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Outline 

�  Functional approach: from DFT to DMFT 

�  Local correlations: DMFT and beyond 

�  LDA+DMFT scheme for real materials 

�  Problem of  double counting 



From  
Atom  

to  
Solids 



Spectral function: Correlations effects 

Free electrons Correlated electrons 

ARPES 



Computational Material Science 

�  Starting from  
Schrödinger? 

�  Kohn  Density 
Functional Theory 
(DFT)   of  
inhomogeneous 
electron gas in solids        

�  Strongly correlated 
electron systems ? 
Dynamical Mean-Field 
Theory (DMFT)  



The Theory of  Everything 

Atomic Units: 

Hamiltonian for multi-fermionic system in field-operators: 

Coilomb interaction: 

Second quantisation operators in orthonormal basis: 

Wannier Basis:               with site, orbital andspins quantum numbers 
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Path Integrals for Fermions 

Fermions second-quantization operators (Pauli principle) 

Algebra of  Grassmann anti-commuting numbers: 

Grassmann numbers anticommute with fermionic operators 

Short introduction from Alexei Kamenev  
“Field Theory of  Non-Equilibrium Systems” (Cambridge, 2011)  



Grassmann calculus 

Example: 

Differentiation: 

Integration:                                   (equivalent to differetition) 

N.B. order: 



Coherent State 

Proof  

Diefinition of  coherent states 

Left Coherent State:        is just another Grassman number  
 
                                        (NOT a complex conjugate) 

Eigenstate of  annihilation operator 



Unity operator in coherent states 

Proof  

Resolution of  Unity 

Overlap of  Coherent States (non-orthogonal) 



Trace of  Fermionic Operators 

''Minus'' due to commutation Left and Right coherent state  

Trace-formula 

Matrix elements of  normally ordered operators 



Partition Function in Path Integral 

Continuous time limit with BC:  

Using Trace Formula 

Partition Function 
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Z = Tre��(Ĥ�µN̂) (31)

Z =
Z Z NY

i=1

[dc⇤i dci] e
�
PN

i=1
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Z = Tre��(Ĥ�µN̂) (31)

Z =
Z Z NY

i=1

[dc⇤i dci] e
�
PN

i=1
c⇤i ci h⇠c| e��(Ĥ�µN̂) |ci (32)

Discretize [0, �] interval with N-points � = �/N

Z =
Z

(0=⇠N)

NY

i=1

[dc⇤i dci] e
��

PN�1

i=0
c⇤i (ci�ci+1)/�+H(c⇤i+1ci)�µN(c⇤i+1ci) (33)

Continuous time limit with boundary condition: c(0) = ⇠c(�) ⇠ = �1 for
fermions

Z =
Z
D [c⇤c] e�S[c⇤,c] (34)

3

Proof:

Z Z
dc⇤dce�c⇤c |ci hc| =

Z Z
dc⇤dc (1� c⇤c) (|0i � c |1i) (h0|� h1| c⇤) =(27)

= �
Z Z

dc⇤dcc⇤c (|0i h0|+ |1i h1|) = 1̂ (28)

Matrix elements of normally ordered operators:

hc⇤| cH(bc+, bc) |ci = H(c⇤, c) hc⇤| ci = H(c⇤, c)ec
⇤c (29)

Trace-formula:

Tr
⇣
bO
⌘

=
X

n=0,1

hn| bO |ni =
X

n=0,1

Z Z
dc⇤dce�c⇤c hn| ci hc| bO |ni =

=
Z Z

dc⇤dce�c⇤c
X

n=0,1

h�c| bO |ni hn| ci =
Z Z

dc⇤dce�c⇤c h�c| bO |ci

”Minus” due to commutation Left (c⇤) and Wright (c) coherent state since
c⇤c = �cc⇤

|�ci = |0i+ c |1i (30)

Partition function:

Z = Tre��(Ĥ�µN̂) (31)

Z =
Z Z NY

i=1

[dc⇤i dci] e
�
PN

i=1
c⇤i ci h⇠c| e��(Ĥ�µN̂) |ci (32)
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Z = Tre��(Ĥ�µN̂) (31)

Z =
Z Z NY

i=1

[dc⇤i dci] e
�
PN

i=1
c⇤i ci h⇠c| e��(Ĥ�µN̂) |ci (32)
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Correlation Function: U=0 

Single-particle correlation function: 

Using: 

Change of  variables 

Two-particle correlation function: 



Path Integral for Everything 

One- and two-electron matrix elements: 

Euclidean action 

Shot notation: 



One- and Two-particle Green Functions 

Vertex function: 

One-particle Green function 

Two-particle Green function (generalized susceptibilities) 

1 2 



Baym-Kadanoff  functional 

Partition function and Free-energy: 

Source term 

Legendre transforming from J to G: 

Decomposition into the single particle part and correlated part 

= 



Functional Family 

Exact representation of Φ: Vα
ee=α Vee 

Different Functionals and constrained field J: 

G=ρ     J=V=Vh+Vxc  DFT 
G=G(iω)    J=Σloc(iω)   LDA+DMFT 
G=G(k,iω)    J=Σ(k,iω)   GW+EDMFT 

G. Kotliar et. al. RMP (2006), A. Georges (2004) arXiv:0403123  



DFT: KS-equation (1965) 
Effective one-electron Schrödinger-like equation: 

Hartree potential: 

Energy Functional: 
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KS-kinetic energy: 



DMFT-functional and beyond 

Start from  
Correlated Lattice 

Find the optimal 
Reference System  
Bath hybridization 

Expand around 
DMFT solution 



Dual Fermion scheme 

A. Rubtsov, et al, PRB 77, 033101 (2008) 

General Lattice Action 

Reference system: Local Action with hybridization Δω	


Lattice-Impurity connection: 



Dual Fermions 
Gaussian path-integral 

With  
new Action: 

Diagrammatic: 

gν and χω,ν,ν’ from CT-QMC impurity solver 
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Dual boson approach to collective excitations in correlated fermionic systems

A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein
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Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = ⟨c1c2c
∗
3c

∗
4⟩S =

1

Z

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
1

Z[J ]

δZ[J ]

δJ12

∣

∣

∣

∣

J=0

=
δF [J ]

δJ12

∣

∣

∣

∣

J=0

. (12)

Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).



