Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory

Marcus Kollar

Theoretische Physik III Electronic Correlations and Magnetism University of Augsburg DFG

FOR 1346

Autumn School on Correlated Electrons: *DMFT at 25: Infinite Dimensions* Forschungszentrum Jülich, September 15-19, 2014

Outline

- 1. Quantum many-body systems in nonequilibrium
- 2. Nonequilibrium Green functions
- 3. Nonequilibrium Dynamical Mean-Field Theory
- 4. Interaction quench in the Hubbard model

Review on Nonequilibrium DMFT:

H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P. Werner, Rev. Mod. Phys. **86**, 779 (2014)

1. Quantum many-body systems in nonequilibrium

How to put a quantum many-body system out of equilibrium and observe its relaxation

Time-resolved pump-probe spectroscopy

- > Pump-probe setup:
 - Pump laser pulse: puts system into nonequilibrium
 - Probe laser pulse: looks at system after delay time
- > Various time-resolved probes:
 - t.-r. ARPES: photoemitted electrons
 - t.-r. optical spectroscopy: transmitted/reflected light
 - t.-r. X-ray or electron **diffraction**: snapshots of atomic positions

Melting of a Charge Density Wave in TbTe₃

Schmitt, Kirchmann, Bovensiepen, Moore, Rettig, Krenz, Chu, Ru, Perfetti, Lu, Wolf, Fisher, Shen, Science '08

> trARPES on TbTe₃: 1.5-eV 50-fs pump pulse, 6-eV 90-fs probe pulse

> photodoping → closing of CDW gap → electron thermalization → vibrational excitation

Fig. 3. (A) Detail of the FS plot in Fig. 1A' with indicated positions (white circles) of time-resolved data shown in (B) to (D) for fixed k as a function of time delay. Indicated cut position (red line) of photoelectron intensity is shown as a function of energy, and position [(E) to (I)] for a momentum scan is shown as a function of time delays. All data were collected at 100 K and $F = 2 \text{ m}/\text{cm}^2$. $k_{\rm E}$ is marked in (E) to (I) (red dot). Error bars indicate the distance to the neighboring sample points, which is a good estimate for the error of kE.

Quenched Bose condensate

Abrupt increase of interaction of ⁸⁷Rb atoms:

Greiner, Mandel, Hänsch, Bloch '02

 $H \approx U \sum \hat{n}_i^2$

Relaxation

2,000

t (us)

3,000

Time scales in nonequilibrium dynamics

- Time scales in pump-probe experiments
 - Excitation due to pump pulse
 - Relaxation due to electron scattering
 - Energy transfer to ion lattice
- > Time scales in cold-atom experiments
 - Switching times
 - Relaxation times

- ~ 10...100 fs
 - ~ 0...1000 fs
 - ~ 1...10 ps

- ~ 1...1000 ms
- ~ 1...1000 ms

→ study relaxation of **isolated** quantum systems first

How can an isolated system relax to an equilibrium state?

Time evolution of isolated systems

- > Schrödinger equation: $i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle$
- > Quantum quench: Prepare $|\psi_0\rangle$ and switch to H at t = 0
 - Time evolution for $t \ge 0$: $|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$
 - Energy after quench: $E = \langle \psi(t) | H | \psi(t) \rangle = \langle \psi_0 | H | \psi_0 \rangle$
 - Expectation values: $\langle A \rangle_t = \langle \psi(t) | A | \psi(t) \rangle$
- Thermalization:

$$\langle A \rangle_t \xrightarrow{t \to \infty} \langle A \rangle_{\text{therm}} = \frac{\text{Tr} A e^{-\beta H}}{\text{Tr} e^{-\beta H}}$$
?
with effective β from $\langle H \rangle_{\text{therm}} = E$

The thermal state:

Putting a system into equilibrium by coupling it to a *heat bath*

Gibbs ensemble for system + bath

Maxwell 1866, Boltzmann 1872, Gibbs 1878

> System + heat bath:
$$E_{tot} = E_s + E_b = const$$

> Boltzmann relation: $S = \ln \Omega$, $\beta = \frac{1}{T} = \frac{\partial S}{\partial E}$
> Obtain # of system states from bath:
 $\ln \Omega_b (E_{tot} - E_s) = \ln \Omega_b (E_{tot}) + \beta (E_{tot} - E_s) + ...$ bath (E_b)

$$P(E_s) \propto \Omega_b(E_{\text{tot}} - E_s) \propto \exp(-\beta E_s)$$

- > System in thermal state when in equilibrium with bath
- Microcanonical ensemble gives same results (in thermodyn. limit)

