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1 Introduction

In Chapters 1 and 3, it was discussed how the limit of infinite lattice dimension d → ∞ [1]
leads to drastic simplifications for many-body theory, which describes interacting electrons in
their ground state or in thermodynamic equilibrium. In particular, Hubbard-type models in the
thermodynamic limit are mapped exactly onto effective single-site problems with a local self-
energy, which in turn may be represented as self-consistent single-impurity Anderson models
that can be solved numerically. For systems in dimension d = 1, 2, 3 this approach corresponds
to a mean-field approximation, i.e. to dynamical mean-field theory (DMFT) [2], which can be
further improved by including corrections for finite dimensions, see e.g., Chapters 9 and 10.
DMFT can also be applied to nonequilibrium problems, i.e., the single-band Hubbard model
with time-dependent hopping amplitudes and interaction parameter,

HHubbard(t) =
∑
ijσ

tij(t) c
†
iσcjσ + U(t)

∑
i

(ni↑ − 1
2
)(ni↓ − 1

2
) . (1)

Due to recent experimental advances, theoretical methods to study such systems are of great
interest. Correlated materials can be excited and their relaxation monitored using pump-probe
spectroscopy with femtosecond laser pulses [3,4]. In a suitable gauge, the electric field couples
to the band energies via the time-dependent vector potential according to the Peierls substitu-
tion [5],

tij(t) = tij exp

(
−ie

~

∫ Rj

Ri

dr ·A(r, t)

)
. (2)

However, after a few hundred femtoseconds the electronic degrees of freedom will typically
have relaxed and their coupling to the slower vibrational lattice degrees of freedom will come
into play. From a quite different perspective, it is also possible to study the real-time behavior of
many-body states using ultracold atomic gases in optical lattices, which can be kept in excellent
isolation from the environment and for which kinetic and interaction energies can be controlled
very precisely for many hundreds of microseconds [6, 7].
In general, many-body theory for nonequilibrium is numerically even more demanding than
for equilibrium. For systems in equilibrium, the main task is to evaluate expectation values
(such as Green functions) for a grand-canonical density matrix (such as a thermal state for
an interacting Hamiltonian or possibly its ground state). In nonequilibrium, additionally, the
time evolution under a time-dependent Hamiltonian must be taken into account. However,
using nonequilibrium Green functions according to the Keldysh formalism, the limit of infi-
nite lattice dimensions provides similar benefits as in the equilibrium case, i.e., the problem is
again reduced to a single site by integrating out the rest of the lattice, although the remaining
nonequilibrium impurity problem is more complicated than in equilibrium. The nonequilib-
rium DMFT approach was first developed and applied for the Falicov-Kimball model [8–15]
(following an earlier incomplete attempt in Ref. [16]). Since then, many more applications and
extensions have appeared, including for time-resolved spectroscopy [17–19], abrupt and slow
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changes in parameters [20–26], response to DC and AC fields and pulses [27–43], antiferromag-
netic phases [44–47], coupling to phonons [48, 49], inhomogeneous systems [50], extensions
for lower dimensions [51–53], and dynamics of lattice bosons [54]. A recent review of the
nonequilibrium DMFT and its applications can be found in Ref. [55].
Below, the main ingredients for nonequilibrium DMFT are discussed. First, nonequilibrium
Green functions are defined according to the Keldysh formalism (Sec. 2). Then, the mapping
of a Hubbard model to a single-site problem with a dynamic bath is discussed (Sec. 3). Finally,
some aspects of the single-band Hubbard model in nonequilibrium (Sec. 4) are reviewed. We
follow mostly the setup and notation of Refs. [55] and [26].

2 Nonequilibrium Green functions

2.1 Time contour

We consider the time evolution of a quantum many-body system with density matrix ρ(t) that
starts at time t = 0 from thermal equilibrium, i.e., from a grand-canonical Gibbs state of the
Hamiltonian H(0),

ρ(0) =
1

Z
e−βH(0), (3)

i.e., the classical superposition of all eigenstates of the Hamiltonian depending on their Boltz-
mann weights. Here β = 1/(kBT ) is the inverse temperature, kB = 1, H(t) = H(t) − µN(t),
with µ the chemical potential, N(t) the particle number operator, and Z = Tr e−βH(0) the equi-
librium partition function. At time t = 0 the Hamiltonian changes, either continuously or
abruptly, e.g., by switching on an electric field. The time-dependent Schrödinger equation then
determines the evolution of the wave function, which is continuous in t. For a density matrix,
this yields the von Neumann equation (~ = 1) and its formal solution,

i
d

dt
ρ(t) = [H(t), ρ(t)] , ρ(t) = U(t, 0) ρ(0)U(0, t) . (4)

Our goal is to obtain the time-dependent expectation value of a (time-independent) Schrödinger
operator A,

〈A〉t = Tr[ρ(t)A] . (5)

The propagator obeys d
dt
U(t, t′) = −iH(t)U(t, t′), hence it is unitary, U(t, t′)U(t, t′)† =

U(t, t′)U(t′, t) = 1, and fulfills U(t, t′)U(t′, t′′) = U(t, t′′). Because H(t) and H(t′) do not in
general commute at different times, the formal solution of the differential equation for U(t, t′)

is

U(t, t′) =


T exp

(
−i
∫ t

t′
dt̄H(t̄)

)
for t > t′ ,

T̄ exp

(
−i
∫ t

t′
dt̄H(t̄)