Condition for Δ and relation to DMFT 
To determine Δ, we require  
that Hartree correction in dual variables vanishes. 
If no higher diagrams are taken into account, one obtains DMFT: 

Higher-order diagrams give corrections to the DMFT self-energy,  
and already the leading-order correction is nonlocal. 

Gd=GDMFT-g 
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Figure 11.7: Diagrammatic representation of the dual self-energy in the ladder approximation.
The diagrams are shown with their corresponding signs and prefactors. All higher-order terms
in the expansion of Σd have the same prefactor.

attaching a line either to the vertex in the electron-hole or vertical channel (without
adding the Hartree-Fock contribution). The two possibilities are related through
(11.28). However, this leads to overcounting of the second-order contribution (6.21).
Unlike all other diagrams which are associated with a prefactor of −1, the second-order
contribution appears with a prefactor of −1/2. It is therefore explicitly subtracted in
(11.34). This overcounting is also encountered in the case of Hugenholtz diagrams
[178, 53]. Although the horizontal and vertical channels are equivalent in the an-
tisymmetrized technique, they have to be added here in order to obtain the correct
prefactor of the diagrams (1 instead of 1/2). Note further that the LDFA equations
are related to FLEX. In particular, the FLEX equations for the Hubbard model
can be recovered by a suitable replacement of the interaction and Green functions.
Replacing the bare dual Green functions by G−1

ω (k) = iω + µ − hk and the vertex such
that − 1

4γ1234 = +
1
4U(δ12δ34−δ14δ32) (a factor 1/2 comes from the antisymmetrization) or

γ1234 = −U(δ12δ34 − δ14δ32) , (11.35) γ = −
1

2 3

4

generates the FLEX equations for the Hubbard model [175, 176], which here are formu-
lated in terms of an antisymmetrized interaction2 As is obvious from the construction,
the ladder dual fermion approach is actually the fluctuation-exchange approximation
to dual fermions. This terminology is misleading however, as the LDFA goes far
beyond the conventional FLEX. Most notably, as will be shown below, the LDFA is
also applicable for strong coupling.

The ladder diagrams describe multiple scattering of particle-hole pairs. In the mag-
netic channel, the collective excitations are magnons. The approximation to the full
vertex includes both longitudinal and transverse modes. Note that Γσσ′ contributes to
the longitudinal spin susceptibility χzz (z is the quantization axis), while Γσσ̄ contributes
to χ± := ⟨S ±S ∓⟩ (recall that S ± = S x+ iS y) and hence to the transverse response. Due to
the equivalence between two-particle excitations of dual and lattice fermions, one may

2The negative sign on U in (11.35) is due to the fact that the lowest order term in the dual potential
corresponds to a formally attractive interaction

5

The non-interacting (α = 0) part of the Γ-functional
is readily evaluated as

Γα=0 = Tr ln(−G)− Tr(G−1
0 −G−1)G

−
1

2
Tr lnW +

1

2
Tr(v−1 −W−1)W. (14)

Indeed, when α = 0, the action becomes Gaus-
sian and thus explicitly integrable, namely: Ωα=0 =
− lnDet[−G−1

0 + Jf ] − ln(Det[v−1 − Jb])1/2. The above
definition G = δΩ/δJf imposes (G−1

0 − Jf)G = 1 and
similarly (v−1 − Jb)W = 1 yielding Eq. (14). Finally,
stationarity of the full Γ reads δΓ

δG = 0 = δΓα=0
δG + δΨ

δG =
G−1 − G−1

0 + δΨ
δG for G and 0 = − 1

2 (W
−1 − v−1) + δΨ

δW
for W . Defining the self energies as

Σ =
δΨ

δG
, Π = −2

δΨ

δW
, (15)

yields Dyson’s equations for G and W :

G−1 = G−1
0 − Σ, W−1 = v−1 −Π. (16)

Being “Ψ-derivable”, these self-energies will obey conser-
vation rules.47

The above formulation shows that, formally, solving
the lattice problem defined by Eq. (17) amounts to eval-
uating the correspondingΨ-functional, from which Σ and
Π, and in turn G and W can be derived. In section III,
we will describe two complementary ways of approximat-
ing this functional, EDMFT and GW, before showing
how to merge the two approaches, thus arriving at the
GW+DMFT free energy functional.