An equivalent *equilibrium* formulation:

Ensembles containing microstates with same a priori probabilities

Reformulation with fundamental postulate

Prediction for equilibrium state:

• Fundamental postulate:

All accessible states equally probable $\Leftrightarrow S = -\text{Tr}[\rho \ln \rho] = \max$

- A_i conserved \Rightarrow fix $\text{Tr}[\rho_{\text{ensemble}}A_i] = \langle A_i \rangle_{t=0}$
 - $\Rightarrow \rho_{\text{ensemble}} \propto \exp(-\sum_i \lambda_i A_i)$

Boltzmann-Gibbs ensemble

von Neumann 1927, Jaynes 1957, ... Balian 1991

Reformulation with fundamental postulate

Prediction for equilibrium state for an isolated system

• Fundamental postulate:

All accessible states equally probable $\Leftrightarrow S = -\text{Tr}[\rho \ln \rho] = \max$

- A_i conserved \Rightarrow fix $\text{Tr}[\rho_{\text{ensemble}}A_i] = \langle A_i \rangle_{t=0}$
 - $\Rightarrow \rho_{\text{ensemble}} \propto \exp(-\sum_i \lambda_i A_i)$

Boltzmann-Gibbs ensemble

von Neumann 1927, Jaynes 1957, ... Balian 1991

Integrable systems: $H_{\text{eff}} = \sum_{\alpha=1}^{L} \epsilon_{\alpha} n_{\alpha} \Rightarrow \text{ many constants of motion}_{\text{Jaynes '57}}$

• Generalized Gibbs ensembles: $\rho_{GGE} \propto \exp(-\sum_{\alpha} \lambda_{\alpha} n_{\alpha})$

Jaynes '57 Girardeau '69 Rigol et al. '06 Cazalilla '06 Rigol et al.'07

• $\langle A \rangle_{t \to \infty} = \langle A \rangle_{GGE}$ for simple observables and initial states Kollar & Eckstein '08 Barthel & Schollwöck '08 Why does a many-body system relax to the *thermal* state?

Eigenstate Thermalization Hypothesis (ETH)

 $\langle n|A|n \rangle \approx \mathcal{A}(E_n) + \text{smaller}, n\text{-dep. terms}$

Deutsch PRA '91, Srednicki PRE '94 Rigol, Dunjko, Olshanii, Nature '08

Nonintegrable

Integrable

Eigenstate Thermalization Hypothesis (ETH)

 $\langle n|A|n \rangle \approx \mathcal{A}(E_n) + \text{smaller}, n - \text{dep. terms}$

Deutsch PRA '91, Srednicki PRE '94 Rigol, Dunjko, Olshanii, Nature '08

> Energy dependence is that of microcanonical ensemble:

 $A_{\min}(E) = \mathsf{Tr}[\rho_{\min}(E_n) A]$

 $= \frac{1}{Z_{\text{mic}}} \sum_{E - \delta E < E_n < E} \langle n | A | n \rangle = \mathcal{A}(E) + \text{smaller terms}$

> Long-time average tends to thermal value:

 $\overline{A(t)} = \overline{\langle \psi(t) | A | \psi(t) \rangle}$ $= \sum_{n} \underbrace{\langle n | A | n \rangle}_{\approx A_{\text{mic}}(E_n)} \underbrace{|\langle \psi(0) | n \rangle|^2}_{\text{peaked at } E} \approx A_{\text{mic}}(E)$

ETH sufficient for thermalization!