)
for t < t′ ,

(6)
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Fig. 1: The integration along the L-shaped integration contour C runs along C1 from 0 to tmax

on the real axis, goes back along C2, and proceeds along C3 to −iβ. In the figure, the times
t ∈ C2 and t′ ∈ C1 are located such that t >C t′, i.e., t is later than t′ in the sense of contour
ordering.

where T and T̄ denote time-ordering and anti-time-ordering operators, respectively; i.e., T re-
orders the operators H(t̄) that occur in the expansion of the exponential such that the time
arguments t̄ increase from right to left (and from left to right for T̄). The density matrix ρ(t) in
the time-dependent expectation value (5) then involves one exponential with a forward integra-
tion along the time axis due to U(t, t′), one with a backwards integration due to U(t′, t), and in
between sits exp(−βH(0)) representing the initial state, the exponent of which can be rewritten
as an integral with respect to t from 0 to −iβ of H(0). The time ordering of operators H(t̄)

in (5) thus involves three parts, C1: 0 . . . tmax, C2: tmax . . . 0, and C3: 0 . . . − iβ (where tmax is
the maximal time of interest)

〈A〉t =
1

Z
Tr[U(−iβ, 0)U(0, t)AU(t, 0)]

=
Tr TC A(t) exp[−i

∫
C
dt̄H(t̄)]

Tr TC exp[−i
∫
C
dt̄H(t̄)]

. (7)

The integrals in the last expression are now along an L-shaped contourC that runs alongC1, C2,
and then C3; TC is the contour-ordering operator that arranges operators on C in the direction
of the arrows in Fig. 1. The time argument t that has been attached to A(t) merely indicates
the time at which the (Schrödinger) operator A must be inserted in the contour time ordering.
In the denominator of (7), no operator is inserted and hence the contributions from C1 and C2

cancel, yielding the partition function. The time parametrization along a contour allows to carry
over many techniques from equilibrium many-body theory [56] (such as Feynman diagrams
etc.), although it does not mean that integrations are actually performed in the complex plane.
Rather, the contributions of the contour parts C1, C2, C3 are evaluated separately. In particular,
the following definitions for contour integrals, contour convolutions, time derivative, contour
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theta and delta functions are useful:

g(t ∈ C) =


g+(t) if t ∈ [0, tmax] on C1,

g−(t) if t ∈ [0, tmax] on C2,

g|(−iτ) if t = −iτ on C3, τ ∈ [0, β],

(8)

∫
C

dt g(t) =

∫ tmax

0

dt g+(t)−
∫ tmax

0

dt g−(t)− i
∫ β

0

dτ g|(−iτ) , (9)

[a ∗ b](t, t′) =

∫
C

dt̄ a(t, t̄)b(t̄, t′) , (10)

∂tg(t) =

∂tg(t±) t ∈ C1,2

i∂τg(−iτ) t = −iτ ∈ C3

, (11)

θC(t, t′) =

1 for t >C t
′ ,

0 otherwise,
(12)

δC(t, t′) = ∂tθC(t, t′) , (13)∫
C

dt̄ δC(t, t̄)g(t̄) = g(t) . (14)

Here t >C t
′ means that t appears later on the contour (as shown in Fig. 1).

The representation of time-dependent expectation values (7), in particular for nonequilibrium
Green functions, is called the Keldysh formalism and is based on Refs. [57–59]. Modern intro-
ductions to the subject are can be found, e.g., in Refs. [60–62], of which in particular [62] is
very detailed, pedagogical, and complete. Note that, depending on the physical situation, other
time contours are used in the literature. In particular, the so-called Keldysh contour that extends
C1 and C2 to −∞ without C3 is useful to describe transport and nonequilibrium steady states
with currents. However, for lattice models like (1) without reservoirs, the L-shaped contour
is best suited, as it requires no further assumptions on the form of the nonequilibrium state,
switching-on of interactions, etc. Further discussions of various contour shapes can be found,
e.g., in Refs. [61–63].

2.2 Contour Green functions

The study of single-particle Green functions is a standard method to characterize the spectrum
and state in many-particle systems. For later use the action S is defined for a given Hamiltonian
as

S = −i
∫
C

dtH(t) , (15)

so that 〈A〉t is now written as 〈A(t)〉S = Tr[TC exp(S)A(t)]/ZS with ZS = Tr[TC exp(S)]. If
there is no ambiguity we will omit the subscript S. The definition of the time-ordering operator
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is changed to

TCA(t)B(t′) =

 AB if t >C t
′,

±BA if t <C t
′,

(16)

where the negative sign is used only if both A and B contain an odd number of fermionic
annihilation or creation operators. Furthermore, if t and t′ are equal and on the same branch of
the contour, TC performs a normal ordering by convention, moving all creators to the left.
Single-particle contour Green functions for fermions are then defined as contour-ordered ex-
pectation values in analogy to the equilibrium case,

G(t, t′) = −i〈c(t)c†(t′)〉 = − i

Z
Tr
[
TC
{

exp(S)c (t)c†(t′)
}]
, (17)

where the basis state indices (e.g., site, spin, and orbital indices) have been omitted on the
fermionic creation and annihilation operators for now, so all Green function should be regarded
as matrices in these indices. The time arguments t and t′ can each lie on one of the three
parts of the contour so that G has nine entries with different physical meanings. A subscript
a, b = 1, 2, 3 on Gab(t, t

′) then expresses whether a time argument is on the upper (1), lower
(2), or imaginary (3) part of the contour C. There is some redundancy because one can shift
the operator with the largest real-time argument between C1 and C2 because the time evolution
along these paths cancels on its right. It follows that