2. “V-Decoupling”: The ΨV Functional

In the HS-V scheme, proposed in Ref. 14, only the
non-local interaction term is decoupled via an auxiliary
bosonic field φi. Choosing bi ≡ ini, Aij ≡ vnlij and xi ≡
φi, the transformation (7) applied to the action (2) leads
to

S[c∗, c,φ] =

∫ β

0
dτ

{

−
∑

ijσ

c∗iσ(τ)
[

G−1
0

]

ij
cjσ(τ)

+ αU
∑

i

ni↑(τ)ni↓(τ)

}

+

∫ β

0
dτ

{

1

2

∑

ij

φi(τ)[(v
nl)−1]ijφj(τ) + iα

∑

i

φi(τ)ni(τ)

}

,

(17)

where we introduced the non-interacting fermionic lattice
Green function G0 defined by

[

G−1
0

]

ij
≡ ((−∂τ +µ)δij −

tij). Again, a coupling constant α was introduced, and
the physical case corresponds to α=1. Now, however, the
coupling constant is not only a switch for turning on or

off the fermion-boson coupling but at the same time also
the local Hubbard interaction.

In principle, the interaction should be a positive def-
inite matrix in order for the Gaussian integrals invoked
in the HS transformation to converge. Unlike the situa-
tion in the HS-UV decoupling where U and V are matrix
elements of the screened Coulomb interaction, which is
positive definite, this is not the case for the interaction
of HS-V, vnlij . This issue can be dealt with by adding
an auxiliary identity matrix multiplied by a large enough
constant.14 In practice, however, the simulation results
are not affected by the value of this constant.

As before, the generating functional of correlation
functions is obtained by introducing source terms. The
fermionic Green’s functions for this action is unchanged
compared to the UV-decoupling case: Gij(τ − τ ′) =

−⟨Tci(τ)c
†
j(τ

′)⟩ = δΩ/δJf,ij(τ, τ ′). The bosonic propa-
gator formally still reads Dij(τ − τ ′) = ⟨Tφi(τ)φj(τ ′)⟩ =
−2δΩ/δJb,ij(τ, τ ′). It does not, however, correspond to
the screened interaction, as in the HS-UV scheme: in
the case of vanishing fermion-boson coupling, the bosonic
propagator reduces by construction to only the non-local
part of the bare interaction.

The construction of the free energy functional Γ pro-
ceeds as before by Legendre transformation with respect
to the sources Jf and Jb,

ΓV [G,D] = Ω[Jf [G], Jb[D]]− TrJfG+
1

2
TrJbD, (18)

with the reciprocity relations Jf = − δΓV

δG and Jb = 2 δΓV

δD .
The physical Green’s functions will be obtained by set-
ting Jf = 0 and Jb = 0, or equivalently, by requir-
ing the stationarity of ΓV with respect to G and D.
Thanks to the choice of the coupling constant α in front
of the interaction and boson-fermion coupling terms,
α (U

∑

ni↑ni↓ + i
∑

i φini), ΓV acquires the same form

as before, ΓV,α=1 = ΓV,α=0 +ΨV , with ΨV ≡
∫ 1
0 dαdΓV

dα ,
but it is now a functional of G and D.
The non-interacting (α = 0) part of the Γ-functional

reads

ΓV,α=0 = Tr ln(−G)− Tr(G−1
0 −G−1)G

−
1

2
Tr lnW +

1

2
Tr((vnl)−1 −D−1)D. (19)

Finally, stationarity of the full ΓV reproduces the
fermionic Dyson equation for the Green’s function and
self-energy. For the bosonic part, however, we obtain
0 = − 1

2 (D
−1 − (vnl)−1) + δΨV

δD for D. The bosonic self-
energy

ΠV = −2
δΨV

δD
, (20)

is thus not equal to the physical polarization of the sys-
tem.

Again, solving the lattice problem defined by Eq. (17)
amounts to evaluating the corresponding ΨV -functional,

à la impurity T-matrix 
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Figure 6.3: Diagrams contributing to the dual self-energy Σd. Diagrams a), a’), a”) and c) give
local, the other ones nonlocal contributions. The three diagrams labeled by a) do not contribute
in case the condition (6.44) is fulfilled.

which involves the local single-particle Green function gω of the impurity problem.
Up to now (6.16) is merely a reformulation of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. To
this end, the perturbation series expansion and the series for the dual potential need to
be terminated at some point.

Several diagrams that contribute to the dual self-energy are shown in Fig. 6.3. The
diagrams are constructed from the impurity vertices and dual Green functions as lines.
The first diagram (a) is purely local, while higher orders contain nonlocal contributions,
e.g. diagram b). Using self-energy diagrams instead of those for the Green function
allows to sum an infinite partial series for Green’s function by application of the Dyson
equation, in the usual way. Inserting the renormalized Green function into diagram a)
includes contributions such as the one in a’). Approximations to the self-energy are
constructed in terms of skeleton diagrams. The lines shown in Fig. 6.3 are therefore
understood to be interacting (renormalized) dual Green functions. The use of skeleton
diagrams is necessary to ensure the resulting theory to be conserving in the Baym-
Kadanoff sense [61], i. e. it fulfills the basic conservation laws for energy, momentum,
spin and particle number. In general, an approximation for the single-particle Green
function, obtained from Dyson’s equation, is conserving if the self-energy can be writ-
ten as a functional derivative of a generating functional [143]. The Hartree-Fock and
the fluctuation-exchange approximation (FLEX, see chapter 11) are such conserving
approximations. For dual fermions

Σd =
δΦd

δGd . (6.18)

The first two lowest-order contributions to the dual Luttinger-Ward functionalΦd[Gd; V]
are shown in Fig. 6.4, together with the corresponding self-energy diagrams. Dia-
grammatically, the functional derivative with respect to Green’s function corresponds to
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The non-interacting (α = 0) part of the Γ-functional
is readily evaluated as

