG (TDNRG)

We are interested in the dynamics of a local observable Ô following a quantum quench in which
one or more system parameters of H change suddenly at t = 0. Thus, the time-dependence of
H is described by H(t) = θ(−t)H i + θ(t)Hf , with H i and Hf being time-independent initial
(t < 0) and final state (t > 0) Hamiltonians, respectively [56]. The time evolution of Ô at t > 0

is then given by O(t) = Tr
[
ρ(t)Ô

]
where ρ(t) = e−iH

f tρ eiH
f t is the time-evolved density

matrix and ρ = e−βH
i
/Tr [ρ] is the density matrix of the initial state at inverse temperature β.

In terms of the complete basis set, we have

O(t) = Tr
[
e−iH

f tρ eiH
f tÔ
]

=
N∑

m=m0

∑
le

f〈lem|e−iH
f tρ eiH

f tÔ|lem〉f

=
N∑

mm′=m0

∑
lel′e′

f〈lem|e−iH
f tρ eiH

f t|l′e′m′〉f f〈l′e′m′|Ô|lem〉f .

(77)

Making use of 1+
m =

∑N
m′=m+1

∑
l′e′ |l′e′m′〉〈l′e′m′| =

∑
ke |kem〉〈 kem| [Eq. (58)], allows us

to write [12]

O(t) =
N∑

m=m0

∑
rs/∈KK′

∑
e

f〈sem|e−iH
f tρ eiH

f t|rem〉f f〈rem|Ô|sem〉f

≈
N∑

m=m0

∑
rs/∈KK′

∑
e

f〈sem|e−iH
f
mtρ eiH

f
mt|rem〉f f〈rem|Ô|sem〉f

=
N∑

m=m0

∑
rs/∈KK′

(∑
e

f〈sem|ρ|rem〉f
)
e−i(E

m
s −Emr )tOm

rs

=
N∑

m=m0

∑
rs/∈KK′

ρi→fsr (m)e−i(E
m
s −Emr )tOm

rs , (78)



Numerical Renormalization Group: Fermions 5.31

0 50 100 150 200 250
t [1/D]

-1

-0.5

0

0.5

1

P
(t

)

α = 1/2

α = 0.002

α =1/2 (exact result)

Fig. 15: P (t) = 〈σz(t)〉 of the IRLM
(with σz = 2nd− 1) using the TDNRG
as formulated in Ref. [60]. In the ini-
tial state εd = −∞ so that P (t ≤ 0) =
+1, while in the final state at t > 0
the level is shifted to εd = 0 so that
the two-level system can relax to its
new groundstate. For weak dissipation
α � 1, one observes weakly damped
coherent oscillations. These vanish for
α ≥ 1/2. The NRG parameters used
are Λ = 4, nz = 32 with resonant level
width Γ = 0.02D, where D = 1 is the
half-width of the IRLM (and a semi-
elliptic density of states was used).

in which r and s may not both be kept states, Om
rs = f〈lem|Ô|rem〉f are the final state matrix

elements of Ô, which are independent of e, the NRG approximation

Hf |rem〉 ≈ Hf
m|rem〉 = Em

r |rem〉, (79)

is adopted [in the second line of Eq. (78)], and ρi→fsr (m) =
∑

e f〈sem|ρ|rem〉f represents the
reduced density matrix of the initial state projected onto the basis of final states (henceforth
called the projected density matrix). The latter has been evaluated for the special choice of a
density matrix defined on the longest Wilson chain

ρ =
∑
l

|lN〉i
e−βE

N
l

ZN
i〈lN |, (80)

withZN =
∑

l e
−βENl , in which only the discarded states of the last NRG iteration enter [12,58].