• <u>Nonequilibrium:</u>

Thermalization is due to dependence of expectation values *only on energy*

• Equilibrium:

Thermal Gibbs state is due to immersion in *structureless heat bath*

2. Nonequilibrium Green functions

Quantum time evolution

➤ Hamiltonian: $\mathcal{H}(t) = H(t) - \mu N(t)$ > Density matrix: $\rho(0) = \frac{1}{Z}e^{-\beta \mathcal{H}(0)} = \frac{1}{Z}\sum_{n} e^{-\beta E_n} |n\rangle \langle n|$ > Propagator: $\rho(t) = U(t,0) \rho(0) U(0,t)$ $\frac{d}{dt}U(t,t') = -i\mathcal{H}(t)U(t,t')$ $U(t,t') = \begin{cases} \operatorname{Texp}\left(-i\int_{t'}^{t} d\bar{t} \,\mathcal{H}(\bar{t})\right) & \text{for } t > t' \\ \bar{\operatorname{Texp}}\left(-i\int_{t'}^{t} d\bar{t} \,\mathcal{H}(\bar{t})\right) & \text{for } t < t' \end{cases}$

> Expectation value of observable A:

$$\langle A \rangle_t = \operatorname{Tr} \Big[\rho(t) A \Big] = \frac{1}{Z} \operatorname{Tr} \Big[U(-i\beta, 0) U(0, t) A U(t, 0) \Big]$$

Kadanoff-Baym formalism with time contour

> Expectation value of observable *A*:

 $\langle A \rangle_t = \frac{1}{Z} \operatorname{Tr}[U(-i\beta, 0)U(0, t) A U(t, 0)]$

> Represent as integral over time contour $C_1 + C_2 + C_3$:

Insert formal time dependence into Schrödinger operator A:

$$\langle A \rangle_t = \frac{\operatorname{Tr} \operatorname{T}_C A(t) \, \exp[-i \int_C d\bar{t} \, \mathcal{H}(\bar{t})]}{\operatorname{Tr} \operatorname{T}_C \, \exp[-i \int_C d\bar{t} \, \mathcal{H}(\bar{t})]}$$

Contour calculus

С

Contour Green functions

> Green function with 2 time arguments on branches C_1 or C_2 or C_3 : $G(t,t') = -i\langle c(t)c^{\dagger}(t') \rangle = -\frac{i}{Z} \operatorname{Tr} \left[\operatorname{T}_C \left\{ \exp(S)c(t)c^{\dagger}(t') \right\} \right]$

> Let $G_{ab}(t, t')$ have time arguments on branches a, b = 1, 2, 3

> Symmetries: $G_{11}(t,t') = G_{12}(t,t')$ for $t \le t'$ etc.

 $G_{13}(t,\tau') = G_{23}(t,\tau'),$

Keldysh Green functions

Noninteracting case and Self-energy

- Free electrons: $\mathcal{H}_{0}(t) = \sum_{k} [\epsilon_{k}(t) \mu] c_{k}^{\dagger} c_{k}$ $\mathcal{H}_{0}(t) = -i \langle c_{k}(t) c_{k}^{\dagger}(t') \rangle$ $\mathcal{H}_{0}(t) = -i \langle c_{k}(t) c_{k}^{\dagger}(t') \rangle$
- > EOM: $[i\partial_t + \mu \epsilon_k(t)]G_{0,k}(t,t') = \delta_C(t,t')$
- > Def. of inverse GF: $G_{0,k}^{-1}(t,t') = [i\partial_t + \mu \epsilon_k(t)]\delta_C(t,t')$
- > Solution: $G_{0,k}(t,t') = -i \Big[\theta_C(t,t') f(\epsilon_k(0) \mu) \Big] e^{-i \int_{t'}^t d\bar{t} \left[\epsilon_k(\bar{t}) \mu \right]}$

- > Self-energy Σ : 1-particle irreducible amputated Feynman diagrams
- > Dyson equation for full GF: $G = G_0 + G_0 * \Sigma * G$
- > Def. of inverse of full GF: $G^{-1} = G_0^{-1} \Sigma$

3. Nonequilibrium Dynamical Mean-Field Theory

The DMFT philosophy

> Start from limit of infinite lattice dimension $d \rightarrow \infty$

> Scale the kinetic energy, i.e., NN hopping amplitude $t_{ij} \propto \frac{1}{\sqrt{d}}$

Map lattice problem onto

dynamic single-site problem with *self-consistency condition*

[e.g. single-impurity Anderson model (SIAM)]

and solve numerically

- Extend to e.g.
 - finite *d* using clusters, dual fermions, dyn. vertex approx., ...
 - magnetic phases, phonons, ...
 - input from density functional theory, ...

