Development of the LDA+DMFT Approach

Alexander Lichtenstein University of Hamburg

In collaboration with T. Wehling, H. Hafermann, M. Karolak F. Lechermann, A. Rubtsov, M. Katsnelson

Outline

- Functional approach: from DFT to DMFT
- Local correlations: DMFT and beyond
- LDA+DMFT scheme for real materials
- Problem of double counting

From Atom to Solids

Spectral function: Correlations effects

ARPES

Free electrons

Correlated electrons

Computational Material Science

- Starting from Schrödinger?
- Kohn Density Functional Theory (DFT) of inhomogeneous electron gas in solids
- Strongly correlated electron systems ? Dynamical Mean-Field Theory (DMFT)

The Theory of Everything

Hamiltonian for multi-fermionic system in field-operators:

$$H = \sum_{\sigma} \int d\mathbf{r} \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{1}{2} \nabla^{2} + V(\mathbf{r}) - \mu \right) \hat{\psi}_{\sigma}(\mathbf{r}) \\ + \frac{1}{2} \sum_{\sigma\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\psi}_{\sigma'}^{\dagger}(\mathbf{r}') \, U(\mathbf{r} - \mathbf{r}') \, \hat{\psi}_{\sigma'}(\mathbf{r}') \hat{\psi}_{\sigma}(\mathbf{r}).$$

Atomic Units:	$\hbar = m = e = 1$
Coilomb interaction:	$U(\mathbf{r} - \mathbf{r}') = 1/ \mathbf{r} - \mathbf{r}' $

Second quantisation operators in orthonormal basis:

$$\hat{\psi}(\mathbf{r}) = \sum_{n} \phi_{n}(\mathbf{r}) \hat{c}_{n}$$
$$\hat{\psi}^{\dagger}(\mathbf{r}) = \sum_{n} \phi_{n}^{*}(\mathbf{r}) \hat{c}_{n}^{\dagger}$$

$$n = (im\sigma)$$

Wannier Basis: $\phi_n({f r})$ with site, orbital andspins quantum numbers

Path Integrals for Fermions

Short introduction from Alexei Kamenev "Field Theory of Non-Equilibrium Systems" (Cambridge, 2011)

Fermions second-quantization operators (Pauli principle)

$\widehat{c}_i \ket{0}$	=	0	$\hat{c}^{+}\hat{c}\left n\right\rangle$	=	$n \ket{n}$
$\hat{c}_i \left 1 \right\rangle$	=	$ 0\rangle$	\widehat{c}^2	=	0
$\widehat{c}_{i}^{+}\left 0\right\rangle$	=	$ 1\rangle$	$(\widehat{c}^+)^2$	=	0
$\hat{c}_i^+ \left 1 \right\rangle$	=	0	$\{\widehat{c},\widehat{c}^+\}$	=	î

Algebra of Grassmann anti-commuting numbers:

```
(\widehat{c}_i^+, \widehat{c}_i) \to (c_i^*, c_i)
```

$$c_i c_j = -c_j c_i$$

$$c_i^2 = 0$$

$$f(c) = f_0 + f_1 c$$

$$f(c^*, c) = f_{00} + f_{10} c^* + f_{01} c + f_{11} c^* c$$

Grassmann numbers anticommute with fermionic operators

$$\{c, \hat{c}\} = \{c, \hat{c}^+\} = 0$$

Grassmann calculus

Differentiation:

$$\frac{\partial c_i}{\partial c_j} = \delta_{ij}$$

0

N.B. order:

$$\frac{\partial}{\partial c_2}c_1c_2 = -c_1$$

Example:

$$f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$$

$$\frac{\partial}{\partial c^*} \frac{\partial}{\partial c} f(c^*, c) = \frac{\partial}{\partial c^*} (f_{01} - f_{11}c^*) = -f_{11} = -\frac{\partial}{\partial c} \frac{\partial}{\partial c^*} f(c^*, c)$$

Integration:

(equivalent to differetition)

$$\int 1dc = 0$$

$$\int cdc = 1$$

$$\int \dots dc \to \frac{\partial}{\partial c}.$$

Coherent State

Eigenstate of annihilation operator

 $\hat{c} |c\rangle = c |c\rangle$

Diefinition of coherent states

$$|c\rangle = e^{-c\widehat{c}^{+}} |0\rangle = (1 - c\widehat{c}^{+}) |0\rangle = |0\rangle - c |1\rangle$$

Proof

$$\hat{c} |c\rangle = \hat{c} (|0\rangle - c |1\rangle) = -\hat{c}c |1\rangle = c |0\rangle = c |c\rangle$$

Left Coherent State: c^* is just another Grassman number

(NOT a complex conjugate)

$$\begin{aligned} \langle c | \, \hat{c}^{+} &= \langle c | \, c^{*} \\ \langle c | &= \langle 0 | \, e^{-\hat{c}c^{*}} = \langle 0 | \, (1 - \hat{c}c^{*}) = \langle 0 | - \langle 1 | \, c^{*} \\ \langle c | \, \hat{c}^{+} &= (\langle 0 | - \langle 1 | \, c^{*}) \, \hat{c}^{+} = - \langle 1 | \, c^{*}\hat{c}^{+} = \langle 0 | \, c^{*} = \langle c | \, c^{*} \end{aligned}$$