More recently, the projected density matrix has been evaluated for a general initial density
matrix, given by the full density matrix of the initial state [60]. This allows calculations to be
carried out at arbitrary finite temperature. While the short-time limit O(t→ 0†) in the TDNRG
recovers the exact thermodynamic value Oi = Tr [ρO] in the initial state, the long-time limit
suffers from an error of a few percent. In addition, significant noise is observed at intermediate
tΓ & 1 to long times tΓ � 1. Attempts to further improve the method may be found in
Ref. [60] and references therein. A generalization of the single-quench TDNRG formalism to
multiple quenches, allowing applications to systems subject to general pulses or periodic driving
fields, may be found in Ref. [61]. Figure 15 shows results for the quantity P (t) = 〈σz(t)〉 of
the ohmic spin boson model (calculated via the IRLM using the equivalence between models
discussed earlier). The aforementioned error of a few percent in the long time limit is evident
in the case α = 1/2, whose exact result is P (t) = e−2Γt. This is likely due to the finite heat
capacity of the logarithmically discretized bath, which implies that the energy change following
a quench cannot be fully dissipated into such a bath [64].
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Multi-orbital and multi-channel Kondo models

The Anderson impurity model is a starting point for describing many different systems, from
the classic examples of transition-metal magnetic impurities such as Fe or Mn in non-magnetic
metals such as Au, to rare-earth magnetic impurities in non-magnetic metals, such as Ce in
LaAl2 [26] or magnetic ions such as Co, Fe and Ti adsorbed on surfaces of non-magnetic met-
als such as Cu or Cu2N/Cu (where the Cu2N monolayer reduces the hybridization V to the
substrate [66]). Of course, the relevant correlated orbitals in these systems are not the non-
degenerate “s-levels” as in (3), but would be the 5-fold or 7-fold degenerate partially filled d-
or f -orbitals in the case of transition metal or rare earth metal impurities, respectively. Further-
more, electrons in these partially filled shells would be subject to Coulomb, Hund’s exchange,
spin-orbit and crystal-field interactions, often leading to non-degenerate low-energy multiplets.
In addition, these low-energy multiplets would hybridize with conduction channels of appropri-
ate symmetry, and in general with many channels, not just one as in (3). Such a non-degenerate
multi-channel Anderson model capable of describing a real transition-metal impurity would
then look more complicated than Eq. (3), e.g., the following model (but still neglecting spin-
orbit and crystal field interactions),

H =
∑
mσ

εdm nmσ +
U

2

∑
mσ

nmσnm−σ +
U ′

2

∑
m6=m′σ

nmσnm′−σ +
U ′ − J

2

∑
m6=m′σ

nmσnm′σ

− J

2

∑
m6=m′σ

d†mσdm−σd
†
m′−σdm′σ −

J ′

2

∑
m6=m′σ

d†mσd
†
m−σdm′−σdm′σ

+
∑
kmσ

εkmσ c
†
kmσckmσ +

∑
kmσ

Vkmσ(c†kmσdmσ + h.c.)

would be closer to describing a real transition-metal impurity such as Mn in Cu. Despite its
apparent complexity, this model, just like its simpler counterpart in Eq. (3), has the same gen-
eral structure as Eq. (2) describing a general quantum impurity model, namely all many-body
interactions (U,U ′, J, J ′) are contained in a local part Himp, while the multi-channel bath Hbath

represents non-interacting electrons coupling via a one-body hybridization to Himp. While the
NRG can be applied to such multi-channel models, for Nc-channels the Hilbert space grows
as 4Nc instead of 4 as for a single channel. The fraction of states that can be retained at each
iteration is correspondingly smaller (1/4Nc) than for a single channel (1/4), making accurate
calculations difficult, particularly for dynamical quantities. While implementing all available
symmetries (U(1), SU(2), SU(3), parity etc.), in order to increase the fraction of states that can
be retained at each iteration, will help, such symmetries are not always present. At present,
reliable NRG calculations for dynamics can be carried out for three-channel models [35]. It
should be emphasized that the difficulty is with the number of channels that couple to the
impurity, not the complexity or number of orbitals on the impurity. Thus, while resistivity
calculations for three-channel fully screened Kondo models, such as those shown in Fig. 16a,
are demanding and require full use of all available symmetries, it is relatively straightforward
to deal with underscreened Kondo models [67] with high spin values, as shown in Fig. 16b
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for the resistivity curves for the single-channel underscreened Kondo model [65, 68]. Increas-
ing the number of channels to five would be a significant development, allowing many inter-
esting realistic systems to be investigated with NRG in combination with ab-initio methods
to extract the relevant model parameters [55, 69, 70]. We mention here one recent proposal
for achieving this, which, however, has so far only been benchmarked on a three-channel
model [71]. As in the single-band case, we rewrite the above model in linear-chain form
with Hbath =

