

Introduction to Photoemission Spectroscopy

Michael Sing

Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM) Universität Würzburg, Germany

Outline:

- Basics
- PES theory I: (mainly) independent electrons
- PES theory II: many-body picture
- Case studies towards higher photon energies

Photoemission basics

UNIVERSITÄT The photoelectric effect

experimental observations:

- light intensity increases I_{phot} , but **not** E_{kin}^{max} (contrary to classical expectation)
- instead: E_{kin}^{max} depends on light frequency ν

Light Frequercy

 $E_{kin}^{max} \propto \nu - const$

UNIVERSITÄT The photoelectric effect

A. Einstein Nobel prize 1921

hν

UNIVERSITÄT Photoelectron spectroscopy

WÜRZBURG Photoelectron spectroscopy: ESCA

K.M. Siegbahn Nobel prize 1981

 $E_{kin} = h v - E_B - \Phi$

\rightarrow Electron Spectroscopy for Chemical Analysis

WURZBURG Photoelectron spectroscopy: ESCA

K.M. Siegbahn Nobel prize 1981

\rightarrow Electron Spectroscopy for Chemical Analysis

chemical shifts in C 1s spectrum of ethylfluoroacetate

UNIVERSITÄT WÜRZBURG Photoelectron spectroscopy: valence bands

ep4

WURZBURG Angle-resolved photoemission (ARPES)

ep4

measure energy and momentum of the photoelectrons:

UNIVERSITÄT Angle-resolved photoemission (ARPES)

measure energy and momentum of the photoelectrons:

 \rightarrow k-space band structure mapping: band dispersions, Fermi surface, ...

Borisenko et al., Phys. Rev B 64, 094513 (2001)

PES theory I: (mainly) independent electrons

UNIVERSITÄT WÜRZBURG Fermi's Golden Rule

starting point for theoretical description of PE process:

effect of photon field is **weak perturbation**

unperturbed system (electrons in atom, solid):

 $\widehat{H}_0|n\rangle = E_n|n\rangle$ with known eigenstates $|n\rangle$ and eigenenergies E_n

perturbation (photon field):

 $\widehat{H}_{int}e^{-i\omega t}$

time-dependent perturbation theory

transition rate from initial state $|i\rangle$ to final state $|f\rangle$ of the unperturbed system \hat{H}_0 due to perturbation $\hat{H}_{int}e^{-i\omega t}$ is:

UNIVERSITÄT WÜRZBURG Fermi's Golden Rule

Perturbing radiation field: What is \hat{H}_{int} ?

describe by vector potential of a **classical*** electromagnetic plane wave:

 $\vec{A}(\vec{r},t) = \vec{A}_0 e^{i(\vec{q}\cdot\vec{r}-\omega t)}$

→ electric field: $\vec{E}(\vec{r},t) = -\frac{\partial}{\partial t}\vec{A}(\vec{r},t)$ → magnetic field: $\vec{B}(\vec{r},t) = \nabla \times \vec{A}(\vec{r},t)$

N.B.: $\nabla \cdot \vec{A}(\vec{r},t) = \operatorname{div} \vec{A}(\vec{r},t) = 0$, if photon wavevector $\vec{q} \perp \vec{A}_0$

true in vacuum and deep in the solid (transverse wave), but not necessarily at the surface due to discontinuity in dielectric constant ε \rightarrow surface photoemission see, e.g., Miller et al., PRL 77, 1167 (1996)

*classical description ignores quantum nature of photon, justified for sufficiently low photon intensities (\rightarrow VUV-laser, FEL ?)

UNIVERSITÄT WÜRZBURG Fermi's Golden Rule

Perturbed electronic system (consider only single electron: independent particle picture!):

canonical replacement in unperturbed Hamiltonian: $\hat{\vec{p}} \rightarrow \hat{\vec{p}} - e\vec{A}$

$$\Rightarrow \widehat{H} = \frac{1}{2m} \left(\widehat{\vec{p}} - e\vec{A} \right)^2 + V(\vec{r})$$

$$= \frac{1}{2m} \left(-i\hbar\vec{\nabla} - e\vec{A}(\vec{r},t) \right)^2 + V(\vec{r})$$