Unity operator in coherent states

Overlap of Coherent States (non-orthogonal)

$$\langle c^* | c \rangle = (\langle 0 | - \langle 1 | c^*) (| 0 \rangle - c | 1 \rangle) = 1 + c^* c = e^{c^* c}$$

Resolution of Unity

$$\hat{1} = \int \int dc^* dc e^{-c^* c} \left| c \right\rangle \left\langle c \right|$$

Proof

$$\int \int dc^* dc e^{-c^*c} |c\rangle \langle c| = \int \int dc^* dc \left(1 - c^*c\right) \left(|0\rangle - c |1\rangle\right) \left(\langle 0| - \langle 1| c^*\right)$$
$$= -\int \int dc^* dc c^* c \left(|0\rangle \langle 0| + |1\rangle \langle 1|\right) = \hat{1}$$

Trace of Fermionic Operators

Matrix elements of normally ordered operators

$$\langle \widehat{c^*} | \widehat{H}(\widehat{c}^+, \widehat{c}) | c \rangle = H(c^*, c) \langle c^* | c \rangle = H(c^*, c) e^{c^* c}$$

Trace-formula

$$Tr\left(\widehat{O}\right) = \sum_{n=0,1} \langle n | \,\widehat{O} \, | n \rangle = \sum_{n=0,1} \int \int dc^* dc e^{-c^* c} \langle n | \, c \rangle \, \langle c | \,\widehat{O} \, | n \rangle = \int \int dc^* dc e^{-c^* c} \sum_{n=0,1} \langle -c | \,\widehat{O} \, | n \rangle \, \langle n | \, c \rangle = \int \int dc^* dc e^{-c^* c} \, \langle -c | \,\widehat{O} \, | c \rangle$$

"Minus" due to commutation Left and Right coherent state

$$c^*c = -cc^*$$

$$\left|-c\right\rangle = \left|0\right\rangle + c\left|1\right\rangle$$

Partition Function in Path Integral

Partition Function

$$Z = Tre^{-\beta(\hat{H} - \mu\hat{N})}$$

Using Trace Formula

$$Z = \int \int \prod_{i=1}^{N} \left[dc_i^* dc_i \right] e^{-\sum_{i=1}^{N} c_i^* c_i} \left\langle \xi c \right| e^{-\beta(\hat{H} - \mu \hat{N})} \left| c \right\rangle$$

Discretize [0, \beta] interval with N-points $\delta = \beta/N$
0 i-1 i \beta

$$Z = \int_{(0=\xi N)} \prod_{i=1}^{N} \left[dc_i^* dc_i \right] e^{-\delta \sum_{i=1}^{N} c_i^* (c_i - c_{i-1})/\delta + H(c_i^*, c_{i-1}) - \mu N(c_i^*, c_{i-1})} \right]$$

Continuous time limit with BC: $c(0) = \xi c(\beta)$ $\xi = -1$ for fermions

$$Z = \int D\left[c^*c\right] e^{-S[c^*,c]}$$

$$S[c^*, c] = \int_0^\beta d\tau [c^* \partial_\tau c + H(c^*, c) - \mu N(c^*, c)]$$

Gaussian Path Integrals

Only one analytical path integral:

$$Z[J^*, J] = \int \int \prod_{i=1}^{N} \left[dc_i^* dc_i \right] e^{-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j + \sum_{i=1}^{N} \left[c_i^* J_i + J_i^* c_i \right]} = \det[M] e^{-\sum_{i,j=1}^{N} J_i^* M_{ij}^{-1} J_j}$$

Short notation

$$\int D\left[c^*c\right]e^{-c^*Mc} = \det M$$

Proof - ''det'': expand the exponent only N-th oder is non-zero

$$e^{-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j} = \frac{\left(-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j\right)^N}{N!} \text{ Permutations of } c_i^* \text{ and } c_j \text{ gives det } M$$

Examples:

 $\int D[c^*c] e^{-c_1^*M_{11}c_1} = \int D[c^*c] (-c_1^*M_{11}c_1) = M_{11} = \det M$

N=2

N=1

$$\int D[c^*c] e^{-c_1^*M_{11}c_1 - c_1^*M_{12}c_2 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2} = \frac{1}{2!} \int D[c^*c] (-c_1^*M_{11}c_1 - c_1^*M_{12}c_2 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2)^2 = M_{11}M_{22} - M_{12}M_{21} = \det M$$