∑Nc
m=1

∑
kσ εkmσ c

†
kmσckmσ →

∑Nc
m=1

∑∞
n=0

∑
σ tmn(f †mnσfmn+1σ +H.c.), where

tmn ∼ DmΛ
−n/2,m = 1, ..., Nc for Nc channels with half-bandwidths Dm. If all chan-

nels have the same half-bandwidth Dm = D,m = 1, ..., Nc, the hoppings within a shell
tmn,m = 1, ..., Nc are constant, one has to add all orbitals fmn+1σ,m = 1, ..., Nc of the next
shell n + 1 in going from Hn to Hn+1 in the NRG procedure of Sec. 3 before truncating the
spectrum of Hn+1, hence leading to the above growth of the Hilbert space at each iteration.
Choosing band-widths Dm with D1 > D2 > ... > DNc , as suggested in Ref. [71], leads to
an energy scale separation of the orbitals within each shell, i.e., tmn ∼ DmΛ

−n/2 for fixed n
decrease with m = 1, ..., Nc. This allows adding the orbitals fmn+1σ,m = 1, ..., Nc of a given
shell sequentially while simultaneously truncating the spectrum after each orbital is added. The
calculation then resembles a single-channel calculation. The above energy scale separation is
guaranteed provided Dm/Dm+1 = 1/g = Λ−1/2Nc , implying tm+1n/tmn = g < 1. Since the
hoppings in this approach decrease by a factor Λ−1/2Nc , a larger Λ will be required to obtain the
same accuracy as a single-channel calculation. In this way, the authors obtained accurate results
for three-channel and three-impurity models.
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7 Summary

Wilson’s non-perturbative NRG transformation for the Kondo model has become a powerful
tool for the study of quantum impurity models in general. It gives information on the many-
body eigenvalues and eigenstates of such models on all energy scales and thereby allows the
direct calculation of their thermodynamic, dynamic, and transport properties. Recently, it has
been further developed to yield the transient response of these systems to a sudden perturba-
tion (a quantum quench) [12], the time-dependent NRG (TDNRG). Extensions of the TDNRG
to general pulses using multiple quenches have also been made [60, 61]. The NRG also has
potential to give information on the non-equilibrium steady-state transport through correlated
impurity systems such as quantum dots. Recent work tries to construct a non-equilibrium den-
sity matrix for such systems by using the TDNRG to time-evolve from a known initial density
matrix [72].
The method has been extended in new directions, such as to models with bosonic baths to
study spin-boson models [27] and the interplay of correlations and phonon effects in Anderson-
Holstein models [73]. It has also been used successfully to make progress on understanding the
Mott transition, heavy fermion behavior, and other phenomena in correlated lattice systems [42,
74–76]. There is room for further improvement and extensions of the method both technically
and in the investigation of more complex systems such as multi-impurity and multi-channel
models [35, 71, 77].
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Appendices

A Logarithmic discretization approximation

The approximation

Hc =

∫ +1

−1

dε ε c†εσcεσ ≈
∞∑
n=0

(
ε−n c

†
−nσc−nσ + ε+n c

†
+nσc+nσ

)
(81)

used to replace the continuum band by the discrete one can be analyzed by introducing a com-
plete orthonormal basis set of states for the conduction electrons in each interval±[Λ−(n+1), Λ−n]

using the following wavefunctions

ψ±np(ε) =

{
Λn/2

(1−Λ−1)1/2
e±iωnpε for Λ−(n+1) < ±ε < Λ−n

0 otherwise
(82)

Here p is a Fourier harmonic index and ωn = 2πΛn/(1 − Λ−1). The operators cεσ can be
expanded in terms of a complete set of new operators anpσ, bnpσ labeled by the interval n and
the harmonic index p

cεσ =
∑
np

[
anpσ ψ

+
np(ε) + bnpσ ψ

−
np(ε)