Γα=0 = Tr ln(−G)− Tr(G−1
0 −G−1)G

−
1

2
Tr lnW +

1

2
Tr(v−1 −W−1)W. (14)

Indeed, when α = 0, the action becomes Gaus-
sian and thus explicitly integrable, namely: Ωα=0 =
− lnDet[−G−1

0 + Jf ] − ln(Det[v−1 − Jb])1/2. The above
definition G = δΩ/δJf imposes (G−1

0 − Jf)G = 1 and
similarly (v−1 − Jb)W = 1 yielding Eq. (14). Finally,
stationarity of the full Γ reads δΓ

δG = 0 = δΓα=0
δG + δΨ

δG =
G−1 − G−1

0 + δΨ
δG for G and 0 = − 1

2 (W
−1 − v−1) + δΨ

δW
for W . Defining the self energies as

Σ =
δΨ

δG
, Π = −2

δΨ

δW
, (15)

yields Dyson’s equations for G and W :

G−1 = G−1
0 − Σ, W−1 = v−1 −Π. (16)

Being “Ψ-derivable”, these self-energies will obey conser-
vation rules.47

The above formulation shows that, formally, solving
the lattice problem defined by Eq. (17) amounts to eval-
uating the correspondingΨ-functional, from which Σ and
Π, and in turn G and W can be derived. In section III,
we will describe two complementary ways of approximat-
ing this functional, EDMFT and GW, before showing
how to merge the two approaches, thus arriving at the
GW+DMFT free energy functional.

2. “V-Decoupling”: The ΨV Functional

In the HS-V scheme, proposed in Ref. 14, only the
non-local interaction term is decoupled via an auxiliary
bosonic field φi. Choosing bi ≡ ini, Aij ≡ vnlij and xi ≡
φi, the transformation (7) applied to the action (2) leads
to

S[c∗, c,φ] =

∫ β

0
dτ

{

−
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ijσ

c∗iσ(τ)
[

G−1
0
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ij
cjσ(τ)

+ αU
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i

ni↑(τ)ni↓(τ)

}

+

∫ β

0
dτ

{

1
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∑

ij

φi(τ)[(v
nl)−1]ijφj(τ) + iα

∑

i

φi(τ)ni(τ)

}

,

(17)

where we introduced the non-interacting fermionic lattice
Green function G0 defined by

[

G−1
0

]

ij
≡ ((−∂τ +µ)δij −

tij). Again, a coupling constant α was introduced, and
the physical case corresponds to α=1. Now, however, the
coupling constant is not only a switch for turning on or

off the fermion-boson coupling but at the same time also
the local Hubbard interaction.

In principle, the interaction should be a positive def-
inite matrix in order for the Gaussian integrals invoked
in the HS transformation to converge. Unlike the situa-
tion in the HS-UV decoupling where U and V are matrix
elements of the screened Coulomb interaction, which is
positive definite, this is not the case for the interaction
of HS-V, vnlij . This issue can be dealt with by adding
an auxiliary identity matrix multiplied by a large enough
constant.14 In practice, however, the simulation results
are not affected by the value of this constant.

As before, the generating functional of correlation
functions is obtained by introducing source terms. The
fermionic Green’s functions for this action is unchanged
compared to the UV-decoupling case: Gij(τ − τ ′) =

−⟨Tci(τ)c
†
j(τ

′)⟩ = δΩ/δJf,ij(τ, τ ′). The bosonic propa-
gator formally still reads Dij(τ − τ ′) = ⟨Tφi(τ)φj(τ ′)⟩ =
−2δΩ/δJb,ij(τ, τ ′). It does not, however, correspond to
the screened interaction, as in the HS-UV scheme: in
the case of vanishing fermion-boson coupling, the bosonic
propagator reduces by construction to only the non-local
part of the bare interaction.

The construction of the free energy functional Γ pro-
ceeds as before by Legendre transformation with respect
to the sources Jf and Jb,

ΓV [G,D] = Ω[Jf [G], Jb[D]]− TrJfG+
1

2
TrJbD, (18)

with the reciprocity relations Jf = − δΓV

δG and Jb = 2 δΓV

δD .
The physical Green’s functions will be obtained by set-
ting Jf = 0 and Jb = 0, or equivalently, by requir-
ing the stationarity of ΓV with respect to G and D.
Thanks to the choice of the coupling constant α in front
of the interaction and boson-fermion coupling terms,
α (U

∑

ni↑ni↓ + i
∑

i φini), ΓV acquires the same form

as before, ΓV,α=1 = ΓV,α=0 +ΨV , with ΨV ≡
∫ 1
0 dαdΓV

dα ,
but it is now a functional of G and D.
The non-interacting (α = 0) part of the Γ-functional

reads

ΓV,α=0 = Tr ln(−G)− Tr(G−1
0 −G−1)G

−
1

2
Tr lnW +

1

2
Tr((vnl)−1 −D−1)D. (19)

Finally, stationarity of the full ΓV reproduces the
fermionic Dyson equation for the Green’s function and
self-energy. For the bosonic part, however, we obtain
0 = − 1

2 (D
−1 − (vnl)−1) + δΨV

δD for D. The bosonic self-
energy

ΠV = −2
δΨV

δD
, (20)

is thus not equal to the physical polarization of the sys-
tem.

Again, solving the lattice problem defined by Eq. (17)
amounts to evaluating the corresponding ΨV -functional,

Σ(k,ω)= ΣDMFT(ω)+Σ(k,ω)/[1+gΣ(k,ω)] ~ ~ 

~ 
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by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite

partial series of all local diagrams, starting from the first term in Fig. 5. These contributions are

effectively absorbed into the impurity problem. Note that such an expansion is not one around

DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (19) that for a theory, which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.