Correlation Function: U=0

Change of variables

$$c \to c - M^{-1}j$$

Using: $c^*Mc - c^*j - j^*c = (c^* - j^*M^{-1})M(c - M^{-1}j) - j^*M^{-1}j$

Single-particle correlation function:

$$\left\langle c_i c_j^* \right\rangle = \frac{1}{Z\left[0,0\right]} \frac{\delta Z\left[J^*,J\right]}{\delta J_j \delta J_i^*} |_{J=0} = M_{ij}^{-1}$$

Two-particle correlation function:

$$\langle c_i c_j c_k^* c_l^* \rangle = \frac{1}{Z[0,0]} \frac{\delta Z[J^*, J]}{\delta J_l \delta J_k \delta J_j^* \delta J_i^*} |_{J=0} = M_{il}^{-1} M_{jk}^{-1} - M_{ik}^{-1} M_{jl}^{-1}$$

Path Integral for Everything

Euclidean action

$$Z = \int \mathcal{D}[c^*, c] e^{-S}$$

$$S = \sum_{12} c_1^* (\partial_\tau + t_{12}) c_2 + \frac{1}{4} \sum_{1234} c_1^* c_2^* U_{1234} c_4 c_3$$

One- and two-electron matrix elements:

$$t_{12} = \int d\mathbf{r} \,\phi_1^*(\mathbf{r}) \left(-\frac{1}{2} \bigtriangledown^2 + V(\mathbf{r}) - \mu \right) \phi_2(\mathbf{r})$$
$$U_{1234} = \int d\mathbf{r} \int d\mathbf{r}' \,\phi_1^*(\mathbf{r}) \phi_2^*(\mathbf{r}') \,U(\mathbf{r} - \mathbf{r}') \,\phi_3(\mathbf{r}) \phi_4(\mathbf{r}')$$

Shot notation:

$$\sum_1 \ldots \equiv \sum_{im} \int d\tau ...$$

One- and Two-particle Green Functions

One-particle Green function

$$G_{12} = -\langle c_1 c_2^* \rangle_S = -\frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S}$$

Two-particle Green function (generalized susceptibilities)

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_S = \frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2 c_3^* c_4^* \, e^{-S}$$

Vertex function:

$$X_{1234} = G_{14}G_{23} - G_{13}G_{24} + \sum_{1'2'3'4'} G_{11'}G_{22'}\Gamma_{1'2'3'4'}G_{3'3}G_{4'4}$$

$$\chi = -\chi + \Gamma$$

Baym-Kadanoff functional

Source term

$$S[J] = S + \sum_{ij} c_i^* J_{ij} c_j$$

Partition function and Free-energy:

$$Z[J] = e^{-F[J]} = \int \mathcal{D}[c^*, c] e^{-S[J]}$$

Legendre transforming from J to G:

$$F[G] = F[J] - \operatorname{Tr}(JG) \qquad \qquad G_{12} = \frac{1}{Z[J]} \left. \frac{\partial Z[J]}{\partial J_{12}} \right|_{I=0} = \left. \frac{\partial F[J]}{\partial J_{12}} \right|_{I=0}$$

 $\left[T \right]$

1

STT[T]

Decomposition into the single particle part and correlated part

$$F[G] = \operatorname{Tr} \ln G - \operatorname{Tr} \left(\Sigma G\right) + \Phi[G]$$

Functional Family

$$F[G] = -Tr \ln[-(G_0^{-1} - \Sigma[G])] - Tr(\Sigma[G]G) + \Phi[G]$$

Exact representation of $\Phi: \bigvee_{ee}^{\alpha} = \alpha \bigvee_{ee}^{\alpha} = \frac{1}{2} \int_{0}^{1} d\alpha Tr[V_{ee}^{\alpha} < \psi^{+}\psi^{+}\psi\psi >]$

Different Functionals and constrained field J:

G. Kotliar et. al. RMP (2006), A. Georges (2004) arXiv:0403123

DFT: KS-equation (1965)

Effective one-electron Schrödinger-like equation:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - V_{eff}(\vec{r})\right)\psi_i(\vec{r}) = \varepsilon_i\psi_i(\vec{r})$$

Charge density:

Energy Functional:

KS-kinetic energy:

Hartree potential:

Effective potential:

$$n(\vec{r}) = \sum_{i}^{N} |\psi_i(\vec{r})|^2$$

 \mathcal{M}

$$E[n] = T_s[n] + V_H[n] + \int n(\vec{r}) V_{ext}(\vec{r}) d\vec{r} + E_{xc}[n]$$

$$T_s[n] = \sum_{i}^{N} \int d\vec{r} \psi_i^*(\vec{r}) \left(-\frac{\hbar^2}{2m} \nabla^2\right) \psi_i(\vec{r})$$

$$V_H[n] = \frac{e^2}{2} \int d\vec{r} \int d\vec{r'} \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|}$$

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r}) + e^2 \int d\vec{r}' \frac{n(\vec{r}')}{|\vec{r} - \vec{r'}|} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})}$$

DMFT-functional and beyond

Start from Correlated Lattice Find the optimal Reference System Bath hybridization Expand around DMFT solution