The cavity method I

 $S = S_0 + \Delta S + S^{(0)},$

- > Time-dep. Hubbard model: $H(t) = \sum_{ij\sigma} t_{ij}(t) c_{i\sigma}^{\dagger} c_{j\sigma} + U(t) \sum_{i} n_{i\uparrow} n_{i\downarrow}$
- > Pick out single site i=0 from lattice action:

Equil.: Georges et al. RMP 1996 Noneq.: Gramsch et al PRB 2014

$$S_{0} = -i \int_{C} dt \left[U(t) n_{0\uparrow}(t) n_{0\downarrow}(t) - \mu \sum_{\sigma} n_{0\sigma}(t) \right],$$

$$\Delta S = -i \int_{C} dt \left[\sum_{i \neq 0, \sigma} t_{i0}^{\sigma}(t) c_{i\sigma}^{\dagger}(t) c_{0\sigma}(t) + \text{h.c.} \right],$$

$$S^{(0)} = -i \int_C dt \,\mathcal{H}^{(0)}(t)$$

> Integrate out rest of lattice: $S_{\text{eff}} = S_0 + \tilde{S}$

$$Z = \operatorname{Tr} \left[\operatorname{T}_{C} \left\{ \exp(S_{0} + \Delta S + S^{(0)}) \right\} \right]$$
$$= \operatorname{Tr}_{0} \left[\operatorname{T}_{C} \left\{ \exp(S_{0}) \operatorname{Tr}_{rest} \left(\exp(\Delta S + S^{(0)}) \right) \right\} \right]$$
$$= \operatorname{Tr}_{0} \left[\operatorname{T}_{C} \left\{ \exp(S_{0} + \tilde{S}) \right\} \right] Z_{S^{(0)}}$$

The cavity method II

> Result of integration over lattice sites $i \neq 0$:

$$\tilde{S} = -i \sum_{n=1}^{\infty} \sum_{\sigma_1 \dots \sigma'_n} \int_C dt_1 \dots \int_C dt'_n \Lambda_{\sigma_1 \dots \sigma'_n}(t_1, \dots, t'_n) c^{\dagger}_{0\sigma_1}(t_1) \dots c_{0\sigma'_n}(t'_n)$$

> Hybridization functions:

$$\Lambda_{\sigma_1...\sigma'_n}(t_1,...,t'_n) = \frac{(-i)^{n-1}}{n!^2} \sum_{i_1,...,j_n} t_{0i_1}(t_1) \cdots t_{j_n0}(t'_n) \ G^{(0),c}_{i_1\sigma_1,...,j_n\sigma'_n}(t_1,...,t'_n)$$
cavity Green function

> Power counting for $d \rightarrow \infty$:

cavity Green function (site *i=0* removed)

$$\begin{split} \Lambda_{\sigma_1\dots\sigma'_n}(t_1,\dots,t'_n) &\propto \sum_{\substack{i_1,\dots,j_n\\ \propto d^{2n}}} \underbrace{t_{0i_1}(t_1)\dots t_{j_n0}(t'_n)}_{\propto(\sqrt{d})^{-2n}} \underbrace{\mathcal{G}_{(i_1\sigma_1),\dots,(j_n\sigma'_n)}^{(0),\mathsf{c}}(t_1,\dots,t'_n)}_{\propto(\sqrt{d})^{-2(2n-1)}} \end{split}$$

> Only one-particle Green functions (n=1) remain in hybridization!

The DMFT action

Action for the cavity site *i=0*:

$$S_{\text{eff}} = -i \int_{C} dt \left[U(t) n_{\uparrow}(t) n_{\downarrow}(t) - \mu \sum_{\sigma} n_{\sigma}(t) \right]$$
$$- i \int_{C} dt_{1} \int_{C} dt_{2} \sum_{\sigma} \Lambda_{\sigma}(t_{1}, t_{2}) c_{\sigma}^{\dagger}(t_{1}) c_{\sigma}(t_{2})$$

> Hybridization function:

$$\Lambda_{\sigma}(t,t') = \sum_{i,j} t_{0i}(t) G_{ij\sigma}^{(0),c}(t,t') t_{j0}(t')$$

> Self-consistency for NN hopping on the Bethe lattice $t_{ij} = \frac{v}{\sqrt{z}}$

 $\Lambda_{\sigma}(t,t') = v(t)G_{\sigma}(t,t')v(t')$

Local self-energy and self-consistency

> Lattice and impurity Green function:

 $G_{ij}(t,t') = -i \langle c_i(t) c_j^{\dagger}(t') \rangle_S$ $G(t,t') = G_{00}(t,t')$