The action (29) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram in

Fig. 5, which contains a single closed loop

Σ̃(1)
12 = −T

∑

34

γ1324 G̃
loc
43 (34)

where G̃loc = (1/Nk)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented in Fig. 5 contains two equivalent lines and one closed loop, and

1.12 Alexander Lichtenstein

hence is k-dependent

Σ̃(2)
12 (k) = −

1

2

(

T

Nk

)2
∑

k1k2

∑

345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[

(

gω + gωΣ̃ω(k)gω
)−1

+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)
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rk<
rk+1
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2k + 1

k
∑

q=−k

Yqk(θ
′,φ′)Y ∗

qk(θ,φ), (1.5.5)

where as usual r< (r>) is the smaller (larger) of r and r′. In what follows we limit the
general consideration of the matrix elements of the Coulomb interaction, found, e.g., in
Refs. [392, 396], to the case of one electronic shell, i.e. one specific n and l with the only
remaining variable m. An example is the 3d shell (n = 3; l = 2;m = −2,−1, 0, 1, 2),
so important for the properties of the transition metals of the iron series. Inserting the
expansion from Eq. (1.5.5) into Eq. (1.5.4), we write the expectation value in bra-ket
notation for brevity, one obtains the angular integrals

4π

2k + 1

k
∑

q=−k

⟨m|Yqk(θ
′,φ′)|m′⟩ ⟨m′′|Y ∗

qk(θ,φ)|m
′′′⟩ =: ak(mm′;m′′m′′′),

that we call, following Slater, ak(mm′;m′′m′′′) [392, 396]. These contain integrals over
products of three spherical harmonics, that can be expressed via Wigner 3 − j symbols
[427]. The radial integrals [392, 396] also simplify for the case of fixed n and l to

F k := F k(nl;nl) =

∫

dr r2
∫

dr′(r′)2R2
nl(r)

rk<
rk+1
>

R2
nl(r

′).

Thus, combining the angular and radial parts, the Coulomb interaction matrix for the case
of a spherically symmetric atom can be written in short as

Umm′m′′m′′′ =
2l
∑

k=0

ak(mm′,m′′m′′′)F k.

In practice one usually parametrizes the Coulomb interaction by using only two parame-
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Correlated Electrons: Fluctuations 

Fluctuation of  charge, spin and orbital degrees of  freedom 
related with complex behavior of  correlated electronic systems 



DMFT: Charge+Spin+Orbital Fluctuations 
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Realistic theory of   
correlated electron systems 

DFT 

�  Material specific 

�  Structure specific 

�  Fast code packages 

�  Complex structures 

�  Fails for strong correlations 

Model based approaches 

�  Input parameters unknown 

�  Versatile 

�  Systematic many body schemes 

 



Comparison of  LDA and realistic DMFT 

5.8 Alexander Lichtenstein

Table 1: Comparison of LDA and realistic DMFT schemes

LDA LDA+DMFT

Density functional Baym-Kadanoff functional

Density ⇢(r) Green-Function G(r, r0,!)

Potential Vxc(r) Self-energy ⌃i(!)

Etot = Esp � Edc ⌦ = ⌦sp �⌦dc

Esp =
P

k<kF
"k ⌦sp = �Tr ln[�G�1

]

Edc = EH +

R
⇢Vxcdr� Exc ⌦dc = Tr⌃G� �LW

structure of solids.

In principle, there are two ways to include them into DFT calculations. The first one is the use of
time-dependent DFT formalism which can guarantee, in principle, an opportunity to calculate
exact response functions [21], in the same sense as the Hohenberg-Kohn theorem guarantees
the total energy in usual “static” DFT [5]. However, all the expressions for this time-dependent
non-local DFT in real calculations are based on RPA-like approximations which describes not
satisfactory the really highly correlated systems. They are excellent for investigation the plas-
mon spectrum of aluminum, but not for understanding the nature of high-Tc superconductivity
or the heavy fermion behavior. Another way is to use an “alternative” many-body theory devel-
oped in the 50-th by Gell-Mann and Brueckner, Galitskii and Migdal, Beliaev and many others
in terms of the Green functions rather than of the electron density [22]. We try to formulate such
computational approach as a generalization of LDA+U scheme, the so-called “LDA+DMFT”
method. The main difference between the LDA+DMFT approach and the LDA+U method
is that in the former dynamical fluctuations, or the real correlation effects, are accounted for
described by local but energy dependent self-energy ⌃(!).

The comparison of the standard DFT theory in the local density approximation (LDA) and
LDA+DMFT approach is represented in the table I. First of all the LDA theory is based on the
Hohenberg - Kohn theorem that the total energy Etot is a functional of charge and spin densi-
ties, while the LDA+DMFT scheme considers the thermodynamic potential ⌦ as a functional of
exact one-particle Green functions. This approach in many-particle theory has been introduced
in the works by Luttinger and Ward [23] and Baym and Kadanoff [24]. The Green function in
LDA+DMFT theory plays the same role as the density matrix in LDA formalism. We stress the
dynamical nature of the correlation effects which are taken into account in the LDA+DMFT ap-
proach since the density in the LDA is just the static limit of the local Green function. Further,
the self energy ⌃ is analogous to the exchange-correlation potential; local approximation for ⌃,
which is assumed to be energy-dependent but not momentum-dependent corresponds to the lo-
cal approximation for Vxc. In both formalisms the thermodynamic potential can be represented