Dual Fermion scheme

General Lattice Action H = h + U $S[c^*, c] = \sum_{\omega k m m' \sigma} \left[h_k^{mm'} - (i\omega + \mu) 1 \right] c^*_{\omega k m \sigma} c_{\omega k m' \sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c_1^* c_2^* c_3 c_4 d\tau$

Reference system: Local Action with hybridization Δ_{ω}

$$S_{loc} = \sum_{\omega mm'\sigma} \left[\Delta_{\omega}^{mm'} - (i\omega + \mu)\mathbf{1} \right] c_{\omega m\sigma}^* c_{\omega m'\sigma} + \frac{1}{4} \sum_{i\{m,\sigma\}} \int_0^\beta U_{1234} c_1^* c_2^* c_3 c_4 d\tau$$

Lattice-Impurity connection:

$$S[c^*, c] = \sum_{i} S_{loc}[c_i^*, c_i] + \sum_{\omega k m m'\sigma} \left(h_k^{mm'} - \Delta_{\omega}^{mm'} \right) c_{\omega k m \sigma}^* c_{\omega k m'\sigma}.$$

A. Rubtsov, et al, PRB 77, 033101 (2008)

Condition for Δ and relation to DMFT $\widetilde{G}^{d}=G^{DMFT}-g$

To determine ∆, we require that Hartree correction in dual variables vanishes. If no higher diagrams are taken into account, one obtains DMFT:

$$\frac{1}{N}\sum_{\mathbf{k}}\tilde{G}^{0}_{\omega}(\mathbf{k}) = 0 \quad \Longleftrightarrow \quad \frac{1}{N}\sum_{\mathbf{k}}G^{\mathrm{DMFT}}_{\omega}(\mathbf{k}) = g_{\omega}$$

Higher-order diagrams give corrections to the DMFT self-energy, and already the leading-order correction is nonlocal.

$$\Sigma(\mathbf{k},\omega) = \Sigma_{\text{DMFT}}(\omega) + \widetilde{\Sigma}(\mathbf{k},\omega) / [1 + g\widetilde{\Sigma}(\mathbf{k},\omega)] \qquad \text{à la impurity T-matrix}$$

$$\widetilde{\Sigma}_{k\omega}^{b} \qquad G_{k\omega} = [(g_{\omega} + g_{\omega}\widetilde{\Sigma}_{k\omega}g_{\omega})^{-1} + \Delta_{\omega} - t_{k}]^{-1}$$

$$\widetilde{\Sigma}_{\text{LDFA}}^{LDFA} = - \Box_{-\frac{1}{2}} \Box_{-\frac{$$

Dual Fermions: Diagrams

$$\tilde{\Sigma}_{12}^{(1)} = -T \sum_{34} \gamma_{1324} \, \tilde{G}_{43}^{\text{loc}}$$

$$\tilde{\Sigma}_{12}^{(2)}(\mathbf{k}) = -\frac{1}{2} \left(\frac{T}{N_k}\right)^2 \sum_{\mathbf{k}_1 \mathbf{k}_2} \sum_{345678} \gamma_{1345} \,\tilde{G}_{57}(\mathbf{k}_1) \,\tilde{G}_{83}(\mathbf{k}_2) \,\tilde{G}_{46}(\mathbf{k} + \mathbf{k}_2 - \mathbf{k}_1) \,\gamma_{6728}$$

Dual Fermion: non-local correlations

A. Rubtsov, et al, PRB 77, 033101 (2008)

Dynamical Mean Field Theory: 25

Orbital degrees of freedom

Correlated Electrons: Fluctuations

Fluctuation of charge, spin and orbital degrees of freedom related with complex behavior of correlated electronic systems

DMFT: Charge+Spin+Orbital Fluctuations

Realistic theory of correlated electron systems

DFT

Model based approaches

- 🕂 🔹 Material specific
- Structure specific
- **+** Fast code packages
- **Complex structures**
- Fails for strong correlations

- Input parameters unknown
- 🕂 Versatile
- Systematic many body schemes

Comparison of LDA and realistic DMFT

LDA+DMFT LDA Density functional **Baym-Kadanoff** functional Green-Function $G(\mathbf{r}, \mathbf{r}', \omega)$ Density $\rho(\mathbf{r})$ Potential $V_{xc}(\mathbf{r})$ Self-energy $\Sigma_i(\omega)$ $\Omega = \Omega_{sp} - \Omega_{dc}$ $E_{tot} = E_{sp} - E_{dc}$ $\Omega_{sp} = -Tr\ln[-G^{-1}]$ $E_{sp} = \sum_{k < k_F} \varepsilon_k$ $E_{dc} = E_H + \int \rho V_{xc} d\mathbf{r} - E_{xc} \quad \Omega_{dc} = Tr \Sigma G - \Phi_{LW}$

From Atom to Solid Atomic physics (U) Bands effects (LDA) N (E) N(E) d n+1 E E_F E_F dⁿ|SL> Ε N(E) QP LHB UHB LDA+DMFT F