G11(t, t′) = G12(t, t′) for t ≤ t′, (18a)

G11(t, t′) = G21(t, t′) for t > t′, (18b)

G22(t, t′) = G21(t, t′) for t < t′, (18c)

G22(t, t′) = G12(t, t′) for t ≥ t′, (18d)

G13(t, τ ′) = G23(t, τ ′), (18e)

G31(τ, t′) = G32(τ, t′). (18f)

It is then customary to define the following independent components: retarded (GR), advanced
(GA), Keldysh (GK), left-mixing (G¬), right-mixing (G ¬), and Matsubara (GM ) Green func-
tion. For t and t′ from C1 or C2, τ from C3, and Tτ the imaginary-time ordering operator, they
are given by

GR(t, t′) = 1
2
(G11 −G12 +G21 −G22) = −iθ(t− t′)〈{c(t), c†(t′)}〉, (19a)

GA(t, t′) = 1
2
(G11 +G12 −G21 −G22) = iθ(t′ − t)〈{c(t), c†(t′)}〉, (19b)

GK(t, t′) = 1
2
(G11 +G12 +G21 +G22) = − i〈[c(t), c†(t′)]〉, (19c)

G¬(t, τ ′) = 1
2
(G13 +G23) = i〈c†(τ ′)c(t)〉, (19d)

G ¬(τ, t′) = 1
2
(G31 +G32) = −i〈c(τ)c†(t′)〉, (19e)

GM(τ, τ ′) = −iG33 = −〈Tτ c(τ)c†(τ ′)〉. (19f)
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Furthermore, the so-called lesser and greater Green functions are defined as

G<(t, t′) = G12 = i〈c†(t′)c(t)〉 , G>(t, t′) = G21 = −i〈c(t)c†(t′)〉 . (20)

They fulfill G< = 1
2
(GK − GR + GA) and G> = 1

2
(GK + GR − GA). Hermitian conjugation

entails the relations

G<,>,K(t, t′)∗ = −G<,>,K(t′, t) , (21a)

GR(t, t′)∗ = GA(t′, t) , (21b)

G¬(t, τ)∗ = G ¬(β − τ, t) . (21c)

The Matsubara Green function is translationally invariant, as H does not depend on τ , i.e.,
GM(τ, τ ′) = GM(τ − τ ′). It is also real and antiperiodic, GM(τ) = −GM(τ + β), so it can be
Fourier transformed to Matsubara frequencies as in equilibrium. Finally, the following bound-
ary conditions hold because the trace is cyclic,

G(0+, t) = −G(−iβ, t) , G(t, 0+) = −G(t,−iβ) . (22)

Here and throughout, G(t, t′) (without superscript denoting a component) is a contour Green
function for which the time arguments can be on any one of C1, C2, C3. By contrast, a Green
function with superscript contains (real or imaginary) time arguments for which the contour
part need not be specified. A convolution of contour functions f ∗ g involves contributions of
several components. The procedures that separate the components of f ∗ g and express them in
terms of the components of f and g are called Langreth rules [64]. They are discussed in detail,
e.g., in Ref. [62].

2.3 Equilibrium case

For a time-independent Hamiltonian the formalism reduces of course to that for the equilibrium
case [56], and only dependencies on time differences remain. In particular, the single-particle
spectral function that characterizes the excitation spectrum is given in terms of Fourier trans-
forms as

A(ω) = − 1

π
ImGR(ω) =

1

π
ImGA(ω) . (23)

In equilibrium, all components of G can be recovered from it,

G(t, t′) = −i
∫
dω eiω(t′−t)A(ω) [θC(t, t′)− f(ω)], (24)

where f(ω) = 1/(eβω + 1) is the Fermi function.
In nonequilibrium, one can introduce average and relative times, tav = (t + t′)/2, trel = t − t′,
in terms of which a partial Fourier transformation leads to the definition

A(ω, tav) = − 1

π
Im
∫
dtrel e

iωtrel GR(t, t′) , (25)

which satisfies the sum rule
∫
dω A(ω, tav) = 1.
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2.4 Noninteracting case

Consider now the simplest case of noninteracting fermions with a single time-dependent energy
band, H0(t) =

∑
k[εk(t) − µ] c†kck. The time derivative of the corresponding noninteracting

contour Green function G0,k(t, t′) = −i〈TCck(t)c†k(t′)〉 yields the equations of motion[
i∂t + µ− εk(t)

]
G0,k(t, t′) = δC(t, t′), (26a)

G0,k(t, t′)
[
− i
←−
∂ t′ + µ− εk(t′)

]
= δC(t, t′). (26b)

Here we let the derivative
←−
∂ t′ act to the left, i.e., f(t)

←−
∂ t = ∂tf(t), which makes the equations

more symmetric. The inverse of G0,k is then defined as the following differential operator,

G−1
0,k(t, t′) =

[
i∂t + µ− εk(t)

]
δC(t, t′) . (27)

The equations of motion thus correspond to the convolutions,

G−1
0,k ∗G0,k = G0,k ∗G−1

0,k = δC . (28)

Together with (22), either of these gives the unique solution [8],

G0,k(t, t′) = −i[θC(t, t′)− f(εk(0)− µ)]e
−i

t∫
t′
dt̄ [εk(t̄)−µ]

. (29)