]
. (83)

In terms of these operators, the Kondo Hamiltonian becomes

HKM =
1

2

(
1 + Λ−1

)∑
np

Λ−n
(
a†npσanpσ − b†npσbnpσ

)
+

(1− Λ−1)

2πi

∑
n

∑
p6=p′

Λ−n
(
a†npσanp′σ − b†npσbnp′σ

)
e

2πi(p−p′)
1−Λ−1

+ J
∑
σσ′

f †0σ ~σσσ′ f0σ′ · ~S , (84)

where in terms of the new operators, f0σ = 1√
2

∫ +1

−1
dε cεσ contains only p = 0 states:

f0σ =
1√
2

∫ +1

−1

dε cεσ =

[
1

2
(1− Λ−1)

]1/2 ∞∑
n=0

Λ−n/2 (an0σ + bn0σ) . (85)

We notice that only the p = 0 harmonic appears in the local Wannier state. This is a conse-
quence of the assumption that the Kondo exchange is independent of k. Hence the conduction
electron orbitals anp, bnp for p 6= 0 only couple to the impurity spin indirectly via their cou-
pling to the an0, bn0 in the second term of Eq. (84). This coupling is weak, being proportional
to (1 − Λ−1), and vanishes in the continuum limit Λ −→ 1, so these states may be expected
to contribute little to the impurity properties compared to the p = 0 states. This is indeed the
case as shown by explicit calculations in [1, 2]. The logarithmic discretization approximation
consists of neglecting conduction electron states with p 6= 0, resulting in Hc given by Eq. (81)
with c+nσ ≡ an,0σ and c−nσ ≡ bn,0σ and a discrete Kondo Hamiltonian given by Eq. (10).
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B Lanczos procedure

Neglecting spin indices, the conduction electron operator is

Hc =
∑
k

εk c
†
kck .

The Lanczos algorithm for tridiagonalizing this operator by repeated action on the normalized
conduction electron Wannier state |0〉 = 1√

N

∑
k c
†
k|vac〉, with |vac〉 the vacuum state and N

the number of sites in the crystal, is

|1〉 =
1

t0

(
Hc|0〉 − |0〉〈0|Hc|0〉

)
(86)

|n+ 1〉 =
1

tn

(
Hc|n〉 − |n〉〈n|Hc|n〉 − |n− 1〉〈n− 1|Hc|n〉

)
(87)

yielding

Hc =
∞∑
n=0

εn f
†
nfn + tn

(
f †nfn+1 +H.c.

)
, (88)

where the site energies are given by εn = 〈n|Hc|n〉 and the hoppings tn are obtained as normal-
izations from Eqs. (86)-(87).
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[7] T.A. Costi, A.C. Hewson, and V. Zlatić, J. Phys.: Condens. Matter 6, 2519 (1994)

[8] W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000)

[9] R. Peters, T. Pruschke, and F.B. Anders, Phys. Rev. B 74, 245114 (2006)

[10] A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402 (2007)

[11] T.A. Costi, Phys. Rev. Lett. 85, 1504 (2000)

[12] F.B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005)

[13] B.A. Jones, C.M. Varma, and J.W. Wilkins, Phys. Rev. Lett. 61, 125 (1988)

[14] A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger,
Rev. Mod. Phys. 59, 1 (1987)

[15] U. Weiss: Quantum dissipative systems, Vol. 13 (World Scientific Pub Co Inc, 2008)

[16] A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

[17] W. de Haas, J. de Boer, and G. van den Berg, Physica 1, 1115 (1934)

[18] P.W. Anderson, Phys. Rev. 124, 41 (1961)

[19] P.W. Anderson, Journal of Physics C: Solid State Physics 3, 2436 (1970)

[20] R. Bulla, T. Pruschke, and A.C. Hewson,
Journal of Physics: Condensed Matter 9, 10463 (1997)

[21] C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254 (1998)

[22] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and
M.A. Kastner, Nature 391, 156 (1998)
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