> Lattice and impurity self-energies:

$$\begin{aligned} (G_{\text{lat}}^{-1})_{ij}(t,t') &= [\delta_{ij}(i\partial_t + \mu) - t_{ij}(t)]\delta_C(t,t') - (\Sigma_{\text{lat}})_{ij}(t,t') \\ G^{-1}(t,t') &= (i\partial_t + \mu)\delta_C(t,t') - \Lambda(t,t') - \Sigma(t,t') \end{aligned}$$

> For DMFT action: $(\Sigma_{\text{lat}})_{ij}(t,t') = \delta_{ij}\Sigma(t,t')$ local self-energy!

► Self-consistency conditions: lattice and impurity Dyson equation $\int_{C} dt_{1} \sum_{l} \left[\left[\delta_{il}(i\partial_{t} + \mu) - t_{il}(t) \right] \delta_{C}(t, t_{1}) - \Sigma(t, t_{1}) \right] G_{lj}(t_{1}, t') = \delta_{ij} \delta_{C}(t, t')$ $\int_{C} dt_{1} \left[(i\partial_{t} + \mu) \delta_{C}(t, t_{1}) - \Lambda(t, t_{1}) - \Sigma(t, t_{1}) \right] G(t_{1}, t') = \delta_{C}(t, t')$

Solution of DMFT equations by iteration

- > DMFT iteration:
 - start from a hybridization function $\,\Lambda\,$
 - obtain impurity Green function $G(t, t') = -i\langle c(t)c^{\dagger}(t') \rangle$
 - obtain self-energy Σ from impurity Dyson equation
 - obtain new local Green function G(t, t') from lattice Dyson eq.
 - obtain new hybridization function Λ
- Must solve Volterra-type integro-differential eqs.

see RMP 2014 & references

Can be implemented as time-propagation scheme

Real-time impurity solvers

- Many-body perturbation theory
 - Weak-coupling perturbation theory
 - [sample code available as Supp.Mat. for RMP 86, 779 (2014)]
 - Strong-coupling perturbation theory
- Continuous-time Quantum Monte Carlo
- Hamiltonian-based methods / exact diagonalization
- Falicov-Kimball model

see Lecture Notes for references

4. Interaction quench in the Hubbard model

$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U(t) \sum_{i} n_{i\uparrow} n_{i\downarrow}$$
$$= \sum_{k\sigma} \epsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma}$$

Strong-coupling regime: collaps-and-revival oscillations

Hubbard interaction quench: Collapse & revival

Collapse-and-revival oscillations due to vicinity of atomic limit ($U = \infty$) Weak-coupling regime: metastable prethermalized state

Hubbard interaction quench: Prethermalization

Slow relaxation: *Prethermalization plateaus* due to vicinity of free system (U = 0) Berges et al. PRL '04 Moeckel & Kehrein PRL '08

Hubbard interaction quench from 0 to U

Eckstein et al., PRL '09

Prethermalization regime

Prethermalization in one and two dimensions

> Prethermalization less pronounced in low dimensions

Tsuji, Barmettler, Aoki, Werner, PRB '14

d = 1, *U* from 0 to 1

d = 2, *U* from 0 to 2

Prethermalization in one and two dimensions

> Prethermalization less pronounced in low dimensions

short-time expansion, Hamerla and Uhrig, PRB '14

perturbative correction does not reach a plateau

Intermediate-coupling regime: fast thermalization

Hubbard interaction quench: Thermalization

Hubbard model in DMFT: (bandwidth = 4, density n = 1)

Fast thermalization at intermediate Uboth prethermalization and oscillations disappear at $U_c^{dyn} \approx 3.2$ $U_c^{dyn} \sim 3.4$ well-captured by time-dependent Gutzwiller approximation: Schiro & Fabrizio PRL 2010

Summary and Outlook

Summary and Outlook

> Thermalization of correlated systems in nonequilibrium

- Eigenstate thermalization hypothesis:

Thermalization is due to energy eigenstates that contribute only according to their energy

- Thermalization does not occur in integrable systems
- > Nonequilibrium dynamical mean-field theory
 - Controlled approximation for nonequilibrium problems
 - Many applications:
 quenches, pulses, periodic driving, ...
 cluster extensions, ...
 magnetic phases; phonons; bosons; ...