2.5 Self-energy

For an interacting Hamiltonian H(t), one usually has to resort to approximations to obtain the
Green function G, e.g., by using perturbation expansions in terms of Feynman diagrams [62].
The self-energy Σ(t, t′) is then defined as a contour function (with boundary conditions as
in (22)) in terms of one-particle irreducible diagrams, which are the same as those for finite-
temperature equilibrium perturbation theory, but with the imaginary-time integrations in the
diagram rules being replaced by time-contour integrations. The full Green function is then
given in terms of the noninteracting Green function and self-energy insertions (on the contour),
G = G0 + G0 ∗ Σ ∗ G0 + G0 ∗ Σ ∗ G0 ∗ Σ ∗ G0 + · · · . The Dyson equation therefore reads

G = G0 +G0 ∗Σ ∗G = G0 +G ∗Σ ∗G0 . (30)

After convoluting these equations with G−1
0 from either side this becomes

[G−1
0 −Σ] ∗G = G ∗ [G−1

0 −Σ] = δC . (31)

This suggests the definition G−1 = G−1
0 − Σ, which is reminiscent of the equilibrium Dyson

equation [56]. However, in the present case the equations forG, even ifΣ is known, correspond
to integral-differential equations along the contour. Their form will be discussed in more detail
in the next section.
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3 Nonequilibrium DMFT

The hallmark of DMFT, whether in equilibrium or nonequilibrium, is its formulation in terms of
a dynamical effective single-site problem in the thermodynamic limit. The numerical solution
of this single-site problem then provides the self-energy (and thus Green functions), often in
a nonperturbative way. In this section, we show (following Ref. [26]) how the nonequilibrium
DMFT equations are obtained in the limit of infinite lattice dimensions by means of the so-called
cavity method, which was already employed in the equilibrium case in Ref. [2]. Alternatively,
one can base the derivation on the identical diagrammatic skeleton expansions for the self-
energies of the single-impurity Anderson model (SIAM) and the Hubbard model in infinite
dimensions [9, 55].

3.1 Cavity method

We start from the Hubbard Hamiltonian (1) and, in the spirit of the cavity method, pick out one
single site with the purpose of tracing out the remaining lattice. The action is thus split into

S = −i
∫
C

dtH(t) = S0 +∆S + S(0), (32)

with

S0 = −i
∫
C

dt

[
U(t)

(
n0↑(t)− 1

2

) (
n0↓(t)− 1

2

)
− µ

∑
σ

n0σ(t)

]
, (33)

∆S = −i
∫
C

dt

[∑
i6=0,σ

tσi0(t) c†iσ(t)c0σ(t) + H.c.

]
,

S(0) = −i
∫
C

dtH(0)(t). (34)

Here H(0)(t) is the Hamiltonian H(t) with the cavity site 0 removed. The effective single-site
action for this site 0 will consist of S0 for the local Hamiltonian at site 0 and a connection into
the effective environment that comes from integrating out ∆S + S(0). Splitting the trace for the
states at site 0 and the other sites, the partition function takes the form

ZS = Tr0

[
TC
{

exp(S0)Trrest
(
exp(∆S + S(0))

)}]
= ZS(0)Tr0

[
TC
{

exp(S0 + S̃)
}]

, ZS(0) = Trrest
(
TC
{

exp
(
S(0)

)})
. (35a)

Here S̃ is the effective action connecting the cavity site and the environment:

exp(S̃) =
∞∑
n=0

1

n!
〈(∆S)n〉S(0) , 〈A(t)〉S(0) ≡

Trrest
(
TC
{

exp
(
S(0)

)
A(t)

})
ZS(0)

(36)

Note that here ∆S contains operators at site 0 that are not traced over; since they anticommute
with those at other sites, the correct sign and time ordering must be kept when tracing over
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the latter. From the definition of ∆S, we see that only terms with an equal number of c†iσ, cjσ
with i, j 6= 0 contribute, i.e., only terms with even powers of ∆S. After some combinatorial
considerations and reorderings, the result is [26]

exp(S̃) =
∞∑
n=0

1

(2n)!
〈(∆S)2n〉S(0) =

∞∑
n=0

∫
C

dt1 · · ·
∫
C

dt′n
∑
i1,...,jn
σ1,...,σ′n

(−i)n

× t0i1(t1) . . . tjn0(t′n)

n!2
G

(0)
i1σ1,...,jnσ′n

(t1, . . . , t
′
n) c†0σ1(t1) . . . c0σ′n

(t′n) , (37)

with the n-particle contour-ordered Green function for the rest of the lattice (without site 0)
defined as

G
(0)
i1σ1,...,jnσ′n

(t1, . . . , t
′
n) = (−i)n〈ci1σ1(t1) . . . c†jnσ′n(t′n)〉S(0) . (38)

Next, the right-hand side of (37) must be re-exponentiated using connected (with respect to the
interaction inH(0)(t)) contour-ordered Green functions G(0),c [26]. The result is

S̃ = −i
∞∑
n=1

∑
σ1...σ′n

∫
C

dt1 . . .

∫
C

dt′n Λσ1...σ′n(t1, . . . , t
′
n) c†0σ1(t1) . . . c0σ′n

(t′n), (39)

where we defined the nth-order hybridization functions

Λσ1...σ′n(t1, . . . , t
′
n) ≡ (−i)n−1

n!2

∑
i1,...,jn

t0i1(t1) · · · tjn0(t′n) G
(0),c
i1σ1,...,jnσ′n

(t1, . . . , t
′
n), (40)

which involve connected cavity Green functions G(0),c that are obtained with S(0) only.
The effective action and its partition function, which only involve the degrees of freedom at the
cavity site 0, are thus given by

Seff = S0 + S̃, Zeff =
Z

ZS(0)

= Tr0 (TC {exp(Seff)}) . (41)

No approximation has been made yet, but of course the higher-order hybridization functions (40)
are not easily accessible in general and also couple to correspondingly complicated cavity
source terms. In this formulation, the limit of infinite dimensions lets only the hybridization
functions with n = 1 contribute, leading to a quadratic coupling between cavity and environ-
ment, which we now discuss.