General Projection formalism for LDA+DMFT

$$\begin{aligned} |L\rangle &= |ilm\sigma\rangle & \left\langle L_i|L_j\right\rangle = \delta_{ij} \\ |G\rangle &= |n\vec{k}\sigma\rangle & P_c = \left\langle L|G\right\rangle \end{aligned}$$

Del ocal iz ed s,p-states G> L> Correlated d,f-states

P. Blöchl, PRB 50, 17953 (1994)

$$G_{mm'}^{c}(i\omega) = \sum_{\overrightarrow{k}\,nn'} \langle L_{m}|G_{n}\rangle \left[(i\omega + \mu)\,\widehat{1} - \widehat{H}_{KS}(\overrightarrow{k}) - \Delta\Sigma(i\omega) \right]_{nn'}^{-1} \langle G_{n'}|L_{m'}\rangle$$
$$\Delta\Sigma_{nn'}(i\omega) = \sum_{mm'} \langle G_{n}|L_{m}\rangle \,\Delta\Sigma_{mm'}(i\omega) \,\langle L_{m'}|G_{n'}\rangle$$

$$\begin{split} \Sigma_{mm'}(i\omega) &= \left(G_0^{-1} - G^{-1}\right)_{mm'} \\ \Delta \Sigma_{mm'}(i\omega) &= \Sigma_{mm'}(i\omega) - \Sigma_{dc} \end{split}$$

G. Trimarchi, *et al.* JPCM **20**,135227 (2008) B. Amadon, *et al.* PRB **77**, 205112 (2008)

PAW: Projection windows Example: SrVO₃

Two different choices: 1.Vanadium t_{2g} only 2.Vanadium t_{2g} + Oxygen 2p

One has to take great care, because different projection windows will lead to different descriptions of the system!

DMFT in local LMTO basis

LDA+DMFT (orthogonal |L> basis):

$$G_{LL'}^{-1}(\vec{k}, i\omega_n) = i\omega_n + \mu - H_{LL'}^{LDA}(\vec{k}) - \Sigma_{LL'}^{DMFT}(i\omega_n)$$

$$G_{LL'}(i\omega_n) = \sum_{\vec{k} \in BZ} G_{LL'}^{-1}(\vec{k}, i\omega_n)$$

$$\hat{G}(i\omega_n) = \sum_{\alpha \in O_h} \hat{U}(\alpha) \sum_{\vec{k} \in IBZ} \hat{G}(\vec{k}, i\omega_n) \hat{U}^+(\alpha)$$

Correlated d-states:

V. Anisimov, A. Poteryaev et al, JPCM **9**, 7359 (1997) A.L. and M.Katsnelson, PRB **57**, 688 (1998)
Slater parametrization of U

Multipole expansion:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{kq} \frac{4\pi}{2k+1} \frac{r_{<}^{k}}{r_{>}^{k+1}} Y_{kq}^{*}(\hat{r}) Y_{kq}(\hat{r}')$$

Coulomb matrix elements in $Y_{\rm Im}$ basis:

$$< mm' ||m''m'''> = \sum_{k} a_{k}(m, m'', m', m'')F^{k}$$

Angular part – 3j symbols

$$a_k(m,m',m''',m''') = \sum_{q=-k}^k (2l+1)^2 (-1)^{m+q+m'} \begin{pmatrix} l & k & l \\ 0 & 0 & 0 \end{pmatrix}^2 \begin{pmatrix} l & k & l \\ -m & -q & m' \end{pmatrix} \begin{pmatrix} l & k & l \\ -m'' & q & m''' \end{pmatrix}$$

Slater integrals:

$$F^{k} = e^{2} \int_{0}^{\infty} r^{2} dr |\varphi_{d}(r)|^{2} \int_{0}^{\infty} (r')^{2} dr' |\varphi_{d}(r')|^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}}$$

Constrain GW calculations of U

Polarisation

F. Aryasetiawanan et al PRB(2004)

W E W E

20

30

ω (eV)

40

50

30

10

10

Re <dd|W|dd> (eV)

Paramagnetic Ni

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{i}^{occ} \sum_{j}^{unocc} \psi_{i}(\mathbf{r})\psi_{i}^{*}(\mathbf{r}')\psi_{j}(\mathbf{r}')$$

$$\times \left\{ \frac{1}{\omega - \varepsilon_{j} + \varepsilon_{i} + i0^{+}} - \frac{1}{\omega + \varepsilon_{j} - \varepsilon_{i} - i0^{+}} \right\}$$

$$W_{r}(\omega) = [1 - vP_{r}(\omega)]^{-1}v$$

$$W = [1 - vP]^{-1}v$$

$$= [1 - vP_{r} - vP_{d}]^{-1}v$$

$$= [(1 - vP_{r})\{1 - (1 - vP_{r})^{-1}vP_{d}\}]^{-1}v$$

$$= \{1 - (1 - vP_{r})^{-1}vP_{d}\}^{-1}(1 - vP_{r})^{-1}v$$

$$= [1 - W_{r}P_{d}]^{-1}W_{r}$$

Wannier - GW and effective U(ω)

$$|\varphi_{n\mathbf{R}}\rangle = \frac{V}{(2\pi)^3} \int e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}^{(\mathrm{w})}\rangle d^3k$$

