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The Hubbard model
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1.4 Michael Potthoff

2 The cluster approach

Tiling the lattice into small clusters

We start with the second question and consider a simple non-interacting system given by

H
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Here, c†i� creates an electron with spin � =", # at the site i of a D-dimensional lattice, and tij
are the (spin-independent) hopping parameters which are also considered as the elements of the
hopping matrix t. Furthermore,
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denotes the Hamiltonian of the system with decoupled clusters (see Fig. 1 and take H
1

= 0). If
L is the number of lattice sites in the original lattice model H

0

and L
c

is the number of sites in an
individual cluster, there are L/L

c

decoupled clusters. We assume that all clusters are identical.
In terms of hopping matrices, we have

t = t0 + V (4)

where V is the inter-cluster hopping.
Consider the resolvent of the hopping matrix, i.e. the Green’s function

G
0

(!) =
1

! + µ� t
. (5)

Here, ! is a complex frequency (units with ~ = 1 are used). We have also introduced the
chemical potential µ (which is not important here but used later). Furthermore, we employ a
matrix notation and write ! rather than !1 for short etc. Note the (· · · )�1 and 1/(· · · ) means
matrix inversion.
Having the Green’s function of the reference system at hand,
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, (6)

how can be get the Green’s function of the original model? With some algebra, one easily
derives the equation

G
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0

(!) +G0
0

(!)V G
0

(!) (7)

which is solved by

G
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G0
0

(!)�1 � V
. (8)

We see that using Green’s functions it is formally rather easy to couple a system of isolated
clusters.

Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1
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U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)
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kinetic and potential energy 

interaction energy 

Why consider the Hubbard model ?

• generic many-body problem

• fermion statistics (second quant.)

• lattice model (vs. impurity model)

• Coulomb interaction

• most simple setup for the 

“correlation problem” 
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1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.

• strong finite-size artefacts

• all excitations gapped

• no phase transitions 

no phase diagrams

:-(



phase diagram of high-TC materials

the high-TC problem, 10 years ago

From the microscopic physics of a cluster 
to the macroscopic world of solids

TP I

Relevante Fragen

1. Was ist der Mechanismus der Paarbildung?
Antiferromagnetismus

2. Wie bildet sich der makroskopische
supraleitende Zustand?

?
*T

Tc

What we were
able to do ...

... where we wanted to go ...

!!x" becomes a straight line between the two boundaries of
the phase-separation region x1 and x2.24 Whether the exact
ground state supports phase separation can be derived from
the finite-size scaling of the doping discontinuity "x#x2
−x1, see Table I. Unfortunately, no regular finite-size behav-
ior can be inferred from Fig. 2 and Table I for hole doping,
probably due to the fact that the clusters are still too small.
Opposed to the clear trend visible for the electron-doped case
!see Table I", there is a much weaker Lc dependence of the
discontinuities "x, "M, and "D, which we rather interpret
as being irregular. However, our results do not exclude mi-
croscopic phase separation to persist for Lc→#. The inclu-
sion of long-range Coulomb interaction would then be nec-
essary in order to “frustrate” the phase separation occurring
in the plain Hubbard model and produce microscopic inho-
mogeneous phases, such as stripes.23,27,28 We stress that at
this point only qualitative estimates for Lc→# rather than a
convincing finite-size scaling are possible. For a discussion
on these issues see, e.g., Refs. 24–26.

The situation is quite different in the electron-doped case
!see Fig. 3". Here, not only the phase-separation energy "!,

but also the doping discontinuity "x appears to vanish for
Lc→#. In fact, "! is already an order of magnitude smaller
than for hole doping in the Lc=4 cluster.8 In addition, already
for Lc=10 the transition from the AF+SC to the pure SC
phase has become continuous at least within numerical accu-
racy. In this case, the weak phase separation observed at the
mean-field level for small clusters was simply a signal of a
tendency of the system to produce microscopically inhomo-
geneous phases !such as stripes", as conjectured in Ref. 8.
The fact that the corresponding energy scale is already very
small for a small cluster could explain why there is no clear
sign of stripes in electron-doped materials and could possibly
be related to the much smaller pseudogap energy scale, as
discussed in Refs. 8 and 9.

Contrary to the phase-separation energy, the AF and SC
order parameters M and D plotted in Fig. 4 only display a
rather weak cluster-size dependence. This shows that already
a small 2$2 cluster describes the static ground-state quan-

FIG. 2. !Color online" Chemical potential ! as function of hole
doping x. Results for Lc=4 !2$2", Lc=8 !4$2", and Lc=10 clus-
ters. The horizontal dashed lines mark the critical !c, and the ver-
tical dotted lines mark the boundaries x1 and x2 of the phase sepa-
ration region in between.

TABLE I. Discontinuities "x, "M, and "D across the PS region
for hole and electron doping.

h-Doping "x "M "D

Lc=4 0.115 0.717 0.055
Lc=8 0.094 0.699 0.043
Lc=10 0.056 0.568 0.032

e-Doping "x "M "D

Lc=4 0.079 0.476 0.016
Lc=8 0.020 0.316 0.004
Lc=10 0.000 0.000 0.000

FIG. 3. !Color online" Same as Fig. 2 but for electron doping.
Note that there is no phase separation for Lc=10; the dotted line
marks the quantum critical point.

FIG. 4. !Color online" Magnetization M and d-wave order
parameter D as functions of hole and electron doping for Lc=4, 8,
and 10.

AICHHORN et al. PHYSICAL REVIEW B 74, 235117 !2006"

235117-4

... and what could be achieved
(© W. Hanke)
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1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.

• solve the cluster problem exactly

• use the solution to reconstruct 

the solution for the full problem 
(this is approximate !)


• find a clever way how to do this 
step (“embedding problem”)


• Machiavelli: “divide et impera”? 

• Goethe: “verein und leite”!

:-)
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original system reference system

hopping matrix t hopping matrix t’ inter-cluster hopping V

t = t0 +V treat this term 

perturbatively !



“free” systems and Green’s functions

• free system: 
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2 The cluster approach

Tiling the lattice into small clusters

We start with the second question and consider a simple non-interacting system given by
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Here, c†i� creates an electron with spin � =", # at the site i of a D-dimensional lattice, and tij
are the (spin-independent) hopping parameters which are also considered as the elements of the
hopping matrix t. Furthermore,
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denotes the Hamiltonian of the system with decoupled clusters (see Fig. 1 and take H
1

= 0). If
L is the number of lattice sites in the original lattice model H

0

and L
c

is the number of sites in an
individual cluster, there are L/L

c

decoupled clusters. We assume that all clusters are identical.
In terms of hopping matrices, we have

t = t0 + V (4)

where V is the inter-cluster hopping.
Consider the resolvent of the hopping matrix, i.e. the Green’s function

G
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. (5)

Here, ! is a complex frequency (units with ~ = 1 are used). We have also introduced the
chemical potential µ (which is not important here but used later). Furthermore, we employ a
matrix notation and write ! rather than !1 for short etc. Note the (· · · )�1 and 1/(· · · ) means
matrix inversion.
Having the Green’s function of the reference system at hand,
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how can be get the Green’s function of the original model? With some algebra, one easily
derives the equation
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which is solved by
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We see that using Green’s functions it is formally rather easy to couple a system of isolated
clusters.
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L is the number of lattice sites in the original lattice model H
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and L
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is the number of sites in an
individual cluster, there are L/L
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decoupled clusters. We assume that all clusters are identical.
In terms of hopping matrices, we have

t = t0 + V (4)

where V is the inter-cluster hopping.
Consider the resolvent of the hopping matrix, i.e. the Green’s function
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Here, ! is a complex frequency (units with ~ = 1 are used). We have also introduced the
chemical potential µ (which is not important here but used later). Furthermore, we employ a
matrix notation and write ! rather than !1 for short etc. Note the (· · · )�1 and 1/(· · · ) means
matrix inversion.
Having the Green’s function of the reference system at hand,
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, (6)

how can be get the Green’s function of the original model? With some algebra, one easily
derives the equation
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(!)V G
0

(!) (7)

which is solved by
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We see that using Green’s functions it is formally rather easy to couple a system of isolated
clusters.
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CPT using Green’s functions

• “free” CPT equation: 

• CPT equation:
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Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1

=

U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)

(exact)

(approximate)

Gros, Valenti (1993), Senechal et al. (2000)

CPT:

• provides interacting G for (almost) arbitrarily large systems (large L)

• (in principle) controlled by 1/LC (with LC: number of cluster sites)

• with LC=1, this is the “Hubbard-I approximation” 


Hubbard (1963)



CPT in practice

• compute Green’s function of the reference system, e.g., by exact diag.:

• CPT equation:
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with

• solve by matrix inversion for any frequency:


G(!) =
1

G0(!)�1 � V

� = 1/T

• partition function

Z 0 =
X

m

e��E0
m

G0
ij�(!) =

1

Z 0

X

mn

(e��E0
m + e��E0

n)hm0|ci�|n0ihn0|c†j�|m0i
! � (E0

n � E0
m)

(H 0 � µN)|n0i = E0
n|n0i



CPT in practice (cntd.)

1.2 Michael Potthoff

1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.

• make use of translational symmetry (if present):


I: cluster index

i:  site within a cluster

k: wave vector of 

   reciprocal superlattice VIJ,ij = VI�J,ij 7! Vij(k)

Gk(!) =
1

G0
k(!)

�1 � V (k)



a big drawback of the CPT
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with the modified inter-cluster hopping eV = t � et0 = V � �t0. G
0

(!) can be considered as
the limit of a geometrical series that is found by iterating equation (19):

G
0

(!) = eG0
(!) + eG0

(!) eV eG0
(!) + · · · . (20)

We infer that G
0

(!) can be obtained by (all-order) perturbation theory in eV when expanding
around the Green’s function of the modified reference system given by the hopping matrix et0.
Obviously, the same result is obtained by perturbation theory in V around the Green’s function
of the modified reference system with hopping matrix t0. This freedom in choosing the starting
point for perturbation theory that we have in the non-interacting case turns into a real problem
for the interacting case. Namely, since the CPT equation (10) is approximate, we generally
have:

eG(!) ⌘ eG0
(!) + eG0

(!) eV eG0
(!) + · · · 6= G0

(!) +G0
(!)V G0

(!) + · · · ⌘ G(!) . (21)

Concluding, different starting points, t0 and et0, for the all-order cluster perturbation theory, in
V and eV , lead to different results, G(!) and eG(!), respectively.
But which is the “right” starting point? The idea is to turn the problem into an advantage by
“optimizing” the starting point: This can be done by making use of a variational principle, i.e.
by expressing a thermodynamical potential, e.g. the grand potential ⌦, as a function of t0 and
by subsequent minimization. The optimal t0

opt

shall be obtained by

@⌦(t0)
@t0

�����
t0=t0

opt

!

= 0 . (22)

We see that the set of variational parameters is just the set of hopping parameters of the reference
systems or, in the case of multi-orbital models, simply the set of all one-particle parameters
except for those, of course, that would couple the different clusters. This set also includes a
staggered magnetic field

H
0

(

et0) = H
0

(t0)� B0 X

i

zi(ni" � ni#) , (23)

where zi = ±1 alternates between the sites of a bipartite lattice.

The Ritz principle?

The most popular variational principle is the Ritz variational principle. It states that

E[| i] = h |H| i = min. (24)

for the ground state of H when the search extends over all normalized trial states h | i = 1.
Evaluated at the ground state | 

0

i, the functional yields the ground-state energy E[| 
0

i] = E
0
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1.4 Michael Potthoff

2 The cluster approach

Tiling the lattice into small clusters

We start with the second question and consider a simple non-interacting system given by

H
0

=

X

ij�

tijc
†
i�cj� = H

0

(t) . (2)

Here, c†i� creates an electron with spin � =", # at the site i of a D-dimensional lattice, and tij
are the (spin-independent) hopping parameters which are also considered as the elements of the
hopping matrix t. Furthermore,

H 0
0

=

X

ij�

t0ijc
†
i�cj� = H

0

(t0) , (3)

denotes the Hamiltonian of the system with decoupled clusters (see Fig. 1 and take H
1

= 0). If
L is the number of lattice sites in the original lattice model H

0

and L
c

is the number of sites in an
individual cluster, there are L/L

c

decoupled clusters. We assume that all clusters are identical.
In terms of hopping matrices, we have

t = t0 + V (4)

where V is the inter-cluster hopping.
Consider the resolvent of the hopping matrix, i.e. the Green’s function

G
0

(!) =
1

! + µ� t
. (5)

Here, ! is a complex frequency (units with ~ = 1 are used). We have also introduced the
chemical potential µ (which is not important here but used later). Furthermore, we employ a
matrix notation and write ! rather than !1 for short etc. Note the (· · · )�1 and 1/(· · · ) means
matrix inversion.
Having the Green’s function of the reference system at hand,

G0
0

(!) =
1

! + µ� t0
, (6)

how can be get the Green’s function of the original model? With some algebra, one easily
derives the equation

G
0

(!) = G0
0

(!) +G0
0

(!)V G
0

(!) (7)

which is solved by

G
0

(!) =
1

G0
0

(!)�1 � V
. (8)

We see that using Green’s functions it is formally rather easy to couple a system of isolated
clusters.
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V = t� t0

• original system

Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1

=

U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)

• reference system
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1.2 Michael Potthoff

1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +
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(t0) +H
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Fig. 2: Grand potential ⌦ as a function of a Weiss field B0 in the case of a paramagnet (P)
and in the case of an antiferromagnet (AF). B0 is a fictitious staggered field, the optimal value
of which (B0

opt

) must be determined by minimization of ⌦. As there is no physically applied
staggered field, i.e. B = 0, a finite B0

opt

indicates spontaneous symmetry breaking.

sufficient to describe the emergence of new phases with broken symmetries.
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The purpose of this lecture is to show how this can be achieved in practice. To this end we have
to answer the following “how to” questions:

• How can we solve the problem for an isolated cluster?

• With this at hand, how can we construct a solution for the problem on the infinite lattice?

• How can we construct the relation ⌦(B0
) such that Eq. (1) determines B0
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?

Actually, there is no reason to consider only a staggered magnetic field as a Weiss field. An-
other goal is therefore to generalize the idea to arbitrary Weiss fields or to an arbitrary set
of variational parameters �0 that characterize the isolated cluster and that are optimized via
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)/@�0 !

= 0. Finally, the VCA should be compared with other theories available and the
practical as well as principal limitations have to be discussed.

Q: how to find the “right” field ?

A: the optimal field should

minimize the grand potential !
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with the modified inter-cluster hopping eV = t � et0 = V � �t0. G
0

(!) can be considered as
the limit of a geometrical series that is found by iterating equation (19):

G
0

(!) = eG0
(!) + eG0

(!) eV eG0
(!) + · · · . (20)

We infer that G
0

(!) can be obtained by (all-order) perturbation theory in eV when expanding
around the Green’s function of the modified reference system given by the hopping matrix et0.
Obviously, the same result is obtained by perturbation theory in V around the Green’s function
of the modified reference system with hopping matrix t0. This freedom in choosing the starting
point for perturbation theory that we have in the non-interacting case turns into a real problem
for the interacting case. Namely, since the CPT equation (10) is approximate, we generally
have:
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(!) eV eG0
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Concluding, different starting points, t0 and et0, for the all-order cluster perturbation theory, in
V and eV , lead to different results, G(!) and eG(!), respectively.
But which is the “right” starting point? The idea is to turn the problem into an advantage by
“optimizing” the starting point: This can be done by making use of a variational principle, i.e.
by expressing a thermodynamical potential, e.g. the grand potential ⌦, as a function of t0 and
by subsequent minimization. The optimal t0
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shall be obtained by
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We see that the set of variational parameters is just the set of hopping parameters of the reference
systems or, in the case of multi-orbital models, simply the set of all one-particle parameters
except for those, of course, that would couple the different clusters. This set also includes a
staggered magnetic field

H
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et0) = H
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(t0)� B0 X

i

zi(ni" � ni#) , (23)

where zi = ±1 alternates between the sites of a bipartite lattice.

The Ritz principle?

The most popular variational principle is the Ritz variational principle. It states that

E[| i] = h |H| i = min. (24)

for the ground state of H when the search extends over all normalized trial states h | i = 1.
Evaluated at the ground state | 

0

i, the functional yields the ground-state energy E[| 
0

i] = E
0

.

E(t0) = min.
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Hence, a straightforward idea that suggests itself is to compute the normalized ground state
| (t0)i of a reference system with hopping matrix t0 and to use this as a trial state. The trial
state can be varied by varying the parameters t0, and the optimal parameters are given by

@E[| (t0)i]
@t0
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t0=t0
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= 0 . (25)

To test this idea, let
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be the ground state of H 0
= H

0

(t0) + H
1

. It is given as a product of the ground states of the
L/L

c

individual clusters where the ground state of the I-th cluster with hopping matrix t0I is
| I(t0I)i. Now, if E

0

(t0) denotes the ground-state energy of the reference system,

E[| (t0)i] = h (t0)|(H
0

(t0) +H
0

(V ) +H
1

)| (t0)i = E
0

(t0) + h (t0)|H
0

(V )| (t0)i . (27)

However, the inter-cluster hopping Hamiltonian H
0

(V ) only contains terms like c†i�cj� where
the sites i and j belong to different clusters, say I and J . Hence, h (t0)|c†i�cj�| (t0)i =

h I(t0I)| ⌦ h J(t0J)|c†i�cj�| J(t0J)i ⌦ | I(t0I)i = h I(t0I)|c†i�| I(t0I)ih J(t0J)|cj�| J(t0J)i = 0

as enforced by the conservation of the total particle number. This means that we are left
E[| (t0)i] = E

0

(t0). As this implies that the optimal parameters t0
opt

do not at all depend
on V , the result is trivial and useless, unfortunately. Even worse, the Hellmann-Feynman theo-
rem [21] tells us that
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@t0

| (t0)i . (28)

This means that, using the Ritz principle, the variational parameters should be determined such
that all one-particle intra-cluster correlation functions hc†ci, in addition to the inter-cluster cor-
relation functions, vanish.
Concluding, optimizing cluster-perturbation theory cannot be done with the help of the Ritz
principle. We mention in passing that this also holds for its finite-temperature and mixed state
generalization [22, 23]

⌦[⇢] = tr
⇣
⇢(H � µN + T ln ⇢)

⌘
!

= min. , (29)

where the grand potential, expressed as a functional of the density matrix, is at a minimum for
the thermal density matrix ⇢ = exp(��(H � µN))/tr exp(��(H � µN)). While this is an
extremely useful variational principle, it cannot be used here: A trial density matrix ⇢(t0), de-
fined as the thermal density matrix of a reference system with a hopping matrix t0 that describes
decoupled clusters, is a simple product of individual cluster density matrices only. As for the
standard Ritz principle, this implies that inter-cluster one-particle correlations are neglected
altogether.

E(t0) ⌘ E[| (t0)i]

define: optimal parameters:
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for decoupled clusters as a reference and with Hellmann-Feynman theorem:

• optimal parameters do not depend on V

• for optimal parameters: all one-particle correlations vanish

this yields:
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with the modified inter-cluster hopping eV = t � et0 = V � �t0. G
0

(!) can be considered as
the limit of a geometrical series that is found by iterating equation (19):
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We infer that G
0

(!) can be obtained by (all-order) perturbation theory in eV when expanding
around the Green’s function of the modified reference system given by the hopping matrix et0.
Obviously, the same result is obtained by perturbation theory in V around the Green’s function
of the modified reference system with hopping matrix t0. This freedom in choosing the starting
point for perturbation theory that we have in the non-interacting case turns into a real problem
for the interacting case. Namely, since the CPT equation (10) is approximate, we generally
have:
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Concluding, different starting points, t0 and et0, for the all-order cluster perturbation theory, in
V and eV , lead to different results, G(!) and eG(!), respectively.
But which is the “right” starting point? The idea is to turn the problem into an advantage by
“optimizing” the starting point: This can be done by making use of a variational principle, i.e.
by expressing a thermodynamical potential, e.g. the grand potential ⌦, as a function of t0 and
by subsequent minimization. The optimal t0
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We see that the set of variational parameters is just the set of hopping parameters of the reference
systems or, in the case of multi-orbital models, simply the set of all one-particle parameters
except for those, of course, that would couple the different clusters. This set also includes a
staggered magnetic field
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where zi = ±1 alternates between the sites of a bipartite lattice.
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This means that, using the Ritz principle, the variational parameters should be determined such
that all one-particle intra-cluster correlation functions hc†ci, in addition to the inter-cluster cor-
relation functions, vanish.
Concluding, optimizing cluster-perturbation theory cannot be done with the help of the Ritz
principle. We mention in passing that this also holds for its finite-temperature and mixed state
generalization [22, 23]
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decoupled clusters, is a simple product of individual cluster density matrices only. As for the
standard Ritz principle, this implies that inter-cluster one-particle correlations are neglected
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This means that, using the Ritz principle, the variational parameters should be determined such
that all one-particle intra-cluster correlation functions hc†ci, in addition to the inter-cluster cor-
relation functions, vanish.
Concluding, optimizing cluster-perturbation theory cannot be done with the help of the Ritz
principle. We mention in passing that this also holds for its finite-temperature and mixed state
generalization [22, 23]
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where the grand potential, expressed as a functional of the density matrix, is at a minimum for
the thermal density matrix ⇢ = exp(��(H � µN))/tr exp(��(H � µN)). While this is an
extremely useful variational principle, it cannot be used here: A trial density matrix ⇢(t0), de-
fined as the thermal density matrix of a reference system with a hopping matrix t0 that describes
decoupled clusters, is a simple product of individual cluster density matrices only. As for the
standard Ritz principle, this implies that inter-cluster one-particle correlations are neglected
altogether.
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and

TrA ⌘ 1

�

X

n

X

i�

ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have
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= � 1

�
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Therewith, we can also calculate the functional derivative of ⌦[⌃]:
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reminder: perturbation theory

Variational Cluster Approximation 1.9

3 Diagrammatic perturbation theory

S-matrix and Green’s function

As we have already seen, Green’s functions, opposed to wave functions or density matrices, can
be used to couple isolated clusters. All-order perturbation theory in the inter-cluster hopping
V yields the exact Green’s function in the non-interacting (U = 0) case and an approximate
(CPT) Green’s function for U > 0. For the necessary optimization of the starting point, i.e. of
the intra-cluster one-particle parameters t0, we should therefore try to formulate a variational
principle based on Green’s functions, i.e. a principle of the form �⌦[G(!)]/�G(!)

!

= 0, and try
“test Green’s functions” G0

(!) taken from the reference system. In fact, a variational principle
of this type can be constructed with the help of all-order perturbation theory in U [24, 25].
Vice versa, a systematic and general perturbation theory in U (and also in V ) requires to put
Green’s functions in the focus of the theory. Here, a brief sketch is given only, details can be
found in Refs. [25–27], for example. Our goal is to use diagrammatic perturbation theory as a
“language” that can be used to formulate a Green’s-function-based variational principle.
We decompose the (grand-canonical) Hamiltonian H ⌘ H � µN into a “free” part H

0

=

H
0

� µN and the interaction H
1

⌘ H �H
0

. Next we define, for 0  ⌧, ⌧ 0  �, the so-called
S-matrix as

S(⌧, ⌧ 0) = eH0

⌧e�H(⌧�⌧ 0)e�H
0

⌧ 0 , (30)

One may interpret ⌧ = it as an “imaginary-time” variable (where t is real). This “Wick rotation”
in the complex time plane has the formal advantage that the thermal density matrix, / e��H, is
just given by the time-evolution operator, e�iHt

= e�H⌧ at ⌧ = �.
There are two main purposes of the S-matrix. First, it can be used to rewrite the partition
function in the following way:

Z = tr e��H
= tr

�
e��H

0e�H0e��H�
= tr

�
e��H

0S(�, 0)
�
= Z

0

hS(�, 0)i(0) . (31)

The partition function of the interacting system is thereby given in terms of the partition function
of the free system, which is known, and a free thermal expectation value of the S-matrix. The
second main purpose is related to the imaginary-time Green’s function which, for �� < ⌧ < �,
is defined via

Gij�(⌧) = �hT ci�(⌧)c
†
j�(0)i (32)

in terms of an annihilator and a creator with imaginary Heisenberg time dependence:

ci�(⌧) = eH⌧ci�e
�H⌧ , c†j�(⌧) = eH⌧c†j�e

�H⌧ . (33)

Furthermore, T is the (imaginary) time-ordering operator. With the help of the S-matrix the
interacting time dependence can be transformed into a free time dependence, namely:

ci�(⌧) = S(0, ⌧)cI,i�(⌧)S(⌧, 0) , c†j�(⌧) = S(0, ⌧)c†I,j�(⌧)S(⌧, 0) . (34)
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Here, the index I (“interaction picture”) indicates that the time dependence is due to H
0

only.
This time dependence is simple and can be derived with the Baker-Campbell-Hausdorff formula
again:

cI,i�(⌧) =
X

j

�
e�(t�µ)⌧

�
ij
cj� , c†I,i�(⌧) =

X

j

�
e+(t�µ)⌧

�
ij
c†j� . (35)

Outside the imaginary-time interval �� < ⌧ < �, the Green’s function is defined as the periodic
continuation: Gij�(⌧ + k · 2�) = Gij�(⌧) for any integer k. This function has a discrete Fourier
representation:

Gij�(⌧) =
1

�

1X

n=�1
Gij�(i!n) e

�i!n⌧ , (36)

where the Fourier coefficients Gij�(i!n) are defined at the so-called fermionic Matsubara fre-
quencies i!n = i(2n+ 1)⇡/� for integer n and can be computed from Gij�(⌧) as

Gij�(i!n) =

Z �

0

d⌧ Gij�(⌧) e
i!n⌧ . (37)

The Green’s function Gij�(⌧) is just a different representation of the Green’s function Gij�(!)

introduced with Eq. (11) as its Fourier coefficients are given by Gij�(i!n) = Gij�(!)|!=i!n .
The remaining problem consists in finding a much more suitable representation of the S-matrix.
From its definition one straightforwardly derives the following equation of motion:

� @

@⌧
S(⌧, ⌧ 0) = H

1,I(⌧)S(⌧, ⌧
0
) . (38)

Here, the time dependence of H
1,I(⌧) is due to H

0

only. A formal solution of this differential
equation with the initial condition S(⌧, ⌧) = 1 can be derived easily using the time-ordering
operator T again:

S(⌧, ⌧ 0) = T exp

✓
�
Z ⌧

⌧ 0
d⌧ 00H

1,I(⌧
00
)

◆
. (39)

Note, that if all quantities were commuting, the solution of Eq. (38) would trivially be given by
Eq. (39) without T . The appearance of T can therefore be understood as necessary to enforce
commutativity.
Using this S-matrix representation, the partition function and the Green’s function can be writ-
ten as:
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D
T exp
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and
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D
T exp
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1,I(⌧)

⌘
cI,i�(⌧)c
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⌘E
(0)

. (41)

The important point is that the expectation values and time dependencies appearing here are
free and thus known. Therefore, expanding the exponentials in Eq. (40) and Eq. (41) provides
an expansion of the partition function and of the Green’s function in powers of the interaction
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The remaining problem consists in finding a much more suitable representation of the S-matrix.
From its definition one straightforwardly derives the following equation of motion:
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Note, that if all quantities were commuting, the solution of Eq. (38) would trivially be given by
Eq. (39) without T . The appearance of T can therefore be understood as necessary to enforce
commutativity.
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The important point is that the expectation values and time dependencies appearing here are
free and thus known. Therefore, expanding the exponentials in Eq. (40) and Eq. (41) provides
an expansion of the partition function and of the Green’s function in powers of the interaction
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3 Diagrammatic perturbation theory

S-matrix and Green’s function

As we have already seen, Green’s functions, opposed to wave functions or density matrices, can
be used to couple isolated clusters. All-order perturbation theory in the inter-cluster hopping
V yields the exact Green’s function in the non-interacting (U = 0) case and an approximate
(CPT) Green’s function for U > 0. For the necessary optimization of the starting point, i.e. of
the intra-cluster one-particle parameters t0, we should therefore try to formulate a variational
principle based on Green’s functions, i.e. a principle of the form �⌦[G(!)]/�G(!)

!

= 0, and try
“test Green’s functions” G0

(!) taken from the reference system. In fact, a variational principle
of this type can be constructed with the help of all-order perturbation theory in U [24, 25].
Vice versa, a systematic and general perturbation theory in U (and also in V ) requires to put
Green’s functions in the focus of the theory. Here, a brief sketch is given only, details can be
found in Refs. [25–27], for example. Our goal is to use diagrammatic perturbation theory as a
“language” that can be used to formulate a Green’s-function-based variational principle.
We decompose the (grand-canonical) Hamiltonian H ⌘ H � µN into a “free” part H

0

=

H
0

� µN and the interaction H
1

⌘ H �H
0

. Next we define, for 0  ⌧, ⌧ 0  �, the so-called
S-matrix as

S(⌧, ⌧ 0) = eH0

⌧e�H(⌧�⌧ 0)e�H
0

⌧ 0 , (30)

One may interpret ⌧ = it as an “imaginary-time” variable (where t is real). This “Wick rotation”
in the complex time plane has the formal advantage that the thermal density matrix, / e��H, is
just given by the time-evolution operator, e�iHt

= e�H⌧ at ⌧ = �.
There are two main purposes of the S-matrix. First, it can be used to rewrite the partition
function in the following way:

Z = tr e��H
= tr

�
e��H

0e�H0e��H�
= tr

�
e��H

0S(�, 0)
�
= Z

0

hS(�, 0)i(0) . (31)

The partition function of the interacting system is thereby given in terms of the partition function
of the free system, which is known, and a free thermal expectation value of the S-matrix. The
second main purpose is related to the imaginary-time Green’s function which, for �� < ⌧ < �,
is defined via

Gij�(⌧) = �hT ci�(⌧)c
†
j�(0)i (32)

in terms of an annihilator and a creator with imaginary Heisenberg time dependence:

ci�(⌧) = eH⌧ci�e
�H⌧ , c†j�(⌧) = eH⌧c†j�e

�H⌧ . (33)

Furthermore, T is the (imaginary) time-ordering operator. With the help of the S-matrix the
interacting time dependence can be transformed into a free time dependence, namely:

ci�(⌧) = S(0, ⌧)cI,i�(⌧)S(⌧, 0) , c†j�(⌧) = S(0, ⌧)c†I,j�(⌧)S(⌧, 0) . (34)
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is defined via
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H = H � µN = H0 +H1 = H0(t) +H1

• Hamiltonian:

• S-matrix:

• equation of motion:

• formal solution:
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Here, the index I (“interaction picture”) indicates that the time dependence is due to H
0

only.
This time dependence is simple and can be derived with the Baker-Campbell-Hausdorff formula
again:
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Outside the imaginary-time interval �� < ⌧ < �, the Green’s function is defined as the periodic
continuation: Gij�(⌧ + k · 2�) = Gij�(⌧) for any integer k. This function has a discrete Fourier
representation:

Gij�(⌧) =
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1X

n=�1
Gij�(i!n) e

�i!n⌧ , (36)

where the Fourier coefficients Gij�(i!n) are defined at the so-called fermionic Matsubara fre-
quencies i!n = i(2n+ 1)⇡/� for integer n and can be computed from Gij�(⌧) as
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The Green’s function Gij�(⌧) is just a different representation of the Green’s function Gij�(!)

introduced with Eq. (11) as its Fourier coefficients are given by Gij�(i!n) = Gij�(!)|!=i!n .
The remaining problem consists in finding a much more suitable representation of the S-matrix.
From its definition one straightforwardly derives the following equation of motion:
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Here, the time dependence of H
1,I(⌧) is due to H

0

only. A formal solution of this differential
equation with the initial condition S(⌧, ⌧) = 1 can be derived easily using the time-ordering
operator T again:

S(⌧, ⌧ 0) = T exp
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Note, that if all quantities were commuting, the solution of Eq. (38) would trivially be given by
Eq. (39) without T . The appearance of T can therefore be understood as necessary to enforce
commutativity.
Using this S-matrix representation, the partition function and the Green’s function can be writ-
ten as:
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The important point is that the expectation values and time dependencies appearing here are
free and thus known. Therefore, expanding the exponentials in Eq. (40) and Eq. (41) provides
an expansion of the partition function and of the Green’s function in powers of the interaction

• partition function:

• starting point of perturbation theory:

• expand, use Wick’s theorem,  
and then …

• Green’s function

H1,Iwith free time dependence of 

analogously:



diagrammatic perturbation theory

… get, e.g., the second-order contribution to Z/Z0 as: 

• use the linked-cluster theorem, to get the grand potential  
as the sum of connected diagrams only, this yields: ⌦� ⌦0
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skeleton−diagram expansion
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dressed
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h)

e)

g)
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−σ−σ
i

vertex

= +

Dyson’s equation

diagram

Green’s function
reducible

irreducible

self−energy diagram

−Σ =

self−energy

skeletonself−energy insertion

diagram with

Fig. 4: Diagram language for systems with Hubbard interaction. See text for discussion.

As e.g. the first diagram in Fig. 4f shows, there are irreducible self-energy diagrams which
contain self-energy insertions. Diagrams without any self-energy insertion are called skeleton
diagrams. Skeleton diagrams can be “dressed” by replacing in the diagram the free propagators
with interacting propagators (double lines), see Fig. 4g. It is easy to see that the self-energy is
given by the sum of the skeleton diagrams only, provided that these are dressed, see Fig. 4h.
Therewith, the self-energy is given in terms of the interacting Green’s function, ⌃ = ⌃[G].
Only with the help of the diagram language, this very important functional relationship, called
skeleton-diagram expansion, can be defined rigorously. If combined with Dyson’s equation
(44), it provides us with a closed equation

G(i!n) =
1

G
0

(i!n)
�1 �⌃[G](i!n)

(45)

the solution of which is given by the exact Green’s function. It is clear, however, that the
functional ⌃[G] is extremely complicated and actually cannot be given in an explicit form –
even for the most simple models, such as the Hubbard model, and even in cases, like in the case
of a small isolated Hubbard cluster, where a numerical computation of the self-energy and the
Green’s function is easily possible.

Diagrammatic derivation of the CPT

Equipped with the diagrammatic language, let us come back to the central topic. We have
H = H

0

(t0) + H
0

(V ) + H
1

where the reference system H 0
= H

0

(t0) + H
1

is easily solvable
since it consists of decoupled small clusters, and where H

0

(V ) is the inter-cluster hopping.
Ideally, one would start from the solution of H 0 and perform a perturbative treatment of H

0

(V ).
This, however, is not possible (within the above-described standard perturbation theory) as the
starting point H 0 is an interacting system and, therefore, Wick’s theorem does not apply. On
the other hand, nothing prevents us from starting with H

0

(t0) and treating both, the inter-cluster
hopping and the Hubbard interaction, H

0

(V ) and H
1

, as the perturbation.

“renormalization”



renormalization of closed diagrams?

• remove self-energy insertions and replace free by interacting propagators ?
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renormalization?

partial summation of diagrams by renormalization of skeletons ?

...+ + + + + =
?

impossible because of double counting:

?

➜ sum of connected renormalized closed skeleton diagrams ̸= ln Z

– p. 162

• this would imply a double  
counting of diagrams !
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renormalization?

partial summation of diagrams by renormalization of skeletons ?

...+ + + + + =
?

impossible because of double counting:

?

➜ sum of connected renormalized closed skeleton diagrams ̸= ln Z

– p. 162

• don’t care !

• sum all renormalized closed skeleton diagrams  

up to infinite order:
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Luttinger-Ward functional

define (with an additional factor (−T )):

= + + +Φ
Luttinger, Ward (1960)

note: Φ ̸= −T ln Z

what is Φ good for ?

Σ =
1

T

δΦ

δG
IMPORTANT !!!

Φ is like a potential for the self-energy !
——————————————————————————————————————–
proof:

note: Φ = bΦU[G]

– Φ is a functional of the Green’s function
– the functional dependence is fixed by U (and independent of t)
– bΦU[G] is a universal functional

– p. 163

• Luttinger-Ward functional 
(does not give the grand potential)



diagrams: summary

Luttinger-Ward functional:

to be discussed:

• variational principle ?

• grand potential: proof ?

• tr ln (…) term is ill-defined !

= +

= + + +Y−
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Luttinger-Ward functional

define (with an additional factor (−T )):

= + + +Φ
Luttinger, Ward (1960)

note: Φ ̸= −T ln Z

what is Φ good for ?

Σ =
1

T

δΦ

δG
IMPORTANT !!!

Φ is like a potential for the self-energy !
——————————————————————————————————————–
proof:

note: Φ = bΦU[G]

– Φ is a functional of the Green’s function
– the functional dependence is fixed by U (and independent of t)
– bΦU[G] is a universal functional
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self-energy, skeleton-diagram expansion:

Dyson’s equation

grand potential and LW functional:

derivative of the LW funct.:

⌦ = �+ tr lnG� tr(⌃G)

�
��[G]

�Gij�(i!n)
= ⌃ji�(i!n)[G]



variational principle

⌦[G] = �[G] + tr lnG� tr(G�1
0 �G�1)G

�⌦[G]

�G
= 0 ?

�
�

�G

�
�[G] + tr lnG� tr(G�1

0 �G�1)G
�

functional derivative:

functional:

= ⌃[G] +G�1 �G�1
0

�
�⌦[G]

�G
=

�
�⌦[G]

�G
= 0 , ⌃[G] = G�1

0 �G�1

thus:

✔

grand potential:

⌦ = �+ tr lnG� tr(⌃G)



grand potential and LW functional

⌦ = �+ tr lnG� tr(⌃G) ?
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we have:

Σαβ(iωn) =
1

T

δbΦU[G]

δGβα(iωn)

therewith, we ca
n show that

Ω = −T ln Z = Φ + Tr lnG − Tr(ΣG) IMPORTANT !!!

– here: TrX = T
X

n

eiωn0+
X

α

Xαα(iωn)

– relation betwee
n static, thermod

ynamical quantit
y (Ω) and dynam

ic quantities (Σ,G)

– basic equation
for dynamical va

riational principle
(see below)

– double-countin
g correction: Tr l

nG − Tr(ΣG)

——————————————————————————————————————–

proof:
consider the der

ivative w.r.t. µ:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = (1) + (2) + (3)

first term:
∂

∂µ
(1) =

∂

∂µ
Φ =

∂

∂µ
bΦU[G] =

X

αβ

X

n

δbΦU[G]

δGαβ(iωn)

∂Gαβ(iωn)

∂µ

=
X

αβ

T
X

n

Σβα(iωn)
∂Gαβ(iωn)

∂µ
= Tr

„
Σ

∂G

∂µ

«
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α
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– relation betwee
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ic quantities (Σ,G)

– basic equation
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riational principle
(see below)

– double-countin
g correction: Tr l

nG − Tr(ΣG)
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proof:
consider the der

ivative w.r.t. µ:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = (1) + (2) + (3)

first term:
∂

∂µ
(1) =

∂

∂µ
Φ =

∂

∂µ
bΦU[G] =

X

αβ

X

n

δbΦU[G]

δGαβ(iωn)

∂Gαβ(iωn)

∂µ

=
X

αβ

T
X

n

Σβα(iωn)
∂Gαβ(iωn)

∂µ
= Tr

„
Σ

∂G

∂µ

«
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proof, continued

second term:
∂

∂µ
(2) = ∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«
third term:

∂

∂µ
(3) = ∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«
= Tr

»„
G−1 ∂G

∂µ
G−1 − ∂Σ

∂µ

«
G

–

= Tr
»
∂(−G−1 − Σ)

∂µ G

–

= −Tr
"
∂G−1

0

∂µ G

#

with Dyson’s equation G = 1/(G−1
0 − Σ)

= −Tr
»
∂(iωn + µ − t)

∂µ G

–
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——————————————————————————————————————–

proof:
consider the der

ivative w.r.t. µ:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = (1) + (2) + (3)

first term:
∂

∂µ
(1) =

∂

∂µ
Φ =

∂

∂µ
bΦU[G] =

X

αβ

X

n

δbΦU[G]

δGαβ(iωn)

∂Gαβ(iωn)

∂µ

=
X

αβ

T
X

n
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„
Σ
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proof, continued

second term:
∂

∂µ
(2) = ∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«
third term:

∂

∂µ
(3) = ∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«
= Tr

»„
G−1 ∂G

∂µ
G−1 − ∂Σ

∂µ

«
G

–

= Tr
»
∂(−G−1 − Σ)

∂µ G

–

= −Tr
"
∂G−1

0

∂µ G

#

with Dyson’s equation G = 1/(G−1
0 − Σ)

= −Tr
»
∂(iωn + µ − t)

∂µ G

–

– p. 166

XIV Training Course in the Physics of S
trongly Correlated Systems

Salerno, October 2010

———————————————————————————————————————————————————————————————˛

˛

˛

˛

˛

˛

˛

˛

˛

˛proof, continued

second term:
∂

∂µ
(2) =

∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«

third term:
∂

∂µ
(3) =

∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«

hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«

= Tr
»„

G−1 ∂G

∂µ
G−1 −

∂Σ

∂µ

«
G

–

= Tr
»

∂(−G−1 − Σ)

∂µ
G

–

= −Tr
"

∂G
−1
0

∂µ
G

#
with Dyson’s equation G = 1/(G−1

0 − Σ)

= −Tr
»

∂(iωn + µ − t)

∂µ
G

–
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proof, continued

second term:
∂

∂µ
(2) =

∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«

third term:
∂

∂µ
(3) =

∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«

hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«

= Tr
»„

G−1 ∂G

∂µ
G−1 −

∂Σ

∂µ

«
G

–

= Tr
»

∂(−G−1 − Σ)

∂µ
G

–

= −Tr
"

∂G−1
0

∂µ
G

#

with Dyson’s equation G = 1/(G−1
0 − Σ)

= −Tr
»

∂(iωn + µ − t)

∂µ
G

–
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proof, continued

second term:
∂

∂µ
(2) =

∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«

third term:
∂

∂µ
(3) =

∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«

hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«

= Tr
»„

G−1 ∂G

∂µ
G−1 −

∂Σ

∂µ

«
G

–

= Tr
»

∂(−G−1 − Σ)

∂µ
G

–

= −Tr
"

∂G−1
0

∂µ
G

#

with Dyson’s equation G = 1/(G−1
0 − Σ)

= −Tr
»

∂(iωn + µ − t)

∂µ
G
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proof, continued

= −TrG

= −
X

α

T
X

n

eiωn0+
Gαα(iωn)

=
X

α

1

2πi

I

C
dω eω0+

f(ω) Gαα(ω)

=
X

α

1

2πi

Z ∞

−∞
dω eω0+

f(ω) Gαα(ω + i0+)

+
X

α

1

2πi

Z −∞

∞
dω eω0+

f(ω) Gαα(ω − i0+)

=
X

α

1

π
Im
Z ∞

−∞
dω eω0+

f(ω) Gαα(ω + i0+)

= −
X

α

Z ∞

−∞
dω f(ω) Aαα(ω)

= −⟨N⟩

=
∂Ω

∂µ
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proof, continued

second term:
∂

∂µ
(2) =

∂

∂µ
Tr lnG = Tr

„
G−1 ∂G

∂µ

«

third term:
∂

∂µ
(3) =

∂

∂µ
Tr(ΣG) = Tr

„
∂Σ

∂µ
G

«
+ Tr

„
Σ

∂G

∂µ

«

hence:

∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] = Tr

„
G−1 ∂G

∂µ

«
− Tr

„
∂Σ

∂µ
G

«

= Tr
»„

G−1 ∂G

∂µ
G−1 −

∂Σ

∂µ

«
G

–

= Tr
»

∂(−G−1 − Σ)

∂µ
G

–

= −Tr
"

∂G−1
0

∂µ
G

#

with Dyson’s equation G = 1/(G−1
0 − Σ)

= −Tr
»

∂(iωn + µ − t)

∂µ
G
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proof, continued

= −TrG

= −
X

α

T
X

n

eiωn0+
Gαα(iωn)

=
X

α

1

2πi

I

C
dω eω0+

f(ω) Gαα(ω)

=
X

α

1

2πi

Z ∞

−∞
dω eω0+

f(ω) Gαα(ω + i0+)

+
X

α

1

2πi

Z −∞

∞
dω eω0+

f(ω) Gαα(ω − i0+)

=
X

α

1

π
Im
Z ∞

−∞
dω eω0+

f(ω) Gαα(ω + i0+)

= −
X

α

Z ∞

−∞
dω f(ω) Aαα(ω)

= −⟨N⟩

=
∂Ω

∂µ
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proof, continued

so:
∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] =

∂Ω

∂µ

µ → −∞ ➜ no particles in the system ➜ setting U = 0 is exact ➜ Φ,Σ = 0

for µ → −∞:

Tr lnG = Ω (exact representation of the non-interacting grand
potential)

integrating over µ then yields:

Φ + Tr lnG − Tr(ΣG) = Ω

q.e.d.
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so:
∂

∂µ
[Φ + Tr lnG − Tr(ΣG)] =

∂Ω

∂µ

µ → −∞ ➜ no particles in the system ➜ setting U = 0 is exact ➜ Φ,Σ = 0

for µ → −∞:

Tr lnG = Ω (exact representation of the non-interacting grand
potential)

integrating over µ then yields:

Φ + Tr lnG − Tr(ΣG) = Ω

q.e.d.
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proof that               for U=0 

first step:

⌦ = Tr lnG

@

@µ
Tr lnG = � @

@µ
Tr lnG�1 = � @

@µ
Tr ln(i!n + µ� t) = �Tr

1

i!n + µ� t
= �hNi = @⌦

@µ

second step:

⌦ = 0 for µ ! �1 ! need to show that Tr lnG = 0 for µ ! �1

but Tr lnG = �Tr ln(i!n + µ� t) 7! 1

third step:

regularisation needed: Tr lnG 7! Tr lnG�1 = Tr lnG� Tr ln

1

i!n + µ� "0

= Tr ln

i!n + µ� "0
i!n + µ� t

7! Tr ln 1 = 0 for µ 7! �1

✔



regularization

⌦ = �+ tr lnG� tr(⌃G) well-defined ?

G 7! 1

i!n
⇠ 1

2n+ 1
⇠ 1

n

X

n

ln(1/n) ⇠
X

n

n = 1

third term:

second term:

add a (parameter-free) counter term:

tr(⌃G) =
X

ij�

1

�

1X

n=�1
ei!n0

+

⌃ij�(i!n)Gji�(i!n) ⇠
X

n

ei!n0
+ 1

i!n
⇠

X

n

ei2n0
+ 1

n
< 1

⌦ 7! ⌦� 1

�

X

n

ln
1

i!n + µ� "0
with "0 7! 1 eventually

• infinite constant

• regularizes the tr ln (…) term

• all calculations unchanged



the general strategy

⌦[G]H 0 = H0(t
0) +H1

Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1

=

U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)

t0

V = t� t0

CPT with parameter optimization: 
G0(!)

1.2 Michael Potthoff

1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.

1.2 Michael Potthoff

1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.

Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1

=

U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)

CPT:

@

@t0
⌦[G] = 0 ?

more precisely: @

@t0
⌦[(G0�1 � V )�1] = 0



variational principle based on G ?

⌦[G]H 0 = H0(t
0) +H1

Variational Cluster Approximation 1.5

Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H
0

, the only
possible local interaction is a Hubbard interaction of the form

H
1

=

U

2

X

i�

ni�ni�� (9)

with ni� = c†i�ci� and where U is the interaction strength. Since H
1

is completely local, the
Hamiltonian of the so-called “reference system” H 0

= H
0

(t0)+H
1

is obtained form the Hamil-
tonian of the “original system” H = H

0

(t) + H
1

by switching off the inter-cluster hopping
V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary)
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(!) = G0
(!) +G0

(!)V G(!) (10)

where now G and G0 are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size L

c

of the clusters in the reference system since for
L
c

! 1 one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10) which provides an approxi-
mate expression for G(!), let us give the exact definition of the Green’s function for the inter-
acting case. Its elements are defined as

Gij�(!) =

Z 1

�1
dz

Aij�(z)

! � z
, (11)

where ! is an arbitrary complex frequency and where

Aij�(z) =

Z 1

�1
dt eiztAij�(t) (12)

is the single-particle spectral density whose Fourier transform

Aij�(t) =
1

2⇡
h[ci�(t), c†j�(0)]+i (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ci�(t) = ei(H�µN)tci�e
�i(H�µN)t (14)

t0

CPT with parameter optimization: 
G0(!)

@

@t0
⌦[G] = 0 ?

conditional equation for the parameters t’:

this must be rejected since:

• it is ugly

• DMFT cannot be reproduced 

- DMFT: Gloc=G’loc , but there is also a “bath” 
- if at all, then (G-1)loc=(G’-1)loc  … see below

0 =
@

@t0
⌦[(G0�1 � V )�1] =

�⌦

�G
· @G
@t0

=
�
⌃0 +G�1 �G�1

0

� @G
@t0

⌦[G] = �[G] + tr lnG� tr(G�1
0 �G�1)G

recall:

= ⌃[G] +G�1 �G�1
0�

�⌦[G]

�G
=



new strategy

H 0 = H0(t
0) +H1t0

parameter optimization: 

1.2 Michael Potthoff
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Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and
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�

X

n

X
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ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have
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�⌃
= � 1

�
G[⌃] . (53)

Therewith, we can also calculate the functional derivative of ⌦[⌃]:
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The equation

G[⌃] =

1

G�1

0

�⌃
(55)

is a (highly non-linear) conditional equation for the self-energy of the system H = H
0

(t)+H
1

.
Inserting ⌃ = ⌃[G] shows that it is (locally) equivalent to Eq. (45). It is satisfied by the exact
self-energy of the system. Therefore, solving Eq. (55) is equivalent to a search for the stationary
point of the self-energy functional:

�⌦[⌃]

�⌃
= 0 . (56)

This represents the dynamical variational principle we have been looking for. The exact self-
energy of the system makes the self-energy functional ⌦[⌃], Eq. (50), stationary.
The definition of the self-energy functional given with Eq. (50) is a formal one only. The ar-
gument of the ln is not dimensionless and furthermore, since G(i!n) / 1/!n / 1/(2n + 1)

for large n, the sum over the Matsubara frequencies,
P
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! 1 after all calculations are done. As the constant
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does not depend on ⌃, the variational principle is unaffected but now the Matsub-
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if evaluated at the physical (exact) self-energy, the regularized ⌦[⌃] � Tr lnG
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is just the
grand potential of the system. This provides us with a physical interpretation of the self-energy
functional. In the following this regularization is always implicit.
As a remark, we note that at U = 0 the self-energy functional reduces to the expression ⌦
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as becomes obvious from the diagrammatic definition of �[G] and of ⌃ since there
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self-energy-functional theory
1.18 Michael Potthoff

Ω = Ω[Σ]

 t

t  space
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Σ = Σ

Ω

Σ

t’

  = 0δ Ω[Σ  ]t’

Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

1.16 Michael Potthoff

= + + +Φ

Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and

TrA ⌘ 1

�

X

n

X

i�

ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have

�F [⌃]

�⌃
= � 1

�
G[⌃] . (53)

Therewith, we can also calculate the functional derivative of ⌦[⌃]:

�⌦[⌃]

�⌃
=

1

�

✓
1

G�1

0

�⌃
�G[⌃]

◆
. (54)

discussion:

• self-energy functional: 

saddle point vs. minimum 

• how to define the domain ?

• where is the original idea of CPT ?

• why not insert an arbitrary  

self-energy ?

• what is the reference system  

good for?

• how to evaluate the functional 

on the restricted domain ?



evaluation of the functional
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The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H
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Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:
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This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the
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prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
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There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not
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The equation

G[⌃] =

1

G�1

0

�⌃
(55)

is a (highly non-linear) conditional equation for the self-energy of the system H = H
0

(t)+H
1

.
Inserting ⌃ = ⌃[G] shows that it is (locally) equivalent to Eq. (45). It is satisfied by the exact
self-energy of the system. Therefore, solving Eq. (55) is equivalent to a search for the stationary
point of the self-energy functional:

�⌦[⌃]

�⌃
= 0 . (56)

This represents the dynamical variational principle we have been looking for. The exact self-
energy of the system makes the self-energy functional ⌦[⌃], Eq. (50), stationary.
The definition of the self-energy functional given with Eq. (50) is a formal one only. The ar-
gument of the ln is not dimensionless and furthermore, since G(i!n) / 1/!n / 1/(2n + 1)

for large n, the sum over the Matsubara frequencies,
P

n ln(2n + 1), does not converge. This
problem can be solved, however, by replacing ⌦[⌃] 7! ⌦[⌃]�Tr lnG

reg

with G�1

reg,ij�(i!n) =

�ij(i!n � "
reg

) and taking the limit "
reg

! 1 after all calculations are done. As the constant
Tr lnG

reg

does not depend on ⌃, the variational principle is unaffected but now the Matsub-
ara sum over both logarithms is well defined and convergent. One can show [24, 25, 3] that,
if evaluated at the physical (exact) self-energy, the regularized ⌦[⌃] � Tr lnG

reg

is just the
grand potential of the system. This provides us with a physical interpretation of the self-energy
functional. In the following this regularization is always implicit.
As a remark, we note that at U = 0 the self-energy functional reduces to the expression ⌦

0

⌘
Tr lnG

0

as becomes obvious from the diagrammatic definition of �[G] and of ⌃ since there
are simply no diagrams left at zero-th order in the interaction strength:

�[G] ⌘ 0 , ⌃(i!n) = 0 for U = 0 . (57)

If regularized properly, ⌦
0

7! ⌦
0

� Tr lnG
reg

, this exactly yields the grand potential of the
non-interacting system.

Evaluation of the self-energy functional

The diagrammatic definition of the Luttinger-Ward functional (Fig. 6) uncovers another remark-
able property: Since any diagram contributing to � consists of vertices and dressed propagators
only, the functional relation �[· · · ] is completely determined by the interaction U but does not
depend on t. Clearly, this “universality” then also holds for its Legendre transform F [⌃]: Two
systems (at the same chemical potential µ and inverse temperature �) with the same interaction
H

1

but different one-particle parameters t and t0 are described by the same functional F [⌃].
Contrary, the first part of the self-energy functional,

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ F [⌃] (58)

does depend on the hopping, namely via G�1

0

(i!n) = i!n + µ � t, but not on the interaction
strength U .
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eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).
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Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
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This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and

TrA ⌘ 1

�

X

n

X

i�

ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have

�F [⌃]

�⌃
= � 1

�
G[⌃] . (53)

Therewith, we can also calculate the functional derivative of ⌦[⌃]:

�⌦[⌃]

�⌃
=

1

�

✓
1

G�1

0

�⌃
�G[⌃]

◆
. (54)
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Luttinger-Ward functional

define (with an additional factor (−T )):

= + + +Φ
Luttinger, Ward (1960)

note: Φ ̸= −T ln Z

what is Φ good for ?

Σ =
1

T

δΦ

δG
IMPORTANT !!!

Φ is like a potential for the self-energy !
——————————————————————————————————————–
proof:

note: Φ = bΦU[G]

– Φ is a functional of the Green’s function
– the functional dependence is fixed by U (and independent of t)
– bΦU[G] is a universal functional
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grand potential of the reference system ⌦0 which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

⌦[⌃t0 ] = ⌦0
+ Tr ln

1

G�1

0

�⌃t0
� Tr ln

1

G0
0

�1 �⌃t0
. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies which are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).

The variational cluster approximation

We recall that the cluster-perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
One example are symmetry breaking Weiss fields, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the “optimal” self-energy from Eq. (61). This optimal self-energy
is the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t0. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H

1

of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies ⌃t0 which are parameterized by the one-particle parameters t0.
As the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61),
the optimal self-energy ⌃t0

opt

is given as the solution of the SFT Euler equation

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

= 0 . (62)

For a cluster reference system, this equation constitutes the variational cluster approximation
(VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire “self-
energy space” (see Fig. 7). The latter could be defined as the set of the self-energies of all
models with the interaction part fixed at H

1

but with an completely arbitrary on-particle part

exact !
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Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not
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grand potential of the reference system ⌦0 which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

⌦[⌃t0 ] = ⌦0
+ Tr ln

1

G�1

0

�⌃t0
� Tr ln

1

G0
0

�1 �⌃t0
. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies which are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).

The variational cluster approximation

We recall that the cluster-perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
One example are symmetry breaking Weiss fields, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the “optimal” self-energy from Eq. (61). This optimal self-energy
is the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t0. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H

1

of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies ⌃t0 which are parameterized by the one-particle parameters t0.
As the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61),
the optimal self-energy ⌃t0

opt

is given as the solution of the SFT Euler equation

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

= 0 . (62)

For a cluster reference system, this equation constitutes the variational cluster approximation
(VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire “self-
energy space” (see Fig. 7). The latter could be defined as the set of the self-energies of all
models with the interaction part fixed at H

1

but with an completely arbitrary on-particle part

Variational Cluster Approximation 1.19

grand potential of the reference system ⌦0 which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

⌦[⌃t0 ] = ⌦0
+ Tr ln

1

G�1

0

�⌃t0
� Tr ln

1

G0
0

�1 �⌃t0
. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies which are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).

The variational cluster approximation

We recall that the cluster-perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
One example are symmetry breaking Weiss fields, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the “optimal” self-energy from Eq. (61). This optimal self-energy
is the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t0. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H

1

of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies ⌃t0 which are parameterized by the one-particle parameters t0.
As the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61),
the optimal self-energy ⌃t0

opt

is given as the solution of the SFT Euler equation

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

= 0 . (62)

For a cluster reference system, this equation constitutes the variational cluster approximation
(VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire “self-
energy space” (see Fig. 7). The latter could be defined as the set of the self-energies of all
models with the interaction part fixed at H

1

but with an completely arbitrary on-particle part

(1) (2) (3)

… get term (1) ?

Z 0 =
X

m

e��E0
m

⌦0 = �T lnZ 0

(H 0 � µN)|n0i = E0
n|n0i

… get term (3) ?

G0
ij�(!) =

1

Z 0

X

mn

(e��E0
m + e��E0

n)hm0|ci�|n0ihn0|c†j�|m0i
! � (E0

n � E0
m)

1

G0
0
�1 �⌃t0

= G0

… get term (2) ? 1

G0
�1 �⌃t0

=
1

G0�1 � V



how to …

Variational Cluster Approximation 1.19

grand potential of the reference system ⌦0 which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

⌦[⌃t0 ] = ⌦0
+ Tr ln

1

G�1

0

�⌃t0
� Tr ln

1

G0
0

�1 �⌃t0
. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies which are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).

The variational cluster approximation

We recall that the cluster-perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
One example are symmetry breaking Weiss fields, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the “optimal” self-energy from Eq. (61). This optimal self-energy
is the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t0. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H

1

of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies ⌃t0 which are parameterized by the one-particle parameters t0.
As the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61),
the optimal self-energy ⌃t0

opt

is given as the solution of the SFT Euler equation

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

= 0 . (62)

For a cluster reference system, this equation constitutes the variational cluster approximation
(VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire “self-
energy space” (see Fig. 7). The latter could be defined as the set of the self-energies of all
models with the interaction part fixed at H

1

but with an completely arbitrary on-particle part

Variational Cluster Approximation 1.19

grand potential of the reference system ⌦0 which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

⌦[⌃t0 ] = ⌦0
+ Tr ln

1

G�1

0

�⌃t0
� Tr ln

1

G0
0

�1 �⌃t0
. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies which are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).

The variational cluster approximation

We recall that the cluster-perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
One example are symmetry breaking Weiss fields, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the “optimal” self-energy from Eq. (61). This optimal self-energy
is the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t0. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H

1

of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies ⌃t0 which are parameterized by the one-particle parameters t0.
As the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61),
the optimal self-energy ⌃t0

opt

is given as the solution of the SFT Euler equation

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

= 0 . (62)

For a cluster reference system, this equation constitutes the variational cluster approximation
(VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire “self-
energy space” (see Fig. 7). The latter could be defined as the set of the self-energies of all
models with the interaction part fixed at H

1

but with an completely arbitrary on-particle part

(1) (2) (3)

… evaluate the Tr ln (…) terms ?

Tr ln
1

G0�1 � V
� Tr lnG0 =

1

�

X

n

ei!n0
+
⇣
tr ln

1

G0�1
(i!n)� V

� tr lnG0(i!n)
⌘

=
1

�

X

n

ei!n0
+

tr ln
1

1� V G0(i!n)

= � 1

�

1X

n=�1
ei!n0

+

tr ln(1� V G0(i!n))

⇠
1X

n=�1
ei!n0

+

ln(1 +O(1/!n)) ⇠
1X

n=�1
ei!n0

+O(1/!n)

converges, and be coded this way, when combining +/- n-terms:

tr ln
⇣
1� V

1

i!n

⌘
+ tr ln

⇣
1 + V

1

i!n

⌘
= tr ln

⇣
1� V

1

i!n

⌘⇣
1 + V

1

i!n

⌘
= O(1/!2

n)



cheap alternative using “Q-matrices”:

do everything analytically: 

Variational Cluster Approximation 1.21

5 Implementation of the variational cluster approximation

Q-matrices

The bottleneck of a practical VCA calculation consists in the computation of the Green’s func-
tion of the reference system. Using an exact-diagonalization technique, the Green’s function for
an individual cluster can be obtained in its Lehmann representation, see Eq. (17). Let ↵ = (i, �)

be an index referring to the elements of the localized orbitals forming an orthonormal basis of
the one-particle Hilbert space. Therewith the elements of the cluster Green’s function can be
written in the form

G0
↵�(!) =

X

m

Q0
↵m

1

! � !0
m

Q0†
m� . (63)

Here, m = (r, s) refers to a single-particle excitation between two energy eigenstates |si and |ri
of the (grand-canonical) Hamiltonian of the reference system H 0�µN , and !0

m = E 0
r�E 0

s is the
excitation energy. Q0

↵m are the elements of the so-called Q0-matrix [41] which is a rectangular
matrix with a small number of rows but a large number of columns (dimension of the one-
particle Hilbert space ⇥ number of many-body excitations):

Q0
↵m = hr|c↵|si

r
exp(��E 0

r) + exp(��E 0
s)

Z 0 , Z 0
=

X

r

e��E0
r , (64)

as is readily read off from the Lehmann representation Eq. (17). One also verifies that Q0Q0†
=

1 6= Q0†Q0. Using the Q0-matrix, we can write the reference system’s Green’s function in a
compact form as

G0
(!) = Q0 1

! �⇤0Q
0† , (65)

where ⇤0 is the diagonal matrix with elements ⇤0
mn = !0

m�mn. With V = t � t0, the Green’s
function of the original system is obtained as:

G(!) =

1

G0
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= G0
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(!) + · · ·
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0†V Q0 1
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= Q0 1

! �M
Q0† , (66)

where M = ⇤0
+Q0†V Q0 is a (large) square Hermitian matrix which can be diagonalized by

a unitary transformation, M = S⇤S†. Here, ⇤mn = !m�mn with the poles !m of G(!). We
find

G(!) = Q
1

! �⇤
Q† (67)

with Q = Q0S. The representations Eq. (65) and Eq. (67) are particularly useful to evaluate the
self-energy functional Eq. (61) in practice. The trace Tr contains a Matsubara-frequency sum-
mation which can be carried out analytically [42] such that one is left with a simple algebraic
expression [41],
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matrix with a small number of rows but a large number of columns (dimension of the one-
particle Hilbert space ⇥ number of many-body excitations):

Q0
↵m = hr|c↵|si

r
exp(��E 0

r) + exp(��E 0
s)

Z 0 , Z 0
=

X

r

e��E0
r , (64)

as is readily read off from the Lehmann representation Eq. (17). One also verifies that Q0Q0†
=

1 6= Q0†Q0. Using the Q0-matrix, we can write the reference system’s Green’s function in a
compact form as

G0
(!) = Q0 1

! �⇤0Q
0† , (65)

where ⇤0 is the diagonal matrix with elements ⇤0
mn = !0

m�mn. With V = t � t0, the Green’s
function of the original system is obtained as:

G(!) =
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where M = ⇤0
+Q0†V Q0 is a (large) square Hermitian matrix which can be diagonalized by

a unitary transformation, M = S⇤S†. Here, ⇤mn = !m�mn with the poles !m of G(!). We
find

G(!) = Q
1

! �⇤
Q† (67)

with Q = Q0S. The representations Eq. (65) and Eq. (67) are particularly useful to evaluate the
self-energy functional Eq. (61) in practice. The trace Tr contains a Matsubara-frequency sum-
mation which can be carried out analytically [42] such that one is left with a simple algebraic
expression [41],
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5 Implementation of the variational cluster approximation

Q-matrices

The bottleneck of a practical VCA calculation consists in the computation of the Green’s func-
tion of the reference system. Using an exact-diagonalization technique, the Green’s function for
an individual cluster can be obtained in its Lehmann representation, see Eq. (17). Let ↵ = (i, �)
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=
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compact form as
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where M = ⇤0
+Q0†V Q0 is a (large) square Hermitian matrix which can be diagonalized by

a unitary transformation, M = S⇤S†. Here, ⇤mn = !m�mn with the poles !m of G(!). We
find

G(!) = Q
1
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Q† (67)

with Q = Q0S. The representations Eq. (65) and Eq. (67) are particularly useful to evaluate the
self-energy functional Eq. (61) in practice. The trace Tr contains a Matsubara-frequency sum-
mation which can be carried out analytically [42] such that one is left with a simple algebraic
expression [41],
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… only the poles of G and of G’ are needed !

Lehmann representation of G’, obtained by ED:

Lehmann representation of G:

to get poles of G, diagonalize

matrix dimension: number of one-particle excitations in a cluster

orbitals excitations
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which involves the poles of G(!) and G0
(!) only. Finally, the grand potential of the reference

system in Eq. (61) is easily computed as ⌦0
= �(1/�) ln

P
r e

��E0
r .

Recipe for practical calculations

A typical VCA calculation is carried out as follows:

• Construct a reference system by tiling the original lattice into identical clusters.

• Choose a set of one-particle parameters t0 of the reference system and compute V = t�t0.

• Solve the problem for the reference system (U is fixed), i.e. compute the Green’s function
G0 and find the poles !0

m and the Q0-matrix.

• Get the poles !m of the approximate Green’s function of the original system by diagonal-
ization of the matrix M = ⇤0

+Q0†V Q.

• Calculate the value of the SFT grand potential via Eq. (61) and Eq. (68) and by calculating
the grand potential of the reference system ⌦0 from the eigenvalues of H 0.

• Iterate this scheme for different t0, such that one can solve

@⌦[⌃t0 ]

@t0

�����
t0=t0

opt

!

= 0 (69)

for t0
opt

.

• Evaluate observables, such as ⌦[⌃t0
opt

], G(!) and static expectation values derived from
the SFT grand potential by differentiation, at the stationary point t0

opt

.

• Redo the calculations for different parameters of the original system, e.g. a different U ,
filling or � to scan the interesting parameter space.

Tips and tricks

For a given topology of the reference system, i.e. for a given cluster geometry, one may in
principle consider all one-particle particle parameters t0 as variational parameters. However,
besides an exponentially increasing Hilbert-space dimension, a larger cluster also implies an
increasing numerical complexity for the search of the stationary point since ⌦[⌃t0 ] is a function
of a multi-component variable t0. It is therefore advisable to restrict the search to a small
number of physically important parameters. In most cases, a few variational parameters suggest
themselves.
An overall shift �"0 of the on-site energies in the cluster (like the chemical potential), t0ii 7!
t0ii + �"0, should be among the variational parameters to ensure thermodynamical consis-
tency with respect to the total particle number as has been pointed out in Ref. [43]. This
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simple application: D=1 Hubbard model

• half-filling, T=0, large L, small Lc

• a single variational parameter 

• minimum or maximum
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Fig. 8: (adapted from Ref. [54]). a) Original system: one-dimensional Hubbard model. Ref-
erence system: decoupled clusters (for L

c

= 2). b) SFT grand potential per site and shifted
by µN as a function of the intra-cluster nearest-neighbor hopping t0. VCA calculation (with
L
c

= 10) for the one-dimensional Hubbard model at zero temperature, half-filling and different
U as indicated. The nearest-neighbor hopping t = 1 sets the energy scale. Arrows mark the
stationary points. c) VCA ground-state energy per site as a function of 1/L

c

for U = 4 at the
respective stationary points compared with the corresponding results for an isolated cluster and
the exact results known from the Bethe ansatz (BA) [55].

the CPT is given by t0 = t and that there is a gain in binding energy due to the optimization of
t0, namely ⌦(t0

opt

) < ⌦(t) which implies that the VCA improves on the CPT result.

It is physically reasonable that in case of a stronger interaction and thus more localized elec-
trons, switching off the inter-cluster hopping is less significant and must therefore be out-
weighed to a lesser degree by an increase of the intra-cluster hopping. A considerably large
deviation from the physical hopping, t0

opt

> t, is only found for the weakly interacting system.
However, even a “strong” approximation of the self-energy (measured as a strong deviation of
t0
opt

from t) becomes irrelevant in the weak-coupling limit as the self-energy becomes small.
With decreasing U , the self-energy functional becomes flatter and flatter until at U = 0 the t0

dependence is completely irrelevant. Note that not only the non-interacting limit but also the
atomic limit (t = 0) is exactly reproduced by the VCA. In latter case, the reference system
becomes identical with the original system at t0 = 0.

Fig. 8c shows the VCA ground-state energy (per site) at a fixed interaction strength U = 4

as a function of the inverse cluster size 1/L
c

. By extrapolation to 1/L
c

= 0 one recovers the
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the CPT is given by t0 = t and that there is a gain in binding energy due to the optimization of
t0, namely ⌦(t0

opt

) < ⌦(t) which implies that the VCA improves on the CPT result.

It is physically reasonable that in case of a stronger interaction and thus more localized elec-
trons, switching off the inter-cluster hopping is less significant and must therefore be out-
weighed to a lesser degree by an increase of the intra-cluster hopping. A considerably large
deviation from the physical hopping, t0

opt

> t, is only found for the weakly interacting system.
However, even a “strong” approximation of the self-energy (measured as a strong deviation of
t0
opt

from t) becomes irrelevant in the weak-coupling limit as the self-energy becomes small.
With decreasing U , the self-energy functional becomes flatter and flatter until at U = 0 the t0

dependence is completely irrelevant. Note that not only the non-interacting limit but also the
atomic limit (t = 0) is exactly reproduced by the VCA. In latter case, the reference system
becomes identical with the original system at t0 = 0.

Fig. 8c shows the VCA ground-state energy (per site) at a fixed interaction strength U = 4

as a function of the inverse cluster size 1/L
c

. By extrapolation to 1/L
c

= 0 one recovers the

!
• shallow minimum for weak U

• strong U: t’ close to t
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the CPT is given by t0 = t and that there is a gain in binding energy due to the optimization of
t0, namely ⌦(t0

opt

) < ⌦(t) which implies that the VCA improves on the CPT result.

It is physically reasonable that in case of a stronger interaction and thus more localized elec-
trons, switching off the inter-cluster hopping is less significant and must therefore be out-
weighed to a lesser degree by an increase of the intra-cluster hopping. A considerably large
deviation from the physical hopping, t0

opt

> t, is only found for the weakly interacting system.
However, even a “strong” approximation of the self-energy (measured as a strong deviation of
t0
opt

from t) becomes irrelevant in the weak-coupling limit as the self-energy becomes small.
With decreasing U , the self-energy functional becomes flatter and flatter until at U = 0 the t0

dependence is completely irrelevant. Note that not only the non-interacting limit but also the
atomic limit (t = 0) is exactly reproduced by the VCA. In latter case, the reference system
becomes identical with the original system at t0 = 0.

Fig. 8c shows the VCA ground-state energy (per site) at a fixed interaction strength U = 4

as a function of the inverse cluster size 1/L
c

. By extrapolation to 1/L
c

= 0 one recovers the



simple application: D=1 Hubbard model

tonian, the corresponding field strengths can in principle be
considered as additional variational parameters.41 A finite
value of the optimized field would indicate long-range spin
or charge order which, however, is absent in one dimension
or, as concerns, e.g., ferromagnetism, is disregarded here. As
discussed in Ref. 41, the absence of antiferromagnetic order
in the D=1 Hubbard model at half-filling is respected by the
VCA for sufficiently large clusters.

A. Variation of hopping parameters

A nontrivial result, namely, t!! t, is found when optimiz-
ing the nearest-neighbor hopping, see Fig. 2. The physical
idea behind this approximation is that switching off the in-
tercluster hopping, which generates the approximate self-
energy, can partially be compensated for by enhancing the
intracluster hopping. This is, in fact, seen in the figure: The
optimal t! is larger than the physical hopping. The trends
found for different cluster sizes Lc and for different U cor-
roborate this interpretation: The larger the cluster, the smaller
is the necessary compensation !see Fig. 2". Furthermore, it is
reasonable that in case of a stronger interaction and thus
more localized electrons, switching off the intercluster hop-
ping is less significant. The strongest approximation of the
self-energy is therefore generated by the smallest cluster
!Lc=2" and in the limit U→0. This is indicated by a strong
!more than 100%" enhancement of t! compared to t.

On the other hand, even a “strong” approximation for the
self-energy !measured as a strong deviation of t! from t"
becomes irrelevant in the weak-coupling limit because the
self-energy must vanish for U=0. It is therefore not surpris-

ing that the VCA exactly recovers the U=0 limit. The ap-
proximate VCA Green’s function, which can be expressed as
G!!"= #G0!!"−1−!!!"$−1 in terms of the optimized self-
energy and the free lattice Green’s function, becomes exact
for U=0. The same holds for the SFT grand potential at the
stationary point " or for the ground-state energy E0="
+#%N&. The latter is shown in Fig. 3 as a function of U in
comparison with the exact !Bethe ansatz" result of Eq. !2".
Both VCA calculations for the smallest !Lc=2" as well as for
much larger !Lc=10" cluster size correctly reproduce the U
=0 limit while for strong interactions there are deviations. As
expected the Lc=10 calculation provides a much better ap-
proximation.

Figure 4 demonstrates how the U=0 limit is approached.
For strong interaction U=10 the SFT grand potential "!t!"
'"#!!t!"$ is at a minimum for t!( t. Upon decreasing U,
the optimal t! more and more deviates from the physical t. At
the same time, however, the SFT grand potential "!t!" be-
comes flatter and flatter, and for U→0 the optimal t! is com-
pletely irrelevant as !!!"'0 for any t!.

For finite U the quality of the cluster approximation is
determined by the cluster size Lc. The dependence of the
VCA ground-state energy E0 on Lc turns out to be quite
regular. Plotting the results for fixed U as a function of 1 /Lc
allows us to recover the exact ground-state energy by ex-
trapolation to 1 /Lc=0. This is demonstrated in Fig. 5. It is
worth mentioning that the VCA represents a considerable
improvement as compared to the “direct” cluster approach
where E0 is simply approximated by the ground-state energy
of an isolated Hubbard chain !with open boundary condi-
tions". Convergence to the exact result is clearly faster within
the VCA. As can be seen by comparing the trends for U=4
and U=8 in Fig. 5, this advantage is more pronounced for
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more variational parameters

there is a clear overestimation as compared to the exact result
with a relative error that even diverges for U→0.

For a more detailed discussion of the critical point U=0
consider the inset in Fig. 2. One can see that for U→0, the
optimal intracluster hopping quadratically approaches a fi-
nite value: t!= t0!+const!U2+O!U3". This implies that clus-
ter eigenenergies and thus excitation energies as well as clus-
ter eigenstates and thus spectral weights depend !for Lc"#"
analytically on U for U→0. Consequently, the same holds
for the VCA Green’s function since this can be expressed in
terms of the cluster Green’s function G! as G!$"
= #G!!$"−1− !t− t!"$−1 and since the matrix inversion involves
finite blocks only due to the remaining superlattice transla-
tional symmetry of the reference system. One-particle corre-
lation functions, the ground-state energy, etc., are therefore
analytical in U for U→0 within the VCA. The same holds
for the one-particle excitation gap while the exact gap is
nonanalytic at U=0 #cf. Eq. !3"$. That this nonanalyticity
cannot be reproduced within the VCA should be interpreted
as a rather general failure that is inherent to any cluster con-
cept. Qualitative changes at a critical point resulting from the
limiting process Lc→# are beyond a scheme based on finite
clusters.

So far the discussion has been restricted to calculations
using a single variational parameter. More parameters can be
useful for different reasons. First, we note that the optimal
self-energy provided in a real-space cluster technique does
not reflect the full translational symmetry of the original lat-
tice problem and that finite-size effects are expected to be the
most pronounced at the cluster boundary. This suggests to
use reference systems with site-or bond-dependent varia-
tional parameters. For the case of particle-hole symmetry,
obvious choices are displayed in Fig. 1, B where the intra-
cluster hopping at the edges of the chain are allowed to take
a different value, and in Fig. 1, C where more or all hopping
parameters are varied independently.

Figure 7 shows the numerical results for U=4. We find
that the optimal hopping varies between different nearest
neighbors within a range of less than 10%. At the chain
edges the optimal hopping is enhanced to compensate the
loss of itinerancy due to the switched-off intercluster hop-
ping within the VCA. With increasing distance to the edges,
the hopping quickly decreases. Quite generally, the third
hopping parameter is already close to the physical hopping t.
Looking at the Lc=10 results where all !five" different hop-
ping parameters have been varied independently !orange
circles", one can see the hopping to slightly oscillate around
the bulk value reminiscent of surface Friedel oscillations.

The optimal SFT grand potential is found to be lower for
the inhomogeneous cases as compared to the homogeneous
!black" one. Generally, the more variational parameters are
taken into account, the higher is the decrease of the SFT
grand potential at optimal parameters. However, the binding-
energy gain due to inhomogeneous hopping parameters is
much smaller compared to the gain obtained with a larger
cluster. Likewise, there is merely a marginal improvement as
concerns the single-particle gap.

Considering an additional hopping parameter tpbc linking
the two chain edges as a variational parameter !Fig. 1, D"
always gives a minimal SFT grand potential at tpbc=0. This

implies that open boundary conditions are preferred as com-
pared to periodic boundary conditions !which would be
given by a stationary point at tpbc=1". The issue has already
been discussed in Ref. 21.

With the reference system Fig. 1, E we can check whether
or not a magnetic frustration develops in the reference sys-
tem. A hopping t2! between next-nearest neighbors leads in
the Heisenberg limit U→# to an antiferromagnetic next-
nearest-neighbor exchange J2 and thus to a frustration of
antiferromagnetic !short-range" order. This would partially
compensate the residual mean-field character of the VCA
with respect to magnetic properties. At the same time, how-
ever, particle-hole symmetry would be violated. It turns out,
however, that the SFT grand potential has a saddle point with
t2!=0. !It is at a minimum with respect to t1! and at a maxi-
mum with respect to t2!".

A third-nearest-neighbor hopping would not lead to frus-
tration and would also respect particle-hole symmetry. Opti-
mization of an Lc=6-site cluster at U=4 as indicated in Fig.
1, F yields an optimal nearest-neighbor hopping t1!%1.04 and
third-nearest-neighbor hopping t2!%−0.02. This shows that
hopping parameters that are not present in the original sys-
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lated site i. ns!i" may vary along the chain. Due to the expo-
nential growth of the Hilbert space dimension with the sys-
tem size, calculations are basically limited to a total number
of #i=1

Lc ns!i"$10 sites only, if Lc denotes the number of cor-
related sites !the cluster “size”". Note that the reference sys-
tem has to be solved repeatedly to find a stationary point or
to achieve self-consistency, respectively, and that due to open
boundary conditions a few general symmetries can be ex-
ploited only. For a small cluster with Lc=4, for example, this
implies a limitation to less than ns=3 local degrees of free-
dom, i.e., less than two bath sites per correlated site, if
ns!i"=ns is taken to be constant as usual. While a true solu-
tion of the C-DMFT self-consistency equation actually re-
quires a continuum of bath sites !at each correlated site", i.e.,
ns=!, the convergence with respect to ns is expected33 to be
exponentially fast. This makes calculations with small ns fea-
sible.

However, there are two conceptual drawbacks of the
exact-diagonalization !Lanczos" approach to C-DMFT: !i"
Clearly, the determination of the bath parameters "i# and Vi#
is of crucial importance for small ns !and small Lc". One
possible prescription is to fix the parameters by minimization
of a suitably defined distance between the hybridization
function of Eq. !7" and the one given by the self-consistency
equation. The choice of the quantity that is “projected” as
well as the distance measure, however, are more or less ad
hoc and by no means unique. !ii" Within the C-DMFT the
one-particle energies of and the hopping between the corre-
lated sites are fixed by their values in the original Hubbard
model. This may be seen as a limited flexibility for the de-
termination of the !in a certain sense" optimal effective clus-
ter model.

The VCA21 or, more generally, the self-energy-functional
theory22 does not suffer from these shortcomings: !i" The
bath parameters of the effective cluster model !the “reference
system”" are fixed in a unique way by demanding the grand
potential of the system to be stationary with respect to those
variations of the self-energy that are induced by varying the
bath parameters. This prescription is distinguished by the
fact that it ensures thermodynamical consistency of the
results:34,35 All approximate quantities of the theory derive
from an approximate but explicitly given thermodynamical
potential. Opposed to C-DMFT/ED this consistency is
achieved for any Lc and ns and not only in the continuum
limit ns→!. !ii" There is more flexibility in the choice of the
reference system: Within the SFT it is possible to vary all
one-particle parameters of the reference system including
those referring to the original correlated sites. Furthermore,
one is by no means forced to attach a bath to each of the
correlated sites. A physically motivated choice is to consider
bath sites at the cluster boundaries only, for example.

IV. VARIATIONAL CLUSTER APPROACH USING Q
MATRICES

The SFT is described in Refs. 21, 22, and 34–37. The
main idea is to express the grand potential of the original
model as a functional of the self-energy, $=$%!&, such that
the exact self-energy is given as a stationary point, %$ /%!

=0. Trial self-energies are taken from a reference system
with the same !Hubbard" interaction but with a modified one-
particle part. If the Hamiltonian of the original system, H
=H0!t"+H1!U", consists of a free part with parameters t and
an interaction term with parameters U, the most general
Hamiltonian of the reference system has the form H!
=H0!t!"+H1!U" with arbitrary t!. Figure 1 shows the original
one-dimensional Hubbard model with nearest-neighbor hop-
ping t as well as various reference systems considered for
our calculations. The trial self-energy is parametrized by the
set of one-particle parameters of the reference system: !
=!!t!", and variations of the trial self-energy are considered
that are due to variations of t!, i.e., one has to solve

!$%!!t!"&
!t!

=
!

0. !8"

The decisive point is that $%!!t!"& can be evaluated exactly
for reference systems that allow for a !numerically" exact
computation of the single-particle Green’s function. In case
of a finite !small" cluster or chain and a finite !small" number
of bath sites, this can be achieved by full diagonalization or
with the help of the Lanczos method.32

All what is needed in a practical calculation is the one-
particle Green’s function of the reference system. If Lc&1,
i.e., in case of the variational cluster approximation !VCA",
this is the Green’s function of a set of decoupled clusters.
The Green’s function for a single cluster,

G'(! !)" = #
m

Q'm
1

) − )m!
Qm(

† , !9"

is given in terms of poles )m! and corresponding weights
Q'mQm(

† . The poles and the Q matrices34 can be read off
from the standard Lehmann representation.38 Note that Q is a
nonquadratic matrix: '= !i ,*" refers to a one-particle orbital
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1.24 Michael Potthoff

non-magnetic solution into a non-magnetic and a magnetic one (or even more magnetic ones).
There are different numerical strategies to determine a stationary point of the self-energy func-
tional, see Ref. [46] for examples. If there is only a single variational parameter to be optimized,
iterative bracketing of maxima and minima can be employed efficiently. In the case of more than
one variational parameter, the SFT grand potential usually exhibits saddle point rather than a
minimum or maximum. A strategy that has been found to be useful for two or three parameters,
is to assume (and verify) a certain characteristic of the saddle point and to apply iterated one-
dimensional optimizations. The downhill simplex method can be used for higher-dimensional
parameter spaces to find the local minima of |@⌦[⌃t0 ]/@t0|2. If there is more than one, only
those must be retained for which ⌦[⌃(t0)] has a vanishing gradient.

6 Selected results

The VCA is not restricted to the single-band Hubbard model but has also been applied to a va-
riety of multi-orbital systems. The necessary generalization to the multi-orbital case is straight-
forward. In this way the VCA has contributed to the study of the correlated electronic structure
of real materials such as NiO [47], CoO and MnO [48], CrO

2

[49], LaCoO
3

[50], TiOCl [51],
TiN [52], and NiMnSb [53]. Here, however, we will focus on the single-band model and discuss
a few and very simple examples to illustrate the theory.

One-dimensional Hubbard model

In the first example [54] we will consider the one-dimensional Hubbard model at zero temper-
ature and half-filling with hopping t = 1 between nearest neighbors, see Fig. 8a. A tiling of the
one-dimensional lattice into “clusters” is particularly simple: Each cluster is a finite chain of L

c

sites. We treat the intra-cluster nearest-neighbor hopping t0 as the only variational parameter.
This is the most obvious choice. Nevertheless, one may numerically check that the optimal
on-site hopping t0ii,opt = tii = 0. The same holds for the hopping between second nearest
neighbors: t0

2�nd,opt = 0. Again this is predicted by particle-hole symmetry. On the other hand,
if a third nearest-neighbor hopping is introduced as a variational parameter, it acquires a small
finite value at the stationary point. Interestingly, one also finds t0

pbc,opt = 0 [2] where t0
pbc

is a
hopping parameter that links the two edge sites of the cluster with each other. t0

pbc

= t0 would
be a realization of periodic boundary conditions but the calculation shows that open boundaries,
t0
pbc,opt = 0, are preferred. Furthermore, one may also relax the constraint that the hopping t0 be

the same for all pairs of nearest neighbors. In this case one finds the strongest deviations close
to the edges of the reference systems [54].
Fig. 8b shows the dependence of the SFT grand potential ⌦[⌃t0 ] on the single variational pa-
rameter t0. Actually, (⌦ + µhNi)/L is plotted. At zero temperature and at the stationary point,
this is the (approximate) ground-state energy of the Hubbard model per site. There is a station-
ary point, a minimum in this case, with the optimal value for the intra-cluster hopping t0

opt

being
close to but different from the physical value t = 1 for strong Coulomb interaction U . Note that
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1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
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into a reference
system H 0
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(t0) +H
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and the inter-cluster hopping H
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(V ) for a square lattice and cluster
size L
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= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.
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magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.
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Variational Cluster Approximation 1.3
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Fig. 2: Grand potential ⌦ as a function of a Weiss field B0 in the case of a paramagnet (P)
and in the case of an antiferromagnet (AF). B0 is a fictitious staggered field, the optimal value
of which (B0

opt

) must be determined by minimization of ⌦. As there is no physically applied
staggered field, i.e. B = 0, a finite B0

opt

indicates spontaneous symmetry breaking.

sufficient to describe the emergence of new phases with broken symmetries.
An obvious way out is to enforce a finite antiferromagnetic order parameter within each of the
isolated clusters by applying a (staggered) magnetic field B0. Coupling those antiferromagnetic
clusters may then result in an antiferromagnetic solution for the entire lattice.
However, what determines the strength of this magnetic field? As we are aiming at a description
of spontaneous antiferromagnetic order, there is no external physical field B that is applied to
the original system (B = 0). The field B0 is actually a “Weiss field”, i.e. a fictitious field or
“mean field” that is produced by the system itself. We are seeking for a formalism which allows
for the formation of a finite Weiss field if this is “favorable”, i.e. if a thermodynamical potential
can be lowered in this way.
Self-energy-functional theory just provides a relation ⌦(B0

) between the grand potential of the
system ⌦ and the Weiss field B0 that can be used to fix the optimal value B0

opt

of the staggered
magnetic field by minimization (see Fig. 2):

@⌦(B0
)

@B0

�����
B0

=B0
opt

!

= 0 (1)

The purpose of this lecture is to show how this can be achieved in practice. To this end we have
to answer the following “how to” questions:

• How can we solve the problem for an isolated cluster?

• With this at hand, how can we construct a solution for the problem on the infinite lattice?

• How can we construct the relation ⌦(B0
) such that Eq. (1) determines B0

opt

?

Actually, there is no reason to consider only a staggered magnetic field as a Weiss field. An-
other goal is therefore to generalize the idea to arbitrary Weiss fields or to an arbitrary set
of variational parameters �0 that characterize the isolated cluster and that are optimized via
@⌦(�0

opt

)/@�0 !

= 0. Finally, the VCA should be compared with other theories available and the
practical as well as principal limitations have to be discussed.

Q: how to find the “right” field ?

A: the optimal field should

minimize the grand potential !

⌦(B0) =? ⌦(t0) =?
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Fig. 9: (adapted from Ref. [16]). SFT grand potential per site as a function of the strength of a
fictitious staggered magnetic field B0. Calculation for the two-dimensional half-filled Hubbard
model on the square lattice at zero temperature and U = 8, t = 1. The reference system consists
of disconnected clusters with L

c

= 10 sites each, see the inset for the cluster geometry. Arrows
mark the two equivalent stationary points.

exact Bethe-Ansatz result (BA) [55]. Furthermore, the VCA is seen to improve the ground-state
energy as compared to calculations done for an isolated Hubbard chain with open boundaries.
Convergence to the BA result is clearly faster within the VCA. Note that, opposed to the VCA,
the direct cluster approach is not exact for U = 0.

Antiferromagnetism

With the second example [16] we return to our original motivation, see Fig. 2. One of the
main drawbacks of the CPT consists in its inability to describe spontaneous symmetry break-
ing. Consider SU(2) transformations in spin space and antiferromagnetic order, for example.
As the exact solution of a finite Hubbard cluster is necessarily spin symmetric, i.e. invariant
under SU(2) transformations, and as the CPT equation proliferates this symmetry, the antifer-
romagnetic order parameter, the staggered magnetization m, must always be zero if there is
no physically applied staggered magnetic field which would explicitly break the symmetry, i.e.
if B = 0. The VCA, on the other, in principle allows for a spontaneous SU(2) symmetry
breaking. Namely, treating an intra-cluster fictitious staggered magnetic field of strength B0

as a variational parameter offers the possibility for a symmetry-broken stationary point with
B0

opt

6= 0. The reference-system Hamiltonian is given by

H 0
= H 0��

B0
=0

� B0 X

i�

zi(ni" � ni#) , (70)

where zi = +1 for sites on sublattice A, and zi = �1 for sublattice B (yellow and blue sites in
the inset of Fig. 9)
The main part of Fig. 9 displays VCA results for the half-filled two-dimensional Hubbard model
on the square lattice at zero temperature. Decoupled clusters with L

c

= 10 sites are considered

• D=2 Hubbard model, n=1, T=0

• cluster with LC=10 sites

• low cluster symmetries  

favorable

• solver for the reference 

system: Lanczos 

• fictitious staggered field 

(mean field, Weiss field)
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Fig. 9: (adapted from Ref. [16]). SFT grand potential per site as a function of the strength of a
fictitious staggered magnetic field B0. Calculation for the two-dimensional half-filled Hubbard
model on the square lattice at zero temperature and U = 8, t = 1. The reference system consists
of disconnected clusters with L

c

= 10 sites each, see the inset for the cluster geometry. Arrows
mark the two equivalent stationary points.

exact Bethe-Ansatz result (BA) [55]. Furthermore, the VCA is seen to improve the ground-state
energy as compared to calculations done for an isolated Hubbard chain with open boundaries.
Convergence to the BA result is clearly faster within the VCA. Note that, opposed to the VCA,
the direct cluster approach is not exact for U = 0.

Antiferromagnetism

With the second example [16] we return to our original motivation, see Fig. 2. One of the
main drawbacks of the CPT consists in its inability to describe spontaneous symmetry break-
ing. Consider SU(2) transformations in spin space and antiferromagnetic order, for example.
As the exact solution of a finite Hubbard cluster is necessarily spin symmetric, i.e. invariant
under SU(2) transformations, and as the CPT equation proliferates this symmetry, the antifer-
romagnetic order parameter, the staggered magnetization m, must always be zero if there is
no physically applied staggered magnetic field which would explicitly break the symmetry, i.e.
if B = 0. The VCA, on the other, in principle allows for a spontaneous SU(2) symmetry
breaking. Namely, treating an intra-cluster fictitious staggered magnetic field of strength B0

as a variational parameter offers the possibility for a symmetry-broken stationary point with
B0

opt

6= 0. The reference-system Hamiltonian is given by

H 0
= H 0��

B0
=0

� B0 X

i�

zi(ni" � ni#) , (70)

where zi = +1 for sites on sublattice A, and zi = �1 for sublattice B (yellow and blue sites in
the inset of Fig. 9)
The main part of Fig. 9 displays VCA results for the half-filled two-dimensional Hubbard model
on the square lattice at zero temperature. Decoupled clusters with L

c

= 10 sites are considered



strange cluster ? but it works !



tiling of the lattice

4

FIG. 6: (Color online) The clusters used to investigate the (a) AF, (b) AF2, and (c) AFC states. When necessary, these
12-site clusters are paired with their rotated or reflected mirror images so that the extended 24-site clusters tile the lattice in
the Bravais sense in the presence of the Weiss fields.

FIG. 7: (Color online) The phase diagram at half-filling and zero temperature as a function of t′ and U obtained by
VCA using the (a) 3×4, (b) 2×6, and (c) 12C cluster. The circles, triangles, and squares represent the AF, AF2, and
AFC states, respectively. Non-filled marks indicate that their energies are degenerate with other solutions within the ac-
curacy of 10−3. The crosses are the Mott transition points obtained in each cluster assuming that no magnetic order is allowed.

12-site cluster, referred to as 12C hereafter) are used to
set up the cluster Hamiltonian H ′, where the Weiss field

HM = hM

∑

i

sign(i)(ni↑ − ni↓) (7)

with sign(i) = +1, (−1) for the shaded (white) sites in
Fig. 6 is included.

As is shown in Fig. 6, when necessary (3×4 and 12C in
(a), and 3×4 and 2×6 in (b)), these 12-site clusters are
paired with their appropriate rotated or reflected images

!
• different clusters and pairs of clusters 

used for an A-B sublattice ordering
Yamada et al. (2013)
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

original 

system

reference 

system

• VCA: cluster mean-field approach

• includes short-range spatial 

correlations

• mean-field-like on a scale  

beyond linear cluster extension

!
!
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

original 

system

reference 

system
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˛

˛

˛

˛

˛

˛

˛

˛

˛

classification of approximations
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lattice model (D = 2) in
the thermodynamic limit

reference system, Ht′,U:

system of decoupled clusters

Lc = 1

Hubbard-I-type approximation
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• single-site mean-field theory

• like Hubbard-I but with  

parameter optimization
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

original 

system

reference 

system

• choice of the reference system: 
same interaction part ! (“universality”)


• bath sites: more variational degrees of 
freedom


• improve description of temporal  
fluctuations
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Variational Cluster Approximation 1.17

The equation

G[⌃] =

1

G�1

0

�⌃
(55)

is a (highly non-linear) conditional equation for the self-energy of the system H = H
0

(t)+H
1

.
Inserting ⌃ = ⌃[G] shows that it is (locally) equivalent to Eq. (45). It is satisfied by the exact
self-energy of the system. Therefore, solving Eq. (55) is equivalent to a search for the stationary
point of the self-energy functional:

�⌦[⌃]

�⌃
= 0 . (56)

This represents the dynamical variational principle we have been looking for. The exact self-
energy of the system makes the self-energy functional ⌦[⌃], Eq. (50), stationary.
The definition of the self-energy functional given with Eq. (50) is a formal one only. The ar-
gument of the ln is not dimensionless and furthermore, since G(i!n) / 1/!n / 1/(2n + 1)

for large n, the sum over the Matsubara frequencies,
P

n ln(2n + 1), does not converge. This
problem can be solved, however, by replacing ⌦[⌃] 7! ⌦[⌃]�Tr lnG

reg

with G�1

reg,ij�(i!n) =

�ij(i!n � "
reg

) and taking the limit "
reg

! 1 after all calculations are done. As the constant
Tr lnG

reg

does not depend on ⌃, the variational principle is unaffected but now the Matsub-
ara sum over both logarithms is well defined and convergent. One can show [24, 25, 3] that,
if evaluated at the physical (exact) self-energy, the regularized ⌦[⌃] � Tr lnG

reg

is just the
grand potential of the system. This provides us with a physical interpretation of the self-energy
functional. In the following this regularization is always implicit.
As a remark, we note that at U = 0 the self-energy functional reduces to the expression ⌦

0

⌘
Tr lnG

0

as becomes obvious from the diagrammatic definition of �[G] and of ⌃ since there
are simply no diagrams left at zero-th order in the interaction strength:

�[G] ⌘ 0 , ⌃(i!n) = 0 for U = 0 . (57)

If regularized properly, ⌦
0

7! ⌦
0

� Tr lnG
reg

, this exactly yields the grand potential of the
non-interacting system.

Evaluation of the self-energy functional

The diagrammatic definition of the Luttinger-Ward functional (Fig. 6) uncovers another remark-
able property: Since any diagram contributing to � consists of vertices and dressed propagators
only, the functional relation �[· · · ] is completely determined by the interaction U but does not
depend on t. Clearly, this “universality” then also holds for its Legendre transform F [⌃]: Two
systems (at the same chemical potential µ and inverse temperature �) with the same interaction
H

1

but different one-particle parameters t and t0 are described by the same functional F [⌃].
Contrary, the first part of the self-energy functional,

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ F [⌃] (58)

does depend on the hopping, namely via G�1

0

(i!n) = i!n + µ � t, but not on the interaction
strength U .
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

remember: 

reference 

system

• continuum of bath sites

• this yields … 
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

remember: 
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of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).
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This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and

TrA ⌘ 1

�

X

n

X

i�

ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have

�F [⌃]

�⌃
= � 1

�
G[⌃] . (53)

Therewith, we can also calculate the functional derivative of ⌦[⌃]:

�⌦[⌃]

�⌃
=

1

�

✓
1

G�1

0

�⌃
�G[⌃]

◆
. (54)
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:
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+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have
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Therewith, we can also calculate the functional derivative of ⌦[⌃]:
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Fig. 11: Schematic picture for the relation between different approximations that can be con-
structed within the self-energy-functional theory. See text for discussion.

magnetism, superconductivity etc.). Third, the SFT provides us with an explicit, though ap-
proximate, expression for a thermodynamical potential from which all observables have to be
derived. This ensures that the approach is consistent in itself and obeys general thermodynami-
cal relations, an important point that is missing in the plain CPT as well.
The self-energy-functional theory should actually be seen as a theoretical frame that allows
to construct different approximations. Each approximation is characterized by the choice of a
corresponding reference system. Typically, this consists of decoupled clusters with a number
of L

c

correlated sites each and an additional number of n
s

� 1 uncorrelated bath sites. A
large number L

c

, i.e. large clusters are necessary to include short-range correlations as good as
possible, and a large number of local degrees of freedom n

s

is recommendable to improve the
description of local, temporal correlations. There is the ubiquitous tradeoff between the quality
of the approximation on the one hand and the numerical effort on the other as the problem
must be exactly solved for the isolated cluster. Using an exact-diagonalization solver the effort
roughly increases exponentially with L

c

and n
s

. The “space” of possible approximations that is
spanned by L

c

and n
s

is sketched with Fig. 11.
The most simple approximation is given by L

c

= 1 and n
s

= 1. Here, one approximates the
self-energy of the lattice model by the self-energy of the atomic problem. This is in the spirit of
the Hubbard-I approximation [5]. For L

c

> 1 we find the variational cluster approximation that
we have discussed at length here. Obviously, one would recover the exact solution of the lattice
model in the limit Lc ! 1.
Choosing a “cluster” with a single correlated site only, L

c

= 1, but introducing a number of
bath sites n

s

� 1 � 1 specifies another approximation which is called dynamical impurity ap-
proximation (DIA). This is a true mean-field approximation as all non-local two-particle spatial
correlations are neglected in this case.
Obviously, an ideal embedding of a single site into the lattice or an ideal mean-field theory is re-
alized with an infinite number of bath sites n

s

! 1. In this case, all local, temporal correlations
are treated exactly – opposed to a static mean-field theory like the Hartree-Fock approach. This
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magnetism, superconductivity etc.). Third, the SFT provides us with an explicit, though ap-
proximate, expression for a thermodynamical potential from which all observables have to be
derived. This ensures that the approach is consistent in itself and obeys general thermodynami-
cal relations, an important point that is missing in the plain CPT as well.
The self-energy-functional theory should actually be seen as a theoretical frame that allows
to construct different approximations. Each approximation is characterized by the choice of a
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of L

c

correlated sites each and an additional number of n
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is recommendable to improve the
description of local, temporal correlations. There is the ubiquitous tradeoff between the quality
of the approximation on the one hand and the numerical effort on the other as the problem
must be exactly solved for the isolated cluster. Using an exact-diagonalization solver the effort
roughly increases exponentially with L
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and n
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. The “space” of possible approximations that is
spanned by L
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and n
s

is sketched with Fig. 11.
The most simple approximation is given by L
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= 1. Here, one approximates the
self-energy of the lattice model by the self-energy of the atomic problem. This is in the spirit of
the Hubbard-I approximation [5]. For L
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> 1 we find the variational cluster approximation that
we have discussed at length here. Obviously, one would recover the exact solution of the lattice
model in the limit Lc ! 1.
Choosing a “cluster” with a single correlated site only, L
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= 1, but introducing a number of
bath sites n

s

� 1 � 1 specifies another approximation which is called dynamical impurity ap-
proximation (DIA). This is a true mean-field approximation as all non-local two-particle spatial
correlations are neglected in this case.
Obviously, an ideal embedding of a single site into the lattice or an ideal mean-field theory is re-
alized with an infinite number of bath sites n
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! 1. In this case, all local, temporal correlations
are treated exactly – opposed to a static mean-field theory like the Hartree-Fock approach. This
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Fig. 7: Construction of consistent approximations within the self-energy-functional theory. The
grand potential is considered as a functional of the self-energy which is stationary at the physi-
cal (exact) self-energy ⌃t (filled red circles). The functional dependence of ⌦[⌃] is not acces-
sible on the entire space of self-energies (⌃ space). However, ⌦[⌃] can be evaluated exactly on
a restricted subspace of trial self-energies ⌃t0 parametrized by a subset of one-particle param-
eters t0 (solid red lines). These t0 define an exactly solvable “reference system”, i.e. a manifold
of systems with the same interaction part but a modified one-particle part given by t0. Typically,
the reference system consists of a set of decoupled clusters. A self-energy at which the grand po-
tential is stationary on this sub-manifold represents the approximate self-energy of the original
system and the grand potential at this self-energy represents the approximate grand potential
(open circle).

The universality property of F [⌃] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H

0

(t) +H
1

and the reference system with
H 0

= H
0

(t0) +H
1

, i.e. Eq. (58) and

⌦0
[⌃] = Tr ln

1

G0
0

�1 �⌃
+ F [⌃] . (59)

Due to its universality, one can eliminate the unknown functional F [⌃] by combining both
equations:

⌦[⌃] = ⌦0
[⌃] + Tr ln

1

G�1

0

�⌃
� Tr ln

1

G0
0

�1 �⌃
. (60)

This equation is still exact. Since the functional dependence of ⌦0
[⌃] is unknown, also in the

case of a simple reference system with decoupled clusters, it appears that this step amounts to
a mere shift of the problem only. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system ⌃t0(i!n) as a trial self-energy.
(We use the notation ⌃t0 for the exact self-energy of the system with hopping parameters t0

and interaction H
1

.) Namely, the first term on the r.h.s. of Eq. (60) then just reduces to the

1.2 Michael Potthoff

1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical frame that can be used to
construct various approximate approaches by which the thermal properties and the spectrum of
one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7] but, quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14] as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
“divide and conquer strategy”: A tiling of the original lattice into disconnected small clusters
is considered, as shown in Fig. 1 for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems to the solve the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent e.g. for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular. Cou-
pling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however, one
never gets to an antiferromagnetic solution for the infinite lattice. “Divide and conquer” is not

= +

Fig. 1: Sketch of the decomposition of the original system H = H
0

(t) + H
1

into a reference
system H 0

= H
0

(t0) +H
1

and the inter-cluster hopping H
0

(V ) for a square lattice and cluster
size L

c

= 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.
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Luttinger-Ward functional

define (with an additional factor (−T )):

= + + +Φ
Luttinger, Ward (1960)

note: Φ ̸= −T ln Z

what is Φ good for ?

Σ =
1

T

δΦ

δG
IMPORTANT !!!

Φ is like a potential for the self-energy !
——————————————————————————————————————–
proof:

note: Φ = bΦU[G]

– Φ is a functional of the Green’s function
– the functional dependence is fixed by U (and independent of t)
– bΦU[G] is a universal functional
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Fig. 6: Diagrammatic construction of the Luttinger-Ward functional �[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.

This can be verified, diagram by diagram: The functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators which contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions, Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy ⌃ij�(i!) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [38, 39].
The value � of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields the partition function Z/Z

0

– by con-
struction. Summing connected diagrams only, yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential / lnZ because of the above-mentioned double counting.

Self-energy functional

We will make use of �[G] by defining the following functional of the self-energy:

⌦[⌃] = Tr ln
1

G�1

0

�⌃
+ �[G[⌃]]� Tr(⌃G[⌃]) . (50)

Here, the frequency dependencies are suppressed in the notations and

TrA ⌘ 1

�

X

n

X

i�

ei!n0
+

Aii�(i!n) (51)

is used where 0

+ is a positive infinitesimal. Furthermore, G[⌃] is the inverse of the functional
⌃[G], i.e. G[⌃[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [⌃] ⌘ �[G[⌃]]� Tr(⌃G[⌃]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With ⌃[G[⌃]] = ⌃ and Eq.
(49) we immediately have

�F [⌃]

�⌃
= � 1

�
G[⌃] . (53)

Therewith, we can also calculate the functional derivative of ⌦[⌃]:

�⌦[⌃]

�⌃
=

1

�

✓
1

G�1

0

�⌃
�G[⌃]

◆
. (54)

• CPT - a nice idea, but lacks self-consistency or variational character

• Green’s functions and perturbation theory are needed as a formal language
• variational principles can be constructed with 

functionals of dynamic (frequency-dependent) 
quantities (self-energy) 

• the benefit: nice new cluster  
mean-field approximations1.30 Michael Potthoff
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Fig. 11: Schematic picture for the relation between different approximations that can be con-
structed within the self-energy-functional theory. See text for discussion.

magnetism, superconductivity etc.). Third, the SFT provides us with an explicit, though ap-
proximate, expression for a thermodynamical potential from which all observables have to be
derived. This ensures that the approach is consistent in itself and obeys general thermodynami-
cal relations, an important point that is missing in the plain CPT as well.
The self-energy-functional theory should actually be seen as a theoretical frame that allows
to construct different approximations. Each approximation is characterized by the choice of a
corresponding reference system. Typically, this consists of decoupled clusters with a number
of L

c

correlated sites each and an additional number of n
s

� 1 uncorrelated bath sites. A
large number L

c

, i.e. large clusters are necessary to include short-range correlations as good as
possible, and a large number of local degrees of freedom n

s

is recommendable to improve the
description of local, temporal correlations. There is the ubiquitous tradeoff between the quality
of the approximation on the one hand and the numerical effort on the other as the problem
must be exactly solved for the isolated cluster. Using an exact-diagonalization solver the effort
roughly increases exponentially with L

c

and n
s

. The “space” of possible approximations that is
spanned by L

c

and n
s

is sketched with Fig. 11.
The most simple approximation is given by L

c

= 1 and n
s

= 1. Here, one approximates the
self-energy of the lattice model by the self-energy of the atomic problem. This is in the spirit of
the Hubbard-I approximation [5]. For L

c

> 1 we find the variational cluster approximation that
we have discussed at length here. Obviously, one would recover the exact solution of the lattice
model in the limit Lc ! 1.
Choosing a “cluster” with a single correlated site only, L

c

= 1, but introducing a number of
bath sites n

s

� 1 � 1 specifies another approximation which is called dynamical impurity ap-
proximation (DIA). This is a true mean-field approximation as all non-local two-particle spatial
correlations are neglected in this case.
Obviously, an ideal embedding of a single site into the lattice or an ideal mean-field theory is re-
alized with an infinite number of bath sites n

s

! 1. In this case, all local, temporal correlations
are treated exactly – opposed to a static mean-field theory like the Hartree-Fock approach. This

• and a new view 
on DMFT and  
related theories

!
• the CPT-idea  

of a reference 
system saves 
the day
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FIG. 1: AF (bottom) and dSC (top) order parameters for
U = 8t as a function of the electron density (n) for 2 × 3,
2 × 4 and 10-site clusters. Vertical lines indicate the first
doping where only dSC order is non-vanishing.

FIG. 2: AF and dSC order parameters as a function of the
electron density on a 2 × 4 cluster for U = 6t, U = 8t and
U = 12t.

large, n = 0.87 to n = 0.93 for L = 10 for example. Un-
fortunately, finite cluster effects do not allow us to obtain
reliable results for larger dopings for either the hole or
electron cases. The dSC order parameter is not present
on bonds between clusters, making the results more sen-
sitive to size effects than in the case of the AF phase.
Fig. 1 also shows, in the electron-doped case, a AF+dSC
phase where AF and dSC order parameters are both non-
vanishing [18, 19, 20]. We verified that, as expected from
symmetry, the π-triplet order parameter is non-vanishing
in that phase[21, 22], which is separated from a pure dSC
phase by a quantum critical point around 13% doping,

near the value suggested by experiment [23, 24]. The sit-
uation is less clear on the hole-doped side where the L = 6
cluster has a very small doping range for the AF+dSC
phase, the L = 8 cluster a large one, while the L = 10
cluster shows none. This suggests that the way in which
the AF and dSC phases approach each other on the hole-
doped side cannot be accurately described by the small
variational space that we use. Additional order parame-
ters, such as stripe [2] or checkerboard orders [3] observed
in certain cuprates may be necessary to get the full pic-
ture. No SO(5) symmetric point [25] appears in our cal-
culation in a size-independent way. On the other hand,
our results for D0 in Fig. 1 show unambiguously that
the pure dSC phase appears over a much broader range
of dopings for hole- than for electron-doped cuprates, as
observed experimentally.

It is also instructive to know how the ground-state or-
der parameters vary with interaction strength U , espe-
cially because several normal-state calculations for the
pseudogap [26, 27] show that the interaction strength for
electron-doped cuprates near optimal doping should be in
the weak to intermediate coupling range (U ∼ 6t), with
U increasing as n decreases. A look at Fig. 2 for D0 and
M0 shows that the range of dopings where only D0 is
non-vanishing is larger on the hole than on the electron-
doped side for all values of U . That range increases with
U in all cases so that a drop in U as n increases rein-
forces the electron-hole difference in the size of the pure
dSC region. The range where only the dSC order pa-
rameter is finite nearly doubles in going from U = 6t to
U = 12t but the maximum value of D0 decreases, at least
on the hole-doped side. A stronger repulsion allows sys-
tems with more holes to be superconducting, but at the
same time suppresses superconductivity more effectively
closer to half-filling. Note that the dSC order parameter
D0 should not be confused with the critical temperature:
The maximum in D0 that appears near n = 0.9 on the
hole-doped side does not mean that the maximum Tc is
around that doping. Instead, the maximum comes from
the growth of D0 towards half-filling until proximity with
the AFM phase makes it fall rapidly [22]. Finally, as seen
in previous calculations, as U increases from 6t to 12t, the
AF phase does not extend as far on the electron-doped
side, [28] whereas the value of the order parameter M0

at half-filling increases [29].
Fig. 3 shows intensity plots of the spectral functions at

the Fermi level, for U = 8t, in the first quadrant of the
Brillouin zone. The left illustrates a hole-doped system
in a pure dSC phase. The spectral weight is concentrated
along the diagonal. This is observed even without long-
range order [26], but is also compatible with the vanish-
ing of the dSC gap along the diagonal. On the right, we
display an electron-doped system in a AF+dSC phase.
The spectral weight is depleted along the diagonal and
concentrated near the zone boundaries ((π, 0) and (0, π)).
This is also observed in the absence of long-range order

Senechal et al. (2004)




bath sites 5

tem is shown in the inset of Fig. (2). On the metallic side
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FIG. 2: U-T phase diagram of the paramagnetic state of the
Hubbard model. Uc1 curve denotes the left border of the re-
gion with the insulating solution. Uc2 is the right border of
the region with the metallic solution. Coexistence region has
both solutions. The insulating solution is stable to the right
of the curve Uc, whereas the metallic solution is stable on its
left. The empty circle indicates the critical point separating
low and high temperature regions with the first and the sec-
ond order phase transitions between metallic and insulating
solution respectively. Uc1 and Uc2 curves for different sizes of
the reference system(N=2,4,6) are shown in the inset.

of the metal-insulator transition in the DMFT formalism,
the central role is played by a three peak structure in the
spectral function, the middle peak corresponding to the
Abrikosov-Suhl resonance in the impurity model and two
Hubbard bands. That distribution of the spectral weight
together with Table I can explain the convergence trends
in the solutions found for different sizes of the reference
system. For N = 2 we have only one pole in the inverse
of the free Green’s function of the reference system at
the Fermi level. From the DMFT equation for the semi-
circular density of states G−1

0,σ(ωn) = iωn +µ− t2Gσ(ωn)
it would follow that the local Green’s function has only
one pole on the Fermi level if the equation holds for each
number of bath sites. In the DIA formalism the connec-
tion between the on-site Green’s function and the inverse
of the free Green’s function in the reference system of a
finite size is more involved, but we believe that rapid con-
vergence of the DIA results to those obtained in DMFT
allows us to use the DMFT equation for the argumen-
tation. This means that, with N=2, we cannot properly
account for the Hubbard bands central to the insulat-
ing phase. The Uc1 curve is thus substantially under-
estimating the extension of the insulating phase region
in comparison with N = {4, 6} results. The same rea-
soning explains why N = {3, 5} reference systems show
no improvement of the metallic solution with respect to
the reference systems with a smaller but even number of
sites. A reference system with an odd number of sites,

due to the particle-hole symmetry, has no pole in the in-
verse of the free Green’s function at the Fermi level or it
has two poles at the Fermi level which can be mapped to
one. For N = 4 we can account for the side bands, and
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FIG. 3: Shifted grand potential functional in the direction of
the parameters of the reference system around the insulating
solution for T=0.016 and U=4.77. Grand potential functional
is given by Ω = Ωsh +2.50717. Schematic configuration of the
reference system with the corresponding parameters is shown
in the upper left corner.

N = 6 brings only a slight change to the phase diagram.
Boundaries in the phase diagram are defined by the dis-
appearance of a stationary point in the parameter space
for either metallic or insulating solution. An example
of the parameter space is shown in Fig. (3). The calcu-
lation was done for six atoms. At half-filling and in the
paramagnetic state there are five independent parameters
(upper left corner of the figure). The parameter space is
shown in the region around the stationary point for the
insulating phase and U=4.77, T=0.016. Insulating so-
lution disappears when the stationarity condition is not
any more fulfilled in the direction V2. As already argued,
V2 is related to the weight of the Green’s function of the
original system at the Fermi level. Another comparison
of the calculations done in the DMFT framework with
the DIA calculation is shown in Fig. (4) for the whole
phase diagram. As already noticed for T=0, the DIA
calculation shows strong resemblance to the DMFT-ED
results.

In conclusion, we showed how additional information
from the reference system can be used to increase the
precision of the calculation in the context of DIA. Com-
parisons with the results obtained in DMFT demonstrate
close connection between the DIA and DMFT-ED pro-
cedures. The advantage of the DIA formulation over the
DMFT-ED formulation is particularly clear for the case
when the number of bath sites is not sufficiently large
to reproduce the local Green’s function of the original
system1. Already for N = 6, DIA and DMFT-ED give
almost the same result for the metal-insulator transition

Pozgajcic (2004)
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Fig. 10: (adapted from Ref. [57]). Left: SFT grand potential per site as a function of the vari-
ational parameter V . VCA calculation for the two-dimensional Hubbard model on the square
lattice at zero temperature, half-filling and different U as indicated. The nearest-neighbor hop-
ping t = 1 sets the energy scale. Symbols: stationary points. Red: Mott insulator, green and
blue: metal. Fat symbols: thermodynamically stable phase. The first-order Mott transition is
marked by an arrow. Right: Sketch of the building block of the reference system. Blue filled
dots: correlated sites with U > 0. Red open dots: bath sites with U = 0. Calculations for
t0 = t, t00 = 0, arbitrary V .

a good compromise between importance of local and non-local correlations and to result in a
reasonable approximation.
VCA calculations with the full set of variational parameters indicated in Fig. 10 (right) have
shown [57] that the hopping between the correlated and the bath sites V is the most important
parameter to be optimized while t0

opt

⇡ t and t00
opt

⇡ 0 can safely be ignored, i.e. set to the a
priori plausible values t0

opt

= t and t00
opt

= 0. The on-site energies of the correlated and of the
bath sites are fixed by particle-hole symmetry anyway. This drastically simplifies the study as
the SFT grand potential ⌦[⌃V ] can be regarded as a function of a single variational parameter
V only.
Fig. 10 (left) displays the SFT grand potential, shifted by µN , per correlated site as a function
of V for different U . For weak interactions U < Uc2 ⇡ 6.35 there is a stationary point (a
minimum) at a comparatively large V

opt

which describes a metallic phase (blue dots). The
metallic character of the phase can be inferred from the finite value of the imaginary part of
the local Green’s function ImGii�(i!) for ! ! 0 (see Ref. [57]). Above the critical value Uc2

no metallic solution can be found. There is, however, an insulating phase for strong U (red
dots). The respective stationary point (a minimum) of the SFT grand potential is found at a