3.2 DMFT action for an infinite-dimensional lattice

As in equilibrium [2], the hybridization functions (40) simplify drastically in the limit d→∞.
As a consequence of the quantum scaling [1] tij ∝Z

− 1
2

ij , where Zij is the number of sites j con-
nected to site i by hopping of type tij , only first-order terms (i.e., one-particle Green functions)
contribute to the effective action. These power counting arguments are entirely analogous to
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the equilibrium case. For the case of nearest-neighbor hopping on a hypercubic lattice, they
proceed as follows.
The contributions to (40) from nth order Green functions contain lattice summations that yield
a factor d2n, 2n factors of hopping amplitudes t0i ∝ d−1/2 giving d−n, and a factor from the
connected Green functions. The latter connects 2n nearest neighbors of 0, with the shortest path
between them requiring 2 lattice steps, of which at least 2n− 1 are needed, and in the best case
(when all sites are different) this gives a factor (

√
d)2(2n−1) = d2n−1. Hence

Λσ1...σ′n(t1, . . . , t
′
n) ∝

∑
i1,...,jn︸ ︷︷ ︸
∝ d2n

t0i1(t1) . . . tjn0(t′n)︸ ︷︷ ︸
∝(
√
d)−2n

G
(0),c
(i1σ1),...,(jnσ′n)(t1, . . . , t

′
n)︸ ︷︷ ︸

∝(
√
d)−2(2n−1)

∝ 1

dn−1
, (42)

so that for d→∞ only the quadratic term n = 1 survives. Furthermore, Λ is spin-diagonal as
(1) does not contain spin-flip terms. Dropping the index 0 of the cavity site, the DMFT action
is therefore

Sloc = −i
∫
C

dt

[
U(t)

(
n↑(t)− 1

2

) (
n↓(t)− 1

2

)
− µ

∑
σ

nσ(t)

]

− i
∫
C

dt1

∫
C

dt2
∑
σ

Λσ(t1, t2) c†σ(t1)cσ(t2). (43)

It remains to determine the hybridization Λ defined as

Λσ(t, t′) =
∑
i,j

t0i(t)G
(0),c
ijσ (t, t′) tj0(t′) , (44)

such that the action indeed describes the original interacting lattice system. This requires linking
the Green function G(0),c

ijσ to local quantities (using the self-energy, which turns out to be local).
Physically, the hybridization characterizes the “dynamical mean-field”, i.e., the effective host
into and out of which the particles on the impurity site can move.
Comparing the nonequilibrium DMFT action (43) with the equilibrium case, we note of course
the appearance of time-contour integrals and ordering. Furthermore, the action is not time-
translationally invariant because Λ depends explicitly on t and t′. This complicates the task of
numerically obtaining G from S for a given Λ.

3.3 Local self-energy

The local nature of the self-energy in infinite dimensions can be obtained from the cavity method
itself, as we now describe. It enters into the lattice and impurity Dyson equations, which deter-
mine the corresponding lattice and impurity Green functions. In general, the self-energy is also
needed to obtain the self-consistency relation for Λ. For brevity, we now drop the spin indices.
The hopping tij(t) is again arbitrary.
We consider the full lattice Green function Gij(t, t

′) =−i〈ci(t)c
†
j(t
′)〉S on the one hand and the

impurity Green functionG(t, t′) = G00(t, t′) on the other. Their inverses are given byG−1
lat (t, t′)
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and G−1(t, t′) respectively,∑
l

∫
C

dt1(G−1
lat )il(t, t1)Glj(t1, t

′) = δijδC(t, t′) , (45a)∫
C

dt1G
−1(t, t1)G(t1, t

′) = δC(t, t′) . (45b)

The corresponding impurity and lattice self-energies are then determined by the relations

(G−1
lat )ij(t, t

′) = [δij(i∂t + µ)− tij(t)] δC(t, t′)− (Σlat)ij(t, t
′) , (46)

G−1(t, t′) = (i∂t + µ)δC(t, t′)− Λ(t, t′)−Σ(t, t′) . (47)

Taking functional derivatives of Gij(t, t
′) with respect to the annihilation and creation operators

at site 0 (and hopping matrix elements that connect them) provides the relations [26]

Gij(t, t
′) = G

(0),c
ij (t, t′)+

∫
C

dt1

∫
C

dt2
∑
lm

G
(0),c
il (t, t1) tl0(t1)G(t1, t2) t0m(t2)G

(0),c
mj (t2, t

′). (48)

G0j(t, t
′) =

∫
C

dt1
∑
i

G(t, t1) t0i(t1)G
(0),c
ij (t1, t

′) , j 6= 0 . (49)

Putting (49) into (48) then gives us

G
(0),c
ij (t, t′) = Gij(t, t

′)−
∫
C

dt1

∫
C

dt2Gi0(t, t1)G−1(t1, t2)G0j(t2, t
′) , (50)

which we recognize as an analogue of the relation in equilibrium (i.e., Eq. (36) in Ref. [2]):
G