T. Miyake and F. Aryasetiawan Phys. Rev. B 77, 085122 (2008)

Continuous Time Quantum Monte Carlo

Partition function:

$$H = H_0 + V$$

$$Z = \operatorname{Tr}\left[\mathrm{e}^{-\beta H_0} \mathbf{T}_{\tau} \mathrm{e}^{-\int_0^\beta \mathrm{d}\tau \, \mathsf{V}(\tau)}\right]$$

Continuous Time Quantum Monte Carlo (CT-QMC)

$$Z = \sum_{k=0}^{\infty} \int_{0}^{\beta} d\tau_{1} \int_{\tau_{1}}^{\beta} d\tau_{2} \dots \int_{\tau_{k}-1}^{\beta} d\tau_{k} \operatorname{Tr} \left[e^{-\beta H_{0}} e^{-\tau_{k} H_{0}} (-V) \dots e^{-(\tau_{2}-\tau_{1})H_{0}} (-V) e^{-\tau_{1} H_{0}} \right]$$

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

Weak coupling QMC: CT-INT

Random walks in the k-space

Acceptance ratio

Convergence with Temperature: CT-INT

Maximum: βUN^2

Strong-Coupling Expansion CT-HYB

$$S_{\text{at}} = \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}^{*}(\tau) [\partial_{\tau} - \mu] c_{\sigma}(\tau) + U \int_{0}^{\beta} d\tau c_{\uparrow}^{*}(\tau) c_{\uparrow}(\tau) c_{\downarrow}^{*}(\tau) c_{\downarrow}(\tau)$$

$$S_{\Delta} = -\int_{0}^{\beta} d\tau' \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}(\tau) \Delta(\tau - \tau') c_{\sigma}^{*}(\tau')$$

$$\mathscr{Z} = \int \mathscr{D}[c^{*}, c] e^{-S_{\text{at}}} \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau'_{1} \int_{0}^{\beta} d\tau_{1} \dots \int_{0}^{\beta} d\tau'_{k} \int_{0}^{\beta} d\tau_{k} \times c(\tau_{k}) c^{*}(\tau'_{k}) \dots c(\tau_{1}) c^{*}(\tau'_{1}) \Delta(\tau_{1} - \tau'_{1}) \dots \Delta(\tau_{k} - \tau'_{k})$$

$$\mathscr{Z} = \mathscr{Z}_{\mathrm{at}} \sum_{k} \int_{0}^{\beta} d\tau_{1}' \int_{\tau_{1}'}^{\beta} d\tau_{1} \dots \int_{\tau_{k-1}}^{\beta} d\tau_{k}' \int_{\tau_{k}'}^{\circ \tau_{k}'} d\tau_{k} \times \\ \times \langle c(\tau_{k})c^{*}(\tau_{k}') \dots c(\tau_{1})c^{*}(\tau_{1}') \rangle_{\mathrm{at}} \det \hat{\Delta}^{(k)} \overset{\uparrow}{=} \underbrace{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d\tau_{k}' \int_{0}^{1} d\tau_{k}$$

P. Werner, 2006

Strong-Coupling Expansion CT-HYB

$$S_{\text{at}} = \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}^{*}(\tau) [\partial_{\tau} - \mu] c_{\sigma}(\tau) + U \int_{0}^{\beta} d\tau c_{\uparrow}^{*}(\tau) c_{\uparrow}(\tau) c_{\downarrow}^{*}(\tau) c_{\downarrow}(\tau)$$

$$S_{\Delta} = -\int_{0}^{\beta} d\tau' \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}(\tau) \Delta(\tau - \tau') c_{\sigma}^{*}(\tau')$$

$$\mathscr{Z} = \int \mathscr{D}[c^{*}, c] e^{-S_{\text{at}}} \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau'_{1} \int_{0}^{\beta} d\tau_{1} \dots \int_{0}^{\beta} d\tau'_{k} \int_{0}^{\beta} d\tau_{k} \times c(\tau_{k}) c^{*}(\tau'_{k}) \dots c(\tau_{1}) c^{*}(\tau'_{1}) \Delta(\tau_{1} - \tau'_{1}) \dots \Delta(\tau_{k} - \tau'_{k})$$

$$\mathscr{Z} = \mathscr{Z}_{\mathrm{at}} \sum_{k} \int_{0}^{\beta} d\tau_{1}' \int_{\tau_{1}'}^{\beta} d\tau_{1} \dots \int_{\tau_{k-1}}^{\beta} d\tau_{k}' \int_{\tau_{k}'}^{\circ \tau_{k}'} d\tau_{k} \times \\ \times \langle c(\tau_{k})c^{*}(\tau_{k}') \dots c(\tau_{1})c^{*}(\tau_{1}') \rangle_{\mathrm{at}} \det \hat{\Delta}^{(k)} \overset{\uparrow}{=} \underbrace{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d\tau_{k}' \int_{0}^{1} d\tau_{k}$$

