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Preface
Dynamical mean-field theory (DMFT) has opened new perspectives for dealing with strong
electronic correlations and the associated emergent phenomena. This successful method has
exploited the experience previously gained with single-impurity models, e.g., the Anderson
model, transferring it to many-body lattice problems. The basis for this breakthrough was the
realization, 25 years ago, that diagrammatic perturbation theory greatly simplifies in the limit
of infinite dimensions, so that the self-energy becomes local. Nowadays DMFT, combined
with ab-initio density-functional techniques, is the state-of-the art approach for strongly corre-
lated materials. The lectures collected in this volume range from reconting the development of
the dynamical mean-field theory to applications of the LDA+DMFT approach to real materi-
als and modern developments. Among the latter, topics covered are modern impurity solvers,
the calculation of two-particle Green functions, and method extensions beyond the single-site
approximation. Lectures on photoemission spectroscopy provide the necessary contact to ex-
periments. The goal of the school is to introduce advanced graduate students and up to the
modern approaches to the realistic modeling of strongly-correlated systems.

A school of this size and scope requires support and help from many sources. The DFG
Research Unit FOR 1346 provided the framework for the school and a large part of the financial
support. The Institute for Advanced Simulation and the German Research School for Simulation
Sciences at the Forschungszentrum Jülich provided additional funding and were vital for the
organization of the school and the production of this book. The Institute for Complex Adaptive
Matter (ICAM) offered travel grants for selected international participants.

The nature of a school makes it desirable to have the lecture-notes available when the lec-
tures are given. This way students get the chance to work through the lectures thoroughly while
their memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Graphische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped in proof-
reading the manuscripts, often on quite short notice: Michael Baumgärtel, Khaldoon Ghanem,
Esmaeel Sarvestani, Amin Kiani Sheikhabadi, Hermann Ulm, Guoren Zhang, and, in particular,
our native speaker Hunter Sims.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavour, and to Mrs. L. Snyders
and Mrs. E. George for expertly handling all practical issues.

Eva Pavarini, Erik Koch, Dieter Vollhardt, and Alexander Lichtenstein

August 2014
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1.2 Dieter Vollhardt

1 Introduction

Correlations between the degrees of freedom of d and f electrons lead to a wealth of fasci-
nating phenomena, which include Mott metal-insulator transitions [1–3], the Kondo effect [4],
heavy fermion behavior [5], band-ferromagnetism [6], high-temperature superconductivity [7],
colossal magnetoresistance [8], and other Fermi liquid instabilities [9]. In particular, the very
sensitive dependence of the properties of correlated materials on external parameters such as
temperature, pressure, magnetic field, or doping make them interesting not only for fundamen-
tal research but also for future technological applications, e.g., the construction of sensors and
switches, and the development of electronic devices with novel functionalities [10].
The importance of interactions between electrons in a solid was realized already at the outset
of modern solid state physics. Namely, the report by de Boer and Verwey [11] on the sur-
prising properties of materials with partially filled 3d-bands such as NiO prompted Mott and
Peierls [12] to postulate that theoretical explanations of these properties must include the elec-
trostatic interaction between the electrons. Explicit calculations soon confirmed this conjecture.
At the same time it turned out that theoretical studies of interacting many-fermion systems are
highly demanding. Here the development of the dynamical mean-field theory (DMFT) marks
a methodological breakthrough. Indeed, by replacing the d-dimensional lattice of a correlated-
electron solid by a single quantum impurity, which is self-consistently embedded in a bath
provided by the other electrons, the DMFT opened the way for comprehensive theoretical inves-
tigations of correlation phenomena in electronic lattice models and materials. The starting point
for the development of this powerful new many-body approach was the discovery, 25 years ago,
that diagrammatic perturbation theory for interacting lattice fermions is much simpler in infinite
spatial dimensions than in finite dimensions and, in particular, that the self-energy is then purely
local. The current Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions
commemorates this anniversary. Starting with a discussion of the properties of the Gutzwiller
variational wave function and the mean-field-type Gutzwiller approximation, which provides a
simplistic but robust, non-perturbative theoretical approach to correlated lattice fermions, I will
describe the steps which eventually led to the formulation of the DMFT.

1.1 Modeling of correlated lattice electrons

The simplest model for interacting electrons in a solid is the one-band Hubbard model, which
was introduced independently by Gutzwiller, Hubbard and Kanamori [13–15]. In this model
the interaction between the electrons is assumed to be strongly screened, i.e., purely local. The
Hamiltonian Ĥ is the sum of two terms, the kinetic energy Ĥkin and the interaction energy ĤI

(here and in the following operators are denoted by a hat):

Ĥ =
∑
Ri,Rj

∑
σ

tij ĉ
†
iσ ĉjσ + U

∑
Ri

n̂i↑n̂i↓ , (1)

where tij is the hopping amplitude, U is the local Hubbard interaction, ĉ†iσ(ĉiσ) is the creation
(annihilation) operator of an electron with spin σ in a Wannier orbital localized at lattice site Ri,
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Fig. 1: Schematic illustration of interacting electrons in a solid described by the Hubbard
model. The ions enter only as a rigid lattice, here represented by a square lattice. The electrons,
which have a mass, a negative charge, and a spin (↑ or ↓), are quantum particles that move
from one lattice site to the next with a hopping amplitude t. The quantum dynamics thus leads
to fluctuations in the occupation of lattice sites as indicated by the time sequence. A lattice site
can either be unoccupied, singly occupied (↑ or ↓), or doubly occupied. When two electrons
meet on a lattice site, which is only possible if they have opposite spin because of the Pauli
exclusion principle, they encounter an interaction U .

and n̂iσ = ĉ†iσ ĉiσ. The Hubbard interaction can also be written as ĤI = UD̂ where D̂ =
∑

Ri
D̂i

is the number operator of doubly occupied sites of the system, with D̂i = n̂i↑n̂i↓ as the local
operator for double occupation. The Fourier transform of the kinetic energy

Ĥkin =
∑
k,σ

εkn̂kσ (2)

is defined by the dispersion εk and the momentum distribution operator n̂kσ. A schematic
picture of the Hubbard model is shown in Fig. 1. For strong repulsion U double occupations
are energetically unfavorable and are therefore suppressed. In this situation the local correlation
function 〈n̂i↑n̂i↓〉 must not be factorized, since otherwise correlation phenomena are eliminated
from the beginning. Therefore Hartree-Fock-type mean-field theories, which do factorize the
interaction, cannot explain the physics of strongly correlated electrons.

The Hubbard