(0),c
ij (iωn) = Gij(iωn)−Gi0(iωn)G0j(iωn)/G(iωn). Furthermore, a conjugated equation sim-

ilar to (49) can be derived for Gi0(t, t′) and summed,∑
i

t0i(t)Gi0(t, t′) =

∫
C

dt1Λ(t, t1)G(t1, t
′) , (51)

while (49) itself can be rewritten as∫
C

dt1G
−1(t, t1)G0j(t1, t

′) =
∑
i

t0i(t)G
(0),c
ij (t, t′) , j 6= 0 . (52)

Summing over (50), these equations can be used to obtain∑
i

t0i(t)Gij(t, t
′) =

∫
C

dt1[G−1(t, t1) + Λ(t, t1)]G0j(t1, t
′) , j 6= 0 . (53)

Finally, we decompose

δ0j δC(t, t′) =
∑
l

∫
C

dt1(G−1
lat )0l(t, t1)Glj(t1, t

′) (54)

= (i∂t + µ)G0j(t, t
′)−

∑
l

t0l(t)Glj(t, t
′)−

∫
C

dt1
∑
l

(Σlat)0l(t, t1)Glj(t1, t
′) ,
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and use (51) and (53) to arrive at∫
C

dt1Σ(t, t1)G0j(t1, t
′) =

∫
C

dt1
∑
l

(Σlat)0l(t, t1)Glj(t1, t
′). (55)

Here the cavity site 0 can be replaced by an arbitrary i (for a translationally invariant system),∫
C

dt1Σ(t, t1)Gij(t1, t
′) =

∫
C

dt1
∑
l

(Σlat)il(t, t1)Glj(t1, t
′) . (56)

Acting on this equation with the inverse of the lattice Green function from the right shows that
indeed

(Σlat)ij(t, t
′) = δijΣ(t, t′) (57)

i.e., the lattice self-energy is local in the limit of infinite dimensions and given by the impurity
self-energy.

3.4 Self-consistency condition

The DMFT self-consistency condition then corresponds to the Dyson equations for the lattice
and impurity Green function. For the lattice Green function it is given by∫

C

dt1
∑
l

[
[δil (i∂t + µ)− til(t)] δC(t, t1)−Σ(t, t1)

]
Glj(t1, t

′) = δij δC(t, t′) , (58)

while for the impurity Green function,∫
C

dt1

[
(i∂t + µ) δC(t, t1)− Λ(t, t1)−Σ(t, t1)

]
G(t1, t

′) = δC(t, t′) . (59)

SupposeG has been obtained for givenΛ. Then in principle a newΣ can be found from (59) and
a newG follows from (58), and then again a newΛ from (59). For the actual strategies regarding
the nontrivial numerical solution of the Dyson equations (including Fourier transformation to
momentum space) we refer to Refs. [9, 33, 65] as well as [55] and references therein.

3.5 Bethe lattice

As in equilibrium, (44) can directly be evaluated for nearest-neighbor hopping on a Bethe lattice
with Z →∞ nearest neighbors, tij = v/

√
Z , and semielliptic density of states,

ρ(ε) =

√
4v2 − ε2

2πv2
. (60)

For neighboring sites i, j of the cavity site 0, G(0),c
ij (t, t′) is nonzero only for i = j, since there is

no path from i to j other than through the removed cavity site 0. Furthermore, for Z →∞ we
have G(0),c

iσ (t, t′) = Gσ(t, t′). The quantum scaling ensures that the summation over all nearest
neighbors of 0 stays finite. This yields the action (43) with the hybridization [66, 24],

Λσ(t, t′) = v(t)Gσ(t, t′) v(t′) , (61)

i.e., after obtaining a new G from S for given hybridization Λ, the new Λ can be obtained at
once. The self-energy is nevertheless needed to calculate lattice quantities (such as the lattice
Green function or momentum distribution).
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3.6 Numerical methods

Several methods have been developed to calculate the contour Green function G(t, t′) from the
single-site DMFT action (43) for given hybridization Λ(t, t′) [55]. Generally speaking, these
methods are more involved as contour functions on the different branches must be obtained, and
not only the initial many-body state (3) must be represented but also its time evolution during
which small errors may grow substantially. The methods in the following list all have parameter
regimes for which they are well-controlled and therefore accurate, and checking them against
each other provides an important benchmark.

Many-body perturbation theory

Diagrammatic perturbation theory [62] is limited to either sufficiently small or large interaction.
For weak coupling the self-energy is expanded in terms of Feynman diagrams to a certain finite
order in U ; see, e.g., Refs. [11, 67, 21, 34, 68, 38, 44, 36, 46]. The Green function lines can be
taken as bare or interacting Green functions (as in the equilibrium case [2]), although it is not
a priori clear which choice is more accurate for a given problem. Strong-coupling perturba-
tion theory is based on a representation in terms of auxiliary particles or an expansion in the
hybridization [21, 55]; see, e.g., Refs. [33, 40, 45, 41, 50, 48, 47, 49]. For both small and strong
coupling the perturbation expansions are asymptotic in the sense that they will be more accurate
if the controlling parameter is smaller. For long times, however, it is never a priori clear up to
which time they will remain accurate.

Continuous-time quantum Monte Carlo (CT-QMC)

CT-QMC [69–71] also comes in two versions, an interaction and hybridization expansion.
Feynman diagrams are generated and sampled stochastically with appropriate weights. In ad-
dition to the fermionic sign problem, the imaginary exponents that appear in the contour Green
function lead to a dynamic sign problem, so that only comparatively short times can be studied
reliably (see, Refs. [20, 21] and Sec. 4). Also, for finite temperatures, an initial thermal state
becomes more costly to obtain at low temperatures.