P. Werner, 2006

Comparison of different CT-QMC

Ch. Jung, unpublished

CT-QMC review: E. Gull et al. RMP (2011)

Hybridization function Co on/in Cu(111)

- Hybridization of Co in bulk twice stronger than on surface
- Hybridization in energy range of Cu-d orbitals more anisotropic on surface
- Co-d occupancy: *n*= 7-8
 B. Surer, et al PRB (2012)

Orbitally resolved Co DOS from QMC

Orbitally resolved DOS of the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at temperature. T = 0.025 eV and chemical potential $\mu = 27$ eV and $\mu = 28$ eV, respectively.

All Co *d*-orbitals contribute to LDOS peak near $E_F=0$

B. Surer, et al, PRB (2012).

Double counting in LDA+DMFT

- Analytic models
 - Around mean field
 - Fully localized limit
- Constraint on particle number

 $\operatorname{Tr} G = \operatorname{Tr} G^{0}$ $\operatorname{Tr} G = \operatorname{Tr} G^{\text{LDA}}$

• Constraint on self-energy

Tr Re $\Sigma(0) \stackrel{!}{=} 0$ Tr Re $\Sigma(\infty) \stackrel{!}{=} 0$ Choice of double counting in LDA+DMFT Shift of chemical potential for correlated state

 $\vec{G}^{-1}(\vec{k},\omega) = (i\omega + \mu) - H_{LDA}(\vec{k}) + [E_{dc} - \delta\mu_c] - [\Sigma(\omega) - \delta\mu_c]$

Natural choice $E_{dc} = \delta \mu_c$:

$$G^{-1}(\vec{k},\omega) = (i\omega + \mu) - H_{LDA}(\vec{k}) - \Sigma_{c}(\omega)$$

Transformations: $\begin{array}{c}
^{-1}\\
G_{c0} = G_{0}^{-1} - \delta\mu_{c} \\
^{-1}\\
\Sigma_{c}(\omega) = G_{c0} - G^{-1} = \Sigma_{c}(\omega) - \delta\mu_{c} \\
\end{array}$ Condition for $\delta\mu_{c}$ (Friedel SR) $Tr[G] = Tr[G_{0}]$

Friedel Sum Rule

$$S_{imp} = \sum_{i,j=0}^{N} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' c_{i\sigma}^{*}(\tau) \left[-\mathcal{G}_{\sigma}^{-1}(\tau,\tau') \right]_{ii} c_{i\sigma}(\tau') + \int_{0}^{\beta} d\tau n_{i,\uparrow}(\tau) U_{i,j} n_{i,\downarrow}(\tau)$$

One can always find find the generalized double-countings:

$$\mu_i^{dc}$$

$$\widetilde{\mathcal{G}}^{-1} = \mathcal{G}^{-1} - \mu_i^{dc}$$

With LDA partial charges:

$$Tr(\widetilde{\mathcal{G}}) = TrG$$

NiO – a charge transfer system

• LDA band structure (paramagnetic)

Ni-3d orbitals as correlated subspace

O-2d orbitals as uncorrelated subspace

Charge transfer TMO insulators

Zaanen-Sawatzky-Allen (ZSA) phase diagram

Phys. Rev. Lett. 55, 418 (1985)

NiO – double counting

Total particle number (color encoded) as function of chemical potential μ and double counting μ_{DC}

NiO: peak positions and spectral weights

Spectral functions and double counting

NiO: Spectral Function

Full-potential LDA+DMFT: DC problem

$$V_{\sigma jl}^{\text{LSDA}+\text{U}} = V^{\text{LSDA}} + (U - J) \left[\frac{1}{2}\delta_{jl} - \rho_{jl}^{\sigma}\right]$$

S. Dudarev et. A. PRB 57, 1505 (1998)

Strong correlations and Magnetism

P. Werner, et al, PRB 86, 205101 (2012)

Formation of Local Moments and AFM correlations

Itinerant ferromagnetism

DMFT model of ferromagnetism

DOS-peaks

D. Vollhardt, et. al., In:Bandferromagnetism, Springer, 2000

Band degeneracy

LDA+Disordered Local Moments

The best first-principle Spin-fluctuation model with classical moments

J. Staunton and B. Gyorffy PRL69, 371 (1992)

Spectral Function Fe: ARPES vs. DMFT

SP-ARPES (BESY) J. Sánchez-Barriga, et al, PRL (2010)