$$= \frac{\hat{\vec{p}}^2}{2m} + V(\vec{r}) - \frac{e}{2m}\hat{\vec{p}} \cdot \vec{A} - \frac{e}{2m}\vec{A} \cdot \hat{\vec{p}} + \frac{e^2}{2m}\vec{A}^2$$

$$= \widehat{H}_0 \qquad -\frac{e}{m}\vec{A} \cdot \hat{\vec{p}} - \frac{e}{2m} \left(-i\hbar\vec{\nabla} \cdot \vec{A} \right)$$

$$= 0, \text{ except possibly at surface !}$$

$$\rightarrow \hat{H} \approx \hat{H}_0 - \frac{e}{m}\vec{A}\cdot\hat{\vec{p}} = \hat{H}_0 - \frac{e}{m}\left(\vec{A}_0e^{i(\vec{q}\cdot\vec{r}-\omega t)}\cdot\hat{\vec{p}}\right)$$

$$\rightarrow \hat{H} \approx \hat{H}_0 - \frac{e}{m} e^{i\vec{q}\cdot\vec{r}} (\vec{A}_0 \cdot \hat{\vec{p}}) e^{-i\omega t}$$

of the form $\hat{H}_{int}e^{-i\omega t}$ to be used in Fermi's Golden Rule!

back to Fermi's Golden Rule

$$w_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_{int} | i \rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right)$$

for the transition matrix element we now obtain:

 $M_{if} = \langle f | \hat{H}_{int} | i \rangle = -\frac{e}{m} \langle f | e^{i \vec{q} \cdot \vec{r}} \vec{A}_0 \cdot \hat{\vec{p}} | i \rangle \text{, or expressed in "real" wave functions:}$

$$M_{if} = -\frac{e}{m} \int d^3 r \ \psi_f^*\left(\vec{r}\right) \ e^{i\vec{q}\cdot\vec{r}} \left(\vec{A}_0\cdot\hat{\vec{p}}\right) \ \psi_i(\vec{r})$$

WURZBURG Matrix element and dipole approximation

$$M_{if} = -\frac{e}{m} \int d^3r \ \psi_f^*\left(\vec{r}\right) \ e^{i\vec{q}\cdot\vec{r}} \left(\vec{A}_0\cdot\hat{\vec{p}}\right) \ \psi_i(\vec{r})$$

length scales:

- the matrix element can be viewed as spatial Fourier transform $(e^{i\vec{q}\cdot\vec{r}})$
- the wavefunctions (atomic orbitals or Bloch waves) oscillate rapidly on atomic dimensions (~Å)
- the photon wave $e^{i\vec{q}\cdot\vec{r}}$ probes length scales of order $\lambda = 2\pi/|\vec{q}|$ which for VUV radiation is large compared to atomic dimensions, e.g.:

$$h\nu = 21.2 \text{ eV} \rightarrow \lambda = 584 \text{ Å} (VUV)$$

$$1.486 \text{ keV} \rightarrow = 8.3 \text{ Å} (XPS)$$

$$6 \text{ keV} \rightarrow = 2.0 \text{ Å} (HAXPES) \qquad \text{dipole approximation}$$

 \rightarrow expansion of the plane wave (generates el./magn. multipole moments):

 $e^{i\vec{q}\cdot\vec{r}} = 1 + i\vec{q}\cdot\vec{r} + \cdots \approx 1$, with $\vec{q}\cdot\vec{r} \sim 2\pi \frac{a_0}{\lambda} \ll 1$ for VUV radiation

WURZBURG Matrix element and dipole approximation

 \rightarrow simplified matrix element:

$$M_{if} = -\frac{e}{m} \int d^3r \ \psi_f^* \left(\vec{r} \right) \left(\vec{A}_0 \cdot \hat{\vec{p}} \right) \ \psi_i(\vec{r})$$

Using the quantum-mechanical identity $\langle f | \hat{\vec{p}} | i \rangle = im \frac{E_f - E_i}{\hbar} \langle f | \vec{r} | i \rangle$ the matrix element can be further transformed into:

$$M_{if} = -i \frac{E_f - E_i}{\hbar} \vec{A}_0 \cdot \int d^3 r \, \psi_f^* \left(\vec{r} \right) \begin{bmatrix} e\vec{r} \end{bmatrix} \psi_i(\vec{r})$$

electrical dipole operator

- \rightarrow selection rules, polarization dependence
- \rightarrow dipole approximation valid only up to VUV energies
- → at higher photon energies (XPS, HAXPES): el. quadrupole/magn. dipole contributions increasingly important !