Hamiltonian-based methods

A single-impurity Anderson model (SIAM) with time-dependent couplings and bath energies
yields the same nonequilibrium action as (43) with a specific hybridization Λ(t, t′) upon inte-
grating out the bath. In order to use such a time-dependent SIAM representation this hybridiza-
tion function must be matched with that obtained from the DMFT self-consistency condition
(e.g. (61)), as discussed in detail in [26]. Then, the time evolution of the SIAM Hamiltonian
may be obtained by exact diagonalization methods. In general, the accessible time is limited
because many bath sites are needed to represent both the correlations in the initial state (which
typically decrease with time) and the build-up of correlations in the time-evolved state [26].
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Falicov-Kimball model

In the Falicov-Kimball model [72], only one electron species hops between lattice sites while
the other is immobile. As in the equilibrium case, it has played an important role for the de-
velopment of nonequilibrium DMFT [9–11, 13, 15, 18, 19, 29] because it reduces to a quadratic
action that is partially solvable. However, its nonequilibrium (and equilibrium) properties are
quite different from that of the Hubbard model.

4 Correlated electrons in nonequilibrium

As mentioned in Sec. 1, many aspects of correlated electrons in nonequilibrium have been
studied with DMFT. Here we discuss only one of the simplest situations, namely an abrupt
change in the Hubbard interaction U .

4.1 Relaxation and thermalization

The evolution of a quantum many-body system in real time raises interesting questions about
the connection to equilibrium statistical mechanics. Suppose that an isolated system undergoes
some experimental protocol with a Hamiltonian H(t) that no longer changes after a certain
time t1. How does the system behave at large times (during which H(t ≥ t1) = const)? Does
it relax to the equilibrium state that is predicted by statistical mechanics for this Hamiltonian
H(t1) for the average energy E = Tr[ρ(t1)H(t1)]? If it does, the system is said to thermalize.
However, the density matrix ρ(t) in (4), when regarded in the eigenbasis of H(t1), will contain
many oscillating components that by themselves will in general not converge. Rather, expec-
tation values (such as Green functions or other short-range correlation functions) will relax to
stationary values because they average over many states and degrees of freedom.
In general, the coupling of the system to an environment is needed to prepare a mixed state such
as the canonical or grand-canonical Gibbs ensemble (3). This is used in the usual derivation of
the Gibbs state in statistical mechanics, based on Boltzmann’s concept of entropy S = kB lnΩ.
The system is coupled to a much larger external thermostat, and the number of available states
for the system at energy E is then proportional to the numberΩ of microstates of the thermostat
at energy E − E, where E is the fixed total energy of system plus thermostat. Expanding Ω in
the vicinity of E one finds that the probability for the system to have energy E is proportional
to e−E/(kBT ), where T = ∂S/∂E is the temperature of the thermostat.
On the other hand, during the time evolution of an isolated system there is no environment to
assist with the thermalization, i.e., the system must in some sense act as its own environment.
A priori it is not obvious how the details of the initial state (or ρ(t1) in the above example)
should be irrelevant in the long-time limit so that only a dependence on the average energy
remains. The so-called eigenstate thermalization hypothesis [73–76] proposes that this is due to
the fact that the expectation value of an observable A in an energy eigenstates with energy En
usually depends only on the eigenenergy En and not on the details of the eigenstate |n〉. This
property can be observed for many generic many-body systems and short-range observables A,
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although it is difficult to give precise criteria for its validity. From this property it follows at once
that, after relaxation, thermal expectation values are attained for such observables. Integrable
systems, on the other hand, are characterized by a large number of conserved quantities. These
lead to a dependence of expectation values not only on En but also on the individual eigenstates
|n〉. As a consequence, integrable systems usually do not thermalize, a behavior that has also
been observed experimentally with cold atoms [77]. Nevertheless, a statistical prediction can
often be made using generalized Gibbs ensembles (GGEs), which take the conserved constants
of motion (in addition to the Hamiltonian) into account [78, 79, 75]; for reviews see [76, 80]. In
general, however, there is still much debate how to even define thermalization or integrability
properly for quantum many-body systems in general.

4.2 Interaction quench in the Hubbard model

One of the simplest situations that can be studied in this context is a so-called quench, i,e., a
sudden switch of Hamiltonians. Here the quench is performed in the Hubbard model (1) at
half-filling in the paramagnetic phase with semielliptic density of states (60) with bandwidth
4v ≡ 4. The system is prepared in the zero-temperature ground state of the noninteracting
Hamiltonian, i.e., U(t < 0) = 0. At t = 0 the Hubbard interaction is switched to a finite value,
U(t ≥ 0) = U . The Green function is obtained with CT-QMC (weak-coupling expansion)
from the action (43), and the selfconsistency condition (61) applies [20,21]. The noninteracting
initial state makes things simpler because the imaginary branch of the contour does not enter
the CT-QMC calculation.
In Fig. 2 the momentum distribution n(εk, t) = 〈c†kσ(t)ckσ〉 is plotted as a function of the band
energy ε ≡ εk for different final values of U . The the initial Fermi sea evolves from a step
function into a continuous function of ε. Fig. 3 shows the jump in the momentum distribution
at the Fermi surface and the double occupation as a function of time. Three different param-
eter regimes can be observed: small and large values of U , separated by a sharp crossover or
transition near the intermediate scale U ≈ 3.2 = U dyn

c . Near U dyn
c , the momentum distribution

relaxes quickly to the thermal distribution for all energies ε (solid blue line in Fig. 2b, obtained
from a grand-canonical DMFT equilibrium calculation for the temperature that gives the same
total energy E). Relaxation to thermal values is also found for dynamical observables like the
retarded Green functionGR(t+s, t) (as a function of time difference s) and the two-time optical
conductivity σ(t, t + s) [21]. For quenches close to Uc, the system hence thermalizes on short
timescales.
For quenches to small or large values of U (away from Uc), thermalization is nevertheless ex-
pected on general grounds but cannot be observed on the short time scales that are available
with CT-QMC. Away from Uc, the relaxation does not reach a thermal state quickly but in-
stead passes through metastable states on intermediate time scales. For quenches to weak
coupling, U ≤ 3, the double occupation d(t) relaxes from its initial uncorrelated value d(0)