Magnetism of metals: LDA+DMFT

- Exchange interactions in metals
- Finite temperature 3d-metal magnetism

A. L., M. Katsnelson and G. Kotliar, PRL87, 067205 (2001)

Satellite structure in Ni

d-orbital spectral function

PES (LDA)

$$W_{band} = 3(4) \text{ eV}$$

 $\Delta E_{ex} = 0.3(0.6) \text{ eV}$
 $E_{sat} = -6(?) \text{ eV}$

LDA+DMFT+QMC

A. L., M. Katsnelson and G. Kotliar, PRL (2001)

T-Lanczos (5d+10k) J. Kolorenc et al PRB (2012)

DFT + real-space DMFT for heterostructures: LaAlO₃/SrTiO₃

Oxygen vacancy at interface

Formation of interface resonance and FM state

Phys. Rev. B 90, 085125 (2014)

Interaction of electrons with collective excitations

Magnon

Plasmon

Orbiton

Non-local Coulomb interactions

General non-local action for solids:

$$S = \sum_{i} S_{at}[c_i^{\dagger}, c_i] + \sum_{i \neq j, \nu, \sigma} t_{ij} c_{i\nu\sigma}^{\dagger} c_{j\nu\sigma} + \sum_{i \neq j, \omega} V_{ij} \rho_{i\omega}^* \rho_{j\omega}$$

Atomic action with local Hubbard-like interaction

$$S_{at} = -\sum_{\nu\sigma} (i\nu + \mu) c^{\dagger}_{\nu\sigma} c_{\nu\sigma} + \int_{0}^{\beta} U c^{\dagger}_{\uparrow} c_{\uparrow} c^{\dagger}_{\downarrow} c_{\downarrow} d\tau$$

Bosonic charge and spin variables:

$$\rho_j \equiv \sum_{\sigma\sigma'} c^{\dagger}_{\sigma} s^{j}_{\sigma\sigma'} c_{\sigma'} - \bar{\rho}_{\sigma'}$$

$$s^{j} = (1, \sigma_{x}, \sigma_{y}, \sigma_{z})$$
$$j = \{0, x, y, z\}$$

A. Rubtsov et al, Annals of Physics 327, 1320 (2012)

Efficient DB-perturbation theory

Separate local and non-local effective actions:

$$\begin{split} S &= \sum_{i} S_{imp}[c_{i}^{\dagger},c_{i}] + \sum_{k\nu\sigma} \left(t_{k} - \Delta_{\nu\sigma}\right) c_{k\nu\sigma}^{\dagger} c_{k\nu\sigma} + \sum_{q\omega} \left(V_{q} - \Lambda_{\omega}\right) \rho_{q\omega}^{*} \rho_{q\omega} \\ \\ \text{Imuprity action with fermionic and bosonic bathes (CT-QMC)} \\ S_{imp} &= S_{at} + \sum_{\nu} \Delta_{\nu} c_{\nu}^{\dagger} c_{\nu} + \sum_{\omega} \Lambda_{\omega} \rho_{\omega}^{*} \rho_{\omega} \\ \\ \text{Dual boson-fermion transformation:} \\ c^{\dagger} = f^{\dagger} \\ \rho^{*} = \eta^{*} \\ \\ \tilde{S} &= -\sum_{k\nu} \tilde{\mathcal{G}}_{k\nu}^{-1} f_{k\nu}^{\dagger} f_{k\nu} - \sum_{q\omega} \tilde{\mathcal{X}}_{q\omega}^{-1} \eta_{q\omega}^{*} \eta_{q\omega} + \sum_{i} \tilde{U}[\eta_{i}, f_{\text{EDMFT}}] \\ \\ \tilde{S} &= -\sum_{k\nu} \tilde{\mathcal{G}}_{\mu\nu}^{-1} f_{k\nu}^{\dagger} f_{k\nu} - \sum_{q\omega} \tilde{\mathcal{X}}_{q\omega}^{-1} \eta_{q\omega}^{*} \eta_{q\omega} + \sum_{i} \tilde{U}[\eta_{i}, f_{\text{EDMFT}}] \\ \\ \\ \text{Diagrams:} \\ \tilde{\mathcal{G}}_{0} \\ \tilde$$

DB-diagrammatic scheme

 Δ_{ν}

 Λ_ω

 $\sum X_{q\omega} = \chi_{\omega}$

$$G_{k\nu} = [(g_{\nu} + g_{\nu} \Sigma_{k\nu} g_{\nu})^{-1} + \Delta_{\nu} - t_k]^{-1}$$
$$X_{q\omega} = [(\chi_{\omega} + \chi_{\omega} \tilde{\Pi}_{q\omega} \chi_{\omega})^{-1} + \Lambda_{\omega} - V_k]^{-1}$$

A. Rubtsov, M.I. Katsnelson, A. L., Annals of Phys. 327, 1320 (2012) Plasmon in correlated system: Poster of Erik van Loon

- Electronic structure of correlation systems can be well described in LDA+DMFT scheme
- Local correlations efficiently included in CT-QMC impurity solver
- The problem of Double-Counting in LDA+DMFT can be efficiently solved within GW+EDMFT (Lectuer 2)