UNIVERSITÄT Fermi's Golden rule and the one-step model

photoemission intensity determined by transition rate:

$$w_{i\to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| \vec{A}_0 \cdot \hat{\vec{p}} \right| i \right\rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right)$$

What are the initial and final states?

One-step model:

final states: "time-inverted LEED state"

- in vacuum: free electron wave $e^{i \vec{k}_f \cdot \vec{r}}$
- in the solid: matched to high lying Bloch waves,

damped by e-e scattering

- energy E_f and wavevector \vec{k}_f

initial states in the solid:

- bulk Bloch waves $u_{n\vec{k}_i}(\vec{r})e^{i\vec{k}_i\cdot\vec{r}}$
- energy E_i and wavevector \vec{k}_i

WURZBURG Fermi's Golden rule and the one-step model

photoemission intensity determined by transition rate:

$$w_{i\to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| \vec{A}_0 \cdot \hat{\vec{p}} \right| i \right\rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right)$$

What are the initial and final states?

WÜRZBURG One-step model vs. three-step model

Julius-Maximilians-

courtesy of A. Damascelli

UNIVERSITÄT WÜRZBURG Step 1: Excitation in the solid

$$w_{i\to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| \vec{A} \cdot \hat{\vec{p}} \right| i \right\rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right)$$

for VUV excitation

WUNIVERSITÄT Step 2: Transport to the surface

inelastic scattering of the photoelectron with

Shirley background

background at energy E proportional to intrinsic spectrum integrated over all energies E' > E:

$$I_{BG}(E) = \int_{E}^{E_F} dE' I_0(E')$$

can be viewed as convolution with step-like loss function $L(E) = Im \frac{-1}{\varepsilon(E)}$:

$$I_{BG}(E) = \int_{-\infty}^{+\infty} dE' I_0(E') L(E - E')$$

Tougaard background

loss function will generally have structure due to interband transitions, plasmons, etc.

use phenomenological model or determine loss function experimentally (EELS)

nd

WÜRZBURG Inelastic background

WUNIVERSITÄT Step 2: Transport to the surface

inelastic scattering of the photoelectron with

WUNIVERSITÄT Step 2: Transport to the surface

inelastic scattering of the photoelectron with

- other electrons (excitation of e-h-pairs, plasmons)
 - phonons

- → generation of secondary electrons "inelastic background"
- → loss of energy and momentum information in the photoelectron current: inelastic mean free path λ

$$\rightarrow \lambda = 2 \dots 20 \text{ Å}$$

→ PES probing depth: $\sim 3\lambda$ (95% of the signal)

PES is surface-sensitive on atomic length scales !

WURZBURG Step 3: transition to vacuum

- conservation of wavevector component parallel to surface, \vec{k}_{\parallel}
- But: change of k_{\perp} changes due to electron diffraction at surface barrier

source: E. Rotenberg

electron wave matching at the surface

pragmatic solution: free-electron final state model

surface potential step

"inner potential" V₀

pragmatic solution: free-electron final state model

→ k_{\perp} uniquely determined from measured data: E_{kin} , θ_{out} , but need to know inner potential V_0 (from band theory, k-periodicity)

measure **energy** and **escape angle** of the photoelectrons:

get **bandstructure** (dispersions, Fermi surface,...) from conservation laws:

energy: $E_{kin} = h\nu - \phi - |E_B|$ momentum: $\hbar k_{\parallel} = \hbar K_{\parallel} = \sqrt{2mE_{kin}} \sin \theta$ $\hbar k_{\perp}$ not so straightforward ...

PES theory II: many-body picture

UNIVERSITÄT WÜRZBURG Photoemission: many-body effects

Damascelli et al., Rev. Mod. Phys. 75, 473 (2003)

non-interacting electrons

interacting electrons

ARPES \checkmark band structure $\varepsilon_0(\vec{k})$

ARPES ↓ spectral f

spectral function

$$A(\vec{k},\varepsilon) = -\frac{1}{\pi} \operatorname{Im} G(\vec{k},\varepsilon)$$

WÜRZBURG Photoemission: many-body effects

interacting electrons (Coulomb repulsion)

Ekin

photoemission process:

sudden removal of an electron from *N*-particle system
WÜRZBURG Photoemission: many-body effects

interacting electrons (Coulomb repulsion)

photoemission process:

sudden removal of an electron from *N*-particle system

"loss" of kinetic energy due to interaction-related excitation energy stored in the remaining *N*-1 electron system !

WURZBURG Photoemission: many-body effects

electron-phonon coupling

Ekin

photoemission process:

sudden removal of an electron from *N*-particle system

"loss" of kinetic energy due to interaction-related excitation energy stored in the remaining *N*-1 electron system !

WURZBURG Photoemission: many-body effects

electron-phonon coupling

photoemission process:

sudden removal of an electron from *N*-particle system

"loss" of kinetic energy due to interaction-related excitation energy stored in the remaining *N*-1 electron system !

$$w_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_{int} | i \rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right)$$

initial state

 $|i\rangle = |N, 0\rangle$ N-electron **ground state** with energy $E_i = E_{N,0}$ (T=0)

final states

$$|f\rangle = |N - 1, s; \vec{k}\rangle$$
 N-electron **excited state** of quantum number s and
energy $E_f = E_{N,s}$,

consisting of N-1 electrons in the solid and one free photoelectron with wavevector \vec{k} and energy ε

transition operator

$$\widehat{H}_{int} \propto \sum_{i=1}^{N} \vec{A}(\vec{r}_i) \cdot \hat{\vec{p}}_i \quad \text{in second quantization} = M_{if} c_{\vec{k}_f}^{+} c_{\vec{k}_i}$$
one-electron matrix element,
conserves wavevector: $\vec{k}_f = \vec{k}_i$

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1,s; \vec{k} \right| \widehat{H}_{int} \left| N,0 \right\rangle \right|^{2} \delta \left(E_{N,s} - E_{N,0} - \hbar \omega \right)$$

initial state

 $|i\rangle = |N, 0\rangle$ N-electron **ground state** with energy $E_i = E_{N,0}$ (T=0)

final states

$$|f\rangle = |N - 1, s; \vec{k}\rangle$$
 N-electron **excited state** of quantum number s and
energy $E_f = E_{N,s}$,

consisting of N-1 electrons in the solid and one free photoelectron with wavevector \vec{k} and energy ε

transition operator

$$\widehat{H}_{int} \propto \sum_{i=1}^{N} \vec{A}(\vec{r}_i) \cdot \hat{\vec{p}}_i \quad \text{in second quantization} = M_{if} c_{\vec{k}_f}^{+} c_{\vec{k}_i}$$
one-electron matrix element,
conserves wavevector: $\vec{k}_f = \vec{k}_i$

UNIVERSITÄT WÜRZBURG Fermi's Golden Rule for an N-electron system

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1,s; \vec{k} \right| \widehat{H}_{int} \left| N,0 \right\rangle \right|^{2} \delta \left(E_{N,s} - E_{N,0} - \hbar \omega \right)$$

Sudden Approximation:

$$|f\rangle = \left|N - 1, s; \vec{k}\right\rangle$$

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1,s; \vec{k} \right| \widehat{H}_{int} \left| N,0 \right\rangle \right|^{2} \delta \left(E_{N,s} - E_{N,0} - \hbar \omega \right)$$

Sudden Approximation:

$$|f\rangle = |N - 1, s; \vec{k}\rangle = c_{\vec{k}}^{+}|N - 1, s\rangle$$
 factorization!
photoelectron s^{th} eigenstate of remaining $N - 1$ electron system

physical meaning:

photoelectron decouples from remaining system immediately after photoexcitation, *before* relaxation sets in

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1, s \right| c_{\vec{k}} \widehat{H}_{int} \left| N, 0 \right\rangle \right|^{2} \delta \left(E_{N-1,s} + \varepsilon - E_{N,0} - \hbar \omega \right)$$

Sudden Approximation:

$$|f\rangle = |N - 1, s; \vec{k}\rangle = c_{\vec{k}}^+ |N - 1, s\rangle$$
 factorization!
photoelectron s^{th} eigenstate of remaining $N - 1$ electron system

physical meaning:

photoelectron decouples from remaining system immediately after photoexcitation, *before* relaxation sets in

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1,s \right| c_{\vec{k}} \widehat{H}_{int} \left| N,0 \right\rangle \right|^{2} \delta(E_{N-1,s} + \varepsilon - E_{N,0} - \hbar\omega)$$

$$\sum_{if} M_{if} c_{\vec{k}} c_{f}^{+} c_{i}$$

Sudden Approximation:

$$|f\rangle = |N - 1, s; \vec{k}\rangle = c_{\vec{k}}^{+}|N - 1, s\rangle$$
 factorization!
photoelectron s^{th} eigenstate of remaining $N - 1$ electron system

physical meaning:

photoelectron decouples from remaining system immediately after photoexcitation, *before* relaxation sets in

WÜRZBURG Sudden Approximation

after some algebra (using the momentum conservation in M_{if} and assuming that $M_{if} \sim const$ in the energy and k-range of interest) one obtains:

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1, s \right| c_{\vec{k}} \left| N, 0 \right\rangle \right|^{2} \delta(E_{N-1,s} + \varepsilon - E_{N,0} - \hbar \omega)$$

UNIVERSITÄT WÜRZBURG Sudden Approximation

after some algebra (using the momentum conservation in M_{if} and assuming that $M_{if} \sim const$ in the energy and k-range of interest) one obtains:

$$I(\vec{k},\varepsilon) \propto \sum_{s} |\langle N-1,s \mid c_{\vec{k}} \mid N,0 \rangle|^{2} \delta(E_{N-1,s} + \varepsilon - E_{N,0} - \hbar\omega)$$

= $A(\vec{k},\varepsilon - \hbar\omega) \cdot f(\varepsilon - \hbar\omega)$
spectral function
The ARPES signal $I(\vec{k},\varepsilon)$ directly proportional to the removal part
of the spectral function $A(\vec{k},\omega) = -\frac{1}{\pi} Im G(\vec{k},\omega)$
single-particle
grobability of removing (or adding) an electron at
energy ω and momentum \vec{k} from (to) the system

WURZBURG Sudden Approximation

after some algebra (using the momentum conservation in M_{if} and assuming that $M_{if} \sim const$ in the energy and k-range of interest) one obtains:

$$I(\vec{k},\varepsilon) \propto \sum_{s} \left| \left\langle N-1,s \mid c_{\vec{k}} \mid N,0 \right\rangle \right|^{2} \delta(E_{N-1,s} + \varepsilon - E_{N,0} - \hbar\omega)$$
$$= A(\vec{k},\varepsilon - \hbar\omega) \cdot f(\varepsilon - \hbar\omega)$$

spectral function

The ARPES signal $I(\vec{k}, \varepsilon)$ directly proportional to the removal part of the **spectral function** $A(\vec{k}, \omega) = -\frac{1}{\pi} Im G(\vec{k}, \omega)$

$$A(\vec{k},\omega) = -\frac{1}{\pi} Im \ G(\vec{k},\omega) = -\frac{1}{\pi} Im \frac{1}{\hbar\omega - \varepsilon_{\vec{k}} - \Sigma(\vec{k},\omega)} = \frac{1}{\pi} \frac{|\Sigma''(\vec{k},\omega)|}{\left[\hbar\omega - \varepsilon_{\vec{k}} - \Sigma'(\vec{k},\omega)\right]^2 + \Sigma''(\vec{k},\omega)^2}$$

Debye Model (λ = 1)

theoretical energy distribution curves (EDCs)

WURZBURG Many-body effects in photoemission

example: photoemission of the H₂ molecule

electrons couple to proton dynamics !

WURZBURG Many-body effects in photoemission

example: photoemission of the H₂ molecule

electrons couple to proton dynamics !

photoemission intensity:

$$I(\omega) \propto \sum_{s} \left| \left\langle H_{2}^{+}, s \right| \hat{c} \left| H_{2}, 0 \right\rangle \right|^{2} \delta(\omega + E_{H_{2}^{+}, s} - E_{H_{2}, 0})$$

electronic-vibrational eigenstates of H_2^+ :

$$|H_2^+, s\rangle = |\sigma^1, v = 0\rangle$$
$$= |\sigma^1, v = 1\rangle$$
$$= |\sigma^1, v = 2\rangle$$

WURZBURG Many-body effects in photoemission

example: photoemission of the H₂ molecule

Franck-Condon principle

proton distance

eneregy

WURZBURG The k₁- problem again: photoelectron damping

ARPES signal is actually a **convolution** of photo*hole* <u>and</u> photo*electron* spectral function

 $I(k_{\parallel},\varepsilon) \propto \int dk_{\perp} A_{h}^{<}(k_{\parallel},k_{\perp},\varepsilon-h\nu) A_{e}^{>}(k_{\parallel},k_{\perp},\varepsilon)$

total width assuming lifetimebroadened Lorentzian lineshapes

spectrum dominated by photo-electron linewidth unless $v_{h\perp}/v_{e\perp} << 1$

- ⇒ low-dim systems (*e.g.*, surfaces)
- \Rightarrow k-vector in high-symmetry planes

WURZBURG Summary: The view from many-body physics

- Photoelectron spectroscopy is ideal tool for the study of many-body effects in the electronic structure
- photohole probes interactions between electrons and with other dynamical degrees of freedom
 - \rightarrow energy shifts
 - \rightarrow shake-up satellites
 - \rightarrow line broadening
 - \rightarrow line shape

(generalized Franck-Condon effect)

- ARPES signal proportional to single-particle spectrum $A^{<}(\vec{k}, \omega)$ (if photohole is localized \perp surface!)
- facilitates direct comparison to many-body theoretical description of interacting system

Low-energy photoemission: Doping a one-dimensional Mott insulator

UNIVERSITÄT TiOCI: a low-dimensional Mott insulator

configuration: Ti 3d¹

- \rightarrow 1e⁻/atom: Mott insulator
- \rightarrow local spin s=1/2
- → frustrated magnetism, resonating valence bond (RVB) physics?

UNIVERSITÄT WÜRZBURG Doping a Mott insulator

(PES)

(IPES)

UNIVERSITÄT Doping a Mott insulator

UNIVERSITÄT Doping a Mott insulator

WURZBURG XPS: *in situ* Na intercalation and n-doping

ulius-Maximilians

- electron transfer Na \rightarrow Ti
- doping x from relative Ti²⁺ and Ti³⁺ weight

UNIVERSITÄT UPS: doping effects in valence band

new spectral weight in gap

UNIVERSITÄT WÜRZBURG Doping a Mott insulator

- new peak in the Mott gap: UHB?
- absence of metallic quasiparticle (QP)?

PRL 106, 056403 (2011)

UNIVERSITÄT WÜRZBURG Absence of metallic QP

Molecular dynamics:

Y.-Z. Zhang, Phys. Rev. Lett. 104, 146402 (2010)

GGA+U - DOS:

- Na ions occupy specific sites close to one Ti-O layer
- in-gap states due to Ti sites closest to Na ions

- local doping into "alloy band" (AB)
- transfer of spectral weight LHB \rightarrow AB
- AB: all sites always doubly occupied
- fundamental gap between AB and UHB
 - \rightarrow insulating for all doping levels

Hard x-ray photoemission: Profiling the buried two-dimensional electron system in an oxide heterostructure

WURZBURG Oxide heterostructures in a nutshell

General idea:

combine interface functionalities with intrinsic functionalities of oxides \rightarrow novel phases, tunability of interactions

Paradigm material: LAO/STO

- both oxides: wide gap band insulators
- LAO thickness ≥ 4 unit cells (uc): formation of a high-mobility interface
 2D electron system (2DES)

WÜRZBURG Oxide heterostructures in a nutshell

2DES properties:

- tunable conductivity by electric gate field
- superconducting below 200 mK
- magnetoresistance
- coexistence of superconductivity and ferromagnetism

Origin of 2DES (and its critical behavior)?

- \rightarrow O-vacancies @ interface
- \rightarrow cation intermixing (La_xSr_{1-x}TiO₃)
- \rightarrow electronic reconstruction

see also: D.G. Schlom and J. Mannhart, Nature Materials **10**, 168 (2011)

Nakagawa et al., Nature Mat. 5, 204 (2006)

Yun Li et al., PRB **84**, 245307 (2011) Pentcheva and Pickett, PRL **102**, 107602 (2009)

ideal el. reconstruction scenario
WURZBURG Spectroscocpy of buried interfaces

Challenges and requirements:

- suitable probing depth:
 - photons (10 nm ... microns)
 - electrons (0.3 ... 10 nm)
- interface signal vs.
 background intensity from bulk
- spectroscopic contrast:
 - symmetry
 - element specificity
 - chemical shift
 - electronic configuration
- sufficiently high count rates

Methods presented here:

- hard x-ray photoelectron spectroscopy (HAXPES)
- resonant soft x-ray angle-resolved PES (SX-ARPES)

LaAlO₃

SrTiO₂

2DES

PRL 102, 176805 (2009)

WURZBURG Model and quantitative analysis

Intensity ratio:

 $\frac{I(3+)}{I(4+)} = \frac{p(1 - \exp(-d/\lambda\cos\theta))}{1 - p(1 - \exp(-d/\lambda\cos\theta))}$

Accessible parameters:

- d : 2DEG thickness
- **p** : Ti³⁺ fraction

 n_{2D} : sheet carrier density (= pd/a_{STO}^2)

Angle dependence 1.8 ₱ λ=40Å d=20Å, p=0.5 1.6 d=40Å, p=0.5 d=60Å, p=0.5 d=80Å, p=0.5 norm. I(3+)/l(4+) 1.4 $d\ll\lambda$ $\cos(\bar{\theta}$ 1.2 1.0 $d \gg \lambda$

20

0.8

0

PRL 102, 176805 (2009)

60

40

emission angle (°)

Quantitative analysis

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

ep4

PRL 102, 176805 (2009)

WURZBURG Quantitative analysis: 2DEG thickness

Sample	2 uc	4 uc	5 uc	6 uc
<i>d</i> (uc*)	3 ± 1	1 ± 0.5	6 ± 2	8 ± 2

*lattice constant of STO unit cell (uc) = 3.8 Å

\rightarrow interface thickness < 3 nm

consistent with

- CT-AFM Basletic et al. (2008)
- TEM-EELS Nakagawa et al. (2006)
- density functional theory Pentcheva et al. (2009)
- 2D superconductivity Reyren et al. (2007)
- ellipsometry Dubroka et al. (2010)

* HAXPES data taken at 300K!

PRL 102, 176805 (2009)

WURZBURG Quantitative analysis: sheet carrier density

Sample	2 uc	4 uc	5 uc	6 uc	el. reconstr.
p	0.01	0.05	0.02	0.02	0.5
<i>n_{2D}</i> (10 ¹³ cm ⁻²)	2.1	3.9	8.1	11.1	35

- n_{2D} much smaller than for purely electronic reconstruction
- n_{2D} higher than Hall effect data
- photogeneration of extra Ti 3d electrons
- remaining excess due to additional localized Ti 3d electrons?

(cf. Li *et al.* and Bert *et al.*, Nature Phys. (2011): coexistence of superconductivity (free carriers) and magnetism (local moments))

Resonant angle-resolved soft x-ray photoemission: Direct k-space mapping of the electronic structure in an oxide-oxide interface

WURZBURG Soft x-ray ResPES of the valence band

resonance enhancement at Ti L edge

PRB 88, 115111 (2013)

WURZBURG Soft x-ray ResPES of the valence band

Koitzsch et al., PRB **84**, 245121 (2011)

resonance enhancement at Ti L edge

UNIVERSITÄT WÜRZBURG LAO/STO: resonant photoemission at Ti L-edge

 two Ti 3d resonance features below (A) and at E_F (B)

UNIVERSITÄT WÜRZBURG LAO/STO: resonant photoemission at Ti L-edge

 two Ti 3d resonance features below (A) and at E_F (B)

feature A:

max enhancement at $Ti^{3+} e_g$ resonance (cf. LaTiO₃)

UNIVERSITÄT LAO/STO: resonant photoemission at Ti L-edge

 two Ti 3d resonance features below (A) and at E_F (B)

feature A:

max enhancement at $Ti^{3+} e_g$ resonance (cf. LaTiO₃)

feature B:

max enhancement *delayed*

→ characteristic for localized (A) and delocalized (B) resonating states

UNIVERSITÄT LAO/STO: resonant photoemission at Ti L-edge

 two Ti 3d resonance features below (A) and at E_F (B)

feature A:

max enhancement at $Ti^{3+} e_g$ resonance (cf. LaTiO₃)

feature B:

max enhancement *delayed*

- → characteristic for localized (A) and delocalized (B) resonating states
- features A and B also seen in Odeficient STO (*e.g., Aiura et al., Surf. Sci.* 515, 61 (2002))

UNIVERSITÄT LAO/STO: resonant photoemission at Ti L-edge

WÜRZBURG

 two Ti 3d resonance features below (A) and at E_{F} (B)

feature A:

max enhancement at $Ti^{3+} e_{g}$ resonance (cf. $LaTiO_3$)

feature B:

max enhancement *delayed*

- \rightarrow characteristic for **localized** (A) and **delocalized** (B) resonating states
- features A and B also seen in Odeficient STO (e.g., Aiura et al., Surf. Sci. **515**, 61 (2002))

 \Rightarrow A: charge carriers trapped in d-orbitals of Ti ions surrounding oxygen vacancies **B:** mobile interface charge carriers (2DES)

UNIVERSITÄT WÜRZBURG Photoemission of bare STO surface

trapped next to oxygen vacancies

Aiura et al., Surf. Sci. 515, 61 (2002)

LAO/STO: k-space mapping by SX-ARPES

UNIVERSITÄT WÜRZBURG

schematic Ti 3d-derived Fermi surface (*Popovic et al., PRL* **101**, 256801)

LAO/STO: k-space mapping by SX-ARPES

UNIVERSITÄT WÜRZBURG

UNIVERSITÄT LAO/STO: k-space mapping by SX-ARPES

larger $k_{\rm F}$ -values along FX than FM also seen in experiment

LAO/STO: Fermi surface mapping

cf. also: Cancellieri et al., arXiv:1307.6943

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

LAO/STO: Fermi surface mapping

BL23SU, SPring-8 hv=460.35eV Ti 3d xz/yz bands Ti 3d xy bands 1.5 O 2p surface band max 1.0 Μ (Å, (Å) 0.0 -0.5 min bare STO -1.0 --0.5 0.5 1.0 2.0 -1.0 0.0 1.5 $k_x (Å^{-1})$

Phys. Rev. Lett. **110**, 247601 (2013) cf. also: Cancellieri et al., arXiv:1307.6943

UNIVERSITÄT WÜRZBURG

dynamical equilibrium?

but:

- 2uc samples charge up
- no variation on changing photon flux
- band bending seen in other systems, e.g., LaCrO₃/STO

Yun Li et al., PRB 84, 245307 (2011)

cf. also: Zhong et al., PRB **82**, 165127 (2010) Bristowe et al., PRB **83**, 205405 (2011) Pavlenko et al., PRB **86**, 064431 (2012) Yu and Zunger, arXiv:1402.0895

- modified el. reconstruction scenario
- critical thickness, if for each O_{vac} formation energy < discharge energy

WURZBURG Sources and further reading

Most of the first part has been taken from the following sources:

Internet

- www.physik.uni-wuerzburg.de/EP4/teaching/Cargese2005/cargese.php and LesHouches2014 (coming soon) (by R. Claessen, U Würzburg)
- www-bl7.lbl.gov/BL7/who/eli/SRSchoolER.pdf (by E. Rotenberg, Advanced Light Source)
- www.physics.ubc.ca/~quantmat/ARPES/PRESENTATIONS/Lectures/CIAR2003.pdf (by A. Damascelli, U British Columbia)

Books

- S. Hüfner, *Photoelectron Spectroscopy Principles and Applications, 3rd ed.* (Berlin, Springer, 2003)
- W. Schattke, M.A. van Hove (eds.), *Solid-State Photoemission and Related Methods Theory and Experiment* (Weinheim, Wiley-VCH, 2003)
- S. Suga, A. Sekiyama, Photoelectron Spectroscopy Bulk and Surface Electronic Structures (Berlin, Springer, 2014)

Review articles

- F. Reinert and S. Hüfner, New Journal of Physics **7**, 97 (2005)
- A. Damascelli, Physica Scripta **T109**, 61 (2004)
- S. Hüfner *et al.*, J. Electron Spectrosc. Rel. Phen. **100**, 191 (1999)

For the second part look up references in the lecture notes "DMFT at 25: Infinite Dimensions".