= 1/4 almost to its thermal value dth, whereas the Fermi surface discontinuity ∆n(t) remains
finite for t ≤ 5. This behavior is called prethermalization and was predicted for a quenched
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Fig. 2: Momentum distribution n(ε, t) after an interaction quench in the Hubbard model with
bandwidth 4 in DMFT [20, 21], starting from the noninteracting ground state (U = 0) to inter-
action (a) U = 2, (b) U = 3.3, (c) U = 5. The blue line in (b) is the equilibrium expectation
value for the momentum distribution at the same total energy (temperature T = 0.84) as the
time-evolved state.

Fig. 2: Momentum distribution n(ε, t) after an interaction quench in the Hubbard model with
bandwidth 4 in DMFT [20, 21], starting from the noninteracting ground state (U = 0) to inter-
action (a) U = 2, (b) U = 3.3, (c) U = 5. The blue line in (b) is the equilibrium expectation
value for the momentum distribution at the same total energy (temperature T = 0.84) as the
time-evolved state.
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Fig. 3: Double occupation d(t) and Fermi surface discontinuity ∆n after interaction quenches
to U ≤ 3 (left panels) and U ≥ 3.5 (right panels) [20]. Horizontal arrows: thermal values
of the double occupation. Horizontal dashed lines in the lower left panel are the expected
prethermalization plateaus [81].

Fermi liquid [81] on the basis of a weak-coupling calculation. Characteristically, the kinetic
and interaction energy thermalize on time scales 1/U2 while the Fermi surface discontinuity
only reaches a plateau that is located ∆nstat = 1 − 2Z, where Z is the quasiparticle weight
in equilibrium at zero temperature. During this early phase the quasiparticles are formed, and
during their subsequent scattering the momentum occupations are further redistributed. The
weak-coupling result for the transient [81] towards the prethermalization plateau describes the
DMFT data well for U . 1.5 [20], even though at the larger U values the timescales 1/U2 and
1/U4 are no longer well separated. A weakly interacting system may be regarded as nearly in-
tegrable, and indeed prethermalization plateaus after an interaction quench are quite generally
predicted correctly by a generalized Gibbs ensemble that is built from approximate constants
of motion [82]. Physically, the subsequent crossover from the prethermalization plateau to the
thermal state is expected due to the scattering of quasiparticles, which can be described by a
kinetic equation [83]. Note also that a short-time prethermalization regime has been observed
for interaction quenches in the one- and two-dimensional Hubbard model [84, 85, 52], albeit
with a less pronounced plateau in the momentum distribution.
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For quenches to strong coupling (U ≥ 3.3 in Fig. 3b,d), the relaxation shows so-called ‘collapse-
and-revival’ oscillations with the approximate periodicity 2π/U , which are due to the exact peri-
odicity of the propagator e−iHt without hopping [6]. For large values of U , both d(t) and n(ε, t)

oscillate around nonthermal values. Strong-coupling perturbation theory [20] shows that the
mean value of d(t) for these oscillations is dstat = d(0)−∆dwith∆d= (1/2U)〈Hkin/L〉t=0. By
contrast, the thermal value is obtained as dth = d(0)+(1/U)〈Hkin/L〉0 from a high-temperature
expansion. Hence, during the initial stage of the relaxation the double occupation relaxes only
halfway towards dth. Although longer times cannot be accessed with the weak-coupling CT-
QMC method, a relaxation to the thermal state is expected after the oscillations have decayed,
as in the case of a pump-excited Mott insulator [33]. In general, this crossover will set in only
on times scales that are exponentially large in the interaction U [86].
The rapid thermalization at U ≈ U dyn

c occurs at the border between the delayed thermalization
either due to weak-coupling prethermalization plateaus or strong-coupling oscillations around
nonthermal values. Indeed, no finite width was detected for the width of this crossover re-
gion, so that the behavior at U dyn

c might signal a dynamical phase transition. A similarly strong
dependence on the quenched interaction was observed in Heisenberg chains [87] and the one-
dimensional Hubbard model [84]. Several possible origins for nonequilibrium phase transitions
of this type have been proposed [88–91]. For the DMFT data, the corresponding equilibrium
temperature Teff after the quench is much higher than the critical endpoint of the Mott metal-
insulator transition in equilibrium (Tc ≈ 0.055 [2], but Teff = 0.84 for U = 3.3). Interestingly, a
good approximation for the critical interaction, U dyn

c ≈ 3.4, is obtained from a time-dependent
variational theory using the Gutzwiller approximation [92, 93]. Variational results also sug-
gest that the difference in Uc for equilibrium and nonequilibrium is due to the rapid change
in interaction and corresponding high excitation energy: if the Hubbard interaction is instead
changed very slowly, this lessens the effective temperature and the dynamical critical value Uc
approaches that of the equilibrium transition [94].
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