From Atom to Solid 
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General Projection formalism for LDA+DMFT 
Del oca l iz ed	  s ,p-‐s t a t es

Cor r el a t ed	  d,f -‐s t a t es

G. Trimarchi, et al. JPCM  20,135227 (2008) 
B. Amadon, et al. PRB 77, 205112 (2008)  
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PAW: Projection windows 
Example: SrVO3 
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Correlated d-states: 

V. Anisimov, A. Poteryaev et al, JPCM 9, 7359 (1997) 
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Slater parametrization of  U 
Multipole expansion:  

Coulomb matrix elements in Ylm basis: 

Slater integrals: 

Angular part – 3j symbols 



Constrain GW calculations of  U 

F. Aryasetiawanan et al 
 PRB(2004) 

Polarisation 



Wannier - GW and effective U(ω) 
T. Miyake and F. Aryasetiawan  
Phys. Rev. B 77, 085122 (2008)  

C-GW 

GW 



Continuous Time Quantum Monte Carlo 

Partition function: 

Continuous Time Quantum Monte Carlo (CT-QMC) 

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011) 



 Weak coupling QMC: CT-INT 

A. Rubtsov, 2004 



Random walks in the k-space 
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Strong-Coupling Expansion CT-HYB 

P. Werner, 2006 



Strong-Coupling Expansion CT-HYB 

P. Werner, 2006 



Comparison of  different CT-QMC 
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Hybridization function Co on/in Cu(111) 

•  Hybridization of Co in bulk twice 
stronger than on surface 

•  Hybridization in energy range of Cu-d 
orbitals more anisotropic on surface 

•  Co-d occupancy: n= 7-8 
B. Surer, et al PRB (2012)  



Orbitally resolved Co DOS from QMC 

Orbitally resolved DOS of  the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at 
temperature.  T = 0.025 eV and chemical potential μ = 27 eV and μ = 28 eV, respectively. 

All Co d-orbitals contribute to LDOS peak near EF=0 

B. Surer, et al, PRB (2012). 



Double counting in LDA+DMFT 

�  Analytic models 
�  Around mean field 

�  Fully localized limit 

�  Constraint on particle number 

�  Constraint on self-energy 
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Choice of  double counting in LDA+DMFT 
Shift of  chemical potential for correlated state 

Natural choice               :  
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NiO – a charge transfer system 
�  LDA band structure (paramagnetic) 

 

�  Ni-3d orbitals as correlated subspace 

�  O-2d orbitals as uncorrelated subspace 

Ni-3d 

O-2p 



Charge transfer TMO insulators 

Zaanen-Sawatzky-Allen  
(ZSA) phase diagram 

Phys. Rev. Lett. 55, 418 (1985) 



NiO – double counting 

Total particle number (color encoded) as function of  
chemical potential µ and double counting µDC 

(eV) 
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V
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Exp-fit 



NiO: peak positions and spectral weights 

FLL AMF 

exp 

M. Imada, A. Fujimori, and Y. Tokura 
Rev. Mod. Phys. 70, 1039 (1998). 
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Spectral functions and double counting 

Mott insulator 

Charge transfer insulator 

Almost metallic 

eV21DC =µ
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µDC ≥ 26eV



NiO: Spectral Function 

Z.X. Shen,et al PRB  (1991) 
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Full-potential LDA+DMFT: DC problem 

FLDA+DMFT= LDA + DMFT- DC 

= + - 

= + - No 

Yes 

S. Dudarev et. A. PRB 57, 1505 (1998) 

Spherical RI-LDA+U 

Interchange –possible! 



Strong correlations and Magnetism 

P. Werner, et al, PRB 86, 205101 (2012) 

V. Janis, et al, EPL 24, 287 (1993) 
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Formation of  Local Moments and AFM correlations 
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Itinerant ferromagnetism 

Stoner 

T=0 

T<Tc 

T>Tc 

Heisenberg Hubbard 

clean system. The problem is particularly acute in the
case of high-temperature superconductors, where
some researchers claim that disorder effects are mask-
ing phase transitions that are crucial to understanding
the origin of the superconducting behaviour. This dou-
ble difficulty – not being able to make the samples per-
fectly clean, and not knowing theoretically what they
would do if they were – is at the core of much of modern
condensed-matter physics.

Enter cold atoms
The task of predicting the behaviour of the Hubbard
model in two or three dimensions is daunting. The 1D
case is special because in order for two electrons to pass
each other, they must actually pass through each other.
This simplifies the problem in the same way that queu-
ing simplifies the post office: it allows theorists (or post-
office staff) to deal with one interaction event at a time.
This simplification allows theorists to formulate a very
large number of conservation laws, and the solution of
the 1D problem is built on these.

The 2D problem is qualitatively different. It has so
far resisted exact solution, and the approximations that
theorists are forced to make to “solve” it are quite
crude. For example, a common approach is to assume
that “fast” electrons in the material are moving through

a “slow” magnetic background. But in the Hubbard
model there is really only one intrinsic timescale, so it is
difficult to justify these techniques. It is also far from
clear that these methods are sufficient to capture the
essential physics. Conventional computer simulations
also face formidable obstacles, as the complexity of the
problem grows very quickly with the size of the system.
In practice, only a few lattice sites containing a hand-
ful of particles can be simulated directly; even with the
fastest supercomputers, the full Hubbard model (with-
out approximations) can only be simulated in simple
systems like 16 atoms arranged in a 4×4 lattice.

But help may be at hand from an unlikely quarter:
atomic physics. Ultracold atoms trapped in crossed
laser beams (an “optical lattice”) can, under certain
circumstances, also be described by the Hubbard
model. In such cold-atom systems, atoms play the role
of electrons, and the optical lattice supplies the peri-
odic potential in which they move – an “artificial crys-
tal of light”, as atomic physicist Immanuel Bloch of 
the University of Mainz in Germany described it in
Physics World (April 2004 pp25–29). The same quan-
tum-mechanical rules that govern electrons in a metal
also apply to the atoms in the “crystal”. This means that
these atomic systems could in principle be used as a
kind of analogue computer to examine the behaviour of

Those who knew John Hubbard describe him as
a very shy man – to the point that others, who
did not know him so well, may have perceived
him as somewhat aloof. Born on 27 October
1931, Hubbard was educated first at Hampton
Grammar school and then at Imperial College,
London, where he obtained his PhD in 1958
under Stanley Raimes. Unusually for his time
and social context, he lived with his parents in
Teddington throughout his university education.

At the end of his PhD, Hubbard was recruited
to the Atomic Energy Research Establishment in
Harwell, Oxfordshire, by Brian Flowers, who was
then heading the theory division. An anecdote
from this period of Hubbard’s career illustrates
his retiring personality. While at Imperial,
Hubbard had dealt with the project assigned to
him for his PhD fairly quickly, and had then
looked for a more challenging problem. At the
time, quantum-field-theory methods, particularly
Feynman diagrams, were being applied to
problems in many-body theory. However, it was
difficult to bring the same methods to bear on
the many-electron problem – relevant to 
solid-state systems – because the Coulomb
interaction between electrons made quantities
like the total energy diverge.

Hubbard realized that these divergences
could be controlled: the trick was to sum up an
infinite series of a particular class of Feynman
diagrams. When Hubbard arrived in Harwell, he
mentioned this to Flowers, who wanted to see
the paper. Alas, there was no paper, Hubbard
explained, because when he was about to write

it up he saw an article by other researchers who
had introduced a different method to solve the
same problem. Hubbard had found their
method physically appealing, checked privately
that their results coincided with his, and
concluded there was no need for an additional
publication on the topic. Flowers then issued an
explicit order that Hubbard should publish his
groundbreaking work.

Hubbard’s most famous papers are the series
he wrote on his eponymous model, starting in
1963. He was not the only one working on the
strong-correlations problem: some months
earlier, Takeo Izuyama, working at Nagoya
University, and Duk-Joo Kim and Ryogo Kubo, 
at the University of Tokyo, both in Japan, had
argued that a proper description of correlations
in metals with strong electron–electron
interactions could explain the observed 
spin-wave spectrum. Martin Gutzwiller, who was
then working at IBM’s research laboratories in
Zürich, had also produced essentially the same

model. Yet it was Hubbard’s calculations that
showed that the model that now bears his name
could in fact describe both the metallic and
insulating behaviour as two extremes of the
same thing. His application of a Green’s function
technique to the model was a template for many
other works in condensed-matter theory, and his
papers from that time contain many crucial
insights, such as the existence of so-called
Hubbard bands that are a main feature of our
current understanding of Mott insulators.

Eventually, Hubbard became the leader of 
the solid-state theory group at Harwell, and 
Walter Marshall succeeded Flowers as head of
the theory division. Unlike the shy Hubbard,
Marshall, who was also an excellent theorist,
was very proactive in hunting for personnel and
for funding. This was a blessing in disguise for
Hubbard, as Marshall ignored Hubbard’s
reticence completely and kept “parachuting”
postdocs into his group.

Hubbard left the UK for the US in 1976,
following Marshall's promotion to director of the
Atomic Energy Research Establishment and a
subsequent major reform of its facilities in
Harwell. He joined Brown University and the 
IBM Laboratories in San José, California, where
his research focused on the study of critical
phenomena: phase transitions near which
universal behaviour, independent of material-
specific properties, is observed. He died, aged
just 49, in San José on 27 November 1980.
(Main source: Stephen Lovesey, private
communications)

John Hubbard: the man behind the model
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DMFT model of  ferromagnetism 

D. Vollhardt, et. al., 

In:Bandferromagnetism, 

Springer, 2000 

DOS-peaks Band degeneracy 

W=4 
U =6 
V0=4 
F0=2 



LDA+Disordered Local Moments 

J. Staunton and B. Gyorffy 
     PRL69, 371 (1992)  

The best first-principle 
Spin-fluctuation model 
with classical moments 

DLM 

EXP 

DLM 

EXP 



Spectral Function Fe: ARPES vs. DMFT 

SP-ARPES (BESY) 
J. Sánchez-Barriga,  
et al, PRL (2010) 
 



Magnetism of  metals: LDA+DMFT 

A. L., M. Katsnelson and G. Kotliar, PRL87, 067205 (2001) 
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Satellite structure in Ni 
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FIG. 2. (color online) Spin-resolved d -orbital spectral function of

bulk Ni obtained with UH D 15 eV. The middle panel corresponds

to the full Coulomb vertex, the bottom panel to the truncated vertex.

The atomic d9 ! d8 transitions are displayed at an arbitrary scale

and position in the middle panel for comparison with the shape of

the satellite. The top panel shows the d -orbital occupation in the first

5000 many-body final states corresponding to the cluster Hamiltonian

with the full vertex.

it is thus more than 1 eV too small to be applicable in our case.
The so-called around mean-field form26 of UH, which should
nominally be more accurate in a metallic system like nickel,
provides an even smaller and hence less appropriate value.

The experimentally determined magnetization of the fcc
nickel is approximately 0.6 !B per atom.35 Our calculations
slightly underestimate this quantity even though the cluster
solution, from which the spin-dependent selfenergy is ex-
tracted, displays the maximal polarization characterized by
md D 5 ! nd#.

The number of d electrons cannot be unambiguously defined
in a solid and as such it does not represent a particularly useful
measure of quality of our ground state. The d -band filling in
nickel is often estimated as 9.4 per atom based on the measured
magnetic moment and the assumption of the maximal d -shell
polarization,36 but reliability of this estimate is limited.

B. Valence-band spectrum

We find that one-particle spectra corresponding to the
double-counting potential UH in the range 15:0 ˙ 0:5 eV are
only barely distinguishable. Figure 2 shows the d -orbital spec-
tral function Im

P

m

!

Gm! .E ! i0/
"

=" for UH D 15 eV. The
displayed result is relatively disappointing: the width of the
main band (" 4 eV) as well as the exchange splitting are nearly
identical to those obtained with the spin-polarized LDA, and
thus share the same poor agreement with experiments. The
symmetry-resolved exchange splitting at the Fermi level is
given directly by the selfenergy and reads as

†eg".EF/ ! †eg".EF/ " 0:3 eV, (11)

†t2g".EF/ ! †t2g".EF/ " 0:8 eV. (12)

The d states near the Fermi level have predominantly the t2g

character, which leads to the apparent exchange splitting of
0:6 eV indicated with arrows in Fig. 2.

We identify the spectral features below 4:5 eV as the “6 eV
satellite”. It is strongly spin polarized in agreement with spin-
resolved photoemission experiments.37 In our calculations, the
energy-integrated spectral weight is about three times larger
for the majority spins than for the minority spins. Furthermore,
the minority-spin states are located at reduced binding ener-
gies, which was also observed experimentally.38 The calculated
characteristics of the satellite corroborate its explanation based
on transitions from the spin-polarized d 9 state to the d 8 final
states. An illustration of such atomic spectral lines is added to
Fig. 2 for comparison. The singlet final states 1D, 1G and 1S
exhibit a complete majority-spin polarization and lie deeper,
the triplet states 3F and 3P carry a partial polarization in the
opposite direction and lie shallower.

This simplified description of the satellite should not be
taken too literally, however, at least not within our computa-
tional scheme. We have calculated the d -orbital occupation
nd corresponding to the final states in our discretized impurity
model, the results are aligned with the bulk spectral function
in Fig. 2. Although nd indeed decreases as the binding energy
increases, it is still considerably larger than eight in the satel-
lite region where contributions from states with nd # 8:5 are
not an exception. This enhancement of nd is due to impurity–
bath hybridization as discussed at the end of the Appendix. It
is possible that nd is somewhat overestimated as a result of
compaction of the continuous bath into a few discrete levels.

As mentioned earlier, our calculations are rather insensi-
tive to a particular choice of the potential UH as long as it
exceeds a threshold of approximately 14.5 eV. For smaller UH

the impurity orbitals in the cluster start to depopulate, which
is accompanied with an increased intensity of the satellite.
This result is in accord with experiments alloys of Ni with
electropositive metals.39,40

Finally, we compare spectral functions calculated with two
versions of the Coulomb operator: the full spherically sym-
metric vertex discussed so far, and the diagonal-only vertex
employed in the Hirsch–Fye QMC method.17 Figure 2 shows



Correlated Magnetism in heterostructures 

DFT + real-space DMFT for heterostructures: LaAlO3/SrTiO3 

F. Lechermann, L. Boehnke, and D. Grieger, Ch. Piefke,  
Phys. Rev. B 90, 085125 (2014) 

Oxygen vacancy at interface Formation of interface resonance and FM state 

Correlation Effects: 
eg  > xy 
PM > FM 

Magnetism – M(µB) 
LSDA = 0.0 

LDA+U = 0.5 
DMFT = 0.1 

Exp = 0.1 
Double-exchange 



Interaction of  electrons  
with collective excitations 

Plasmon 

Magnon 

Orbiton 



Non-local Coulomb interactions 
General non-local action for solids: 

Atomic action with local Hubbard-like interaction 

Bosonic charge and spin variables:  

A. Rubtsov et al, Annals of Physics 327, 1320 (2012) 



Efficient DB-perturbation theory 

Separate local and non-local effective actions: 

Imuprity action with fermionic and bosonic bathes (CT-QMC) 

Dual boson-fermion transformation:  

Diagrams:  

F B 

EDMFT 



Dual Boson: General Idea 
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DB-diagrammatic scheme 
Bosonic Selfenergy Fermionic Selfenergy 

Renormalized vertex: 

Fermionic and Bosonic  Green Functions  

A. Rubtsov, M.I. Katsnelson, A. L., Annals of  Phys. 327, 1320 (2012)   

Dual boson approach to collective excitations in correlated fermionic systems

A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein
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Plasmon in correlated system: Poster of  Erik van Loon 



Summary 

�  Electronic structure of  correlation systems can be well 
described in LDA+DMFT scheme 

�  Local correlations efficiently included in                  
CT-QMC impurity solver 

�  The problem of  Double-Counting in LDA+DMFT        
can be efficiently solved within GW+EDMFT (Lectuer 2) 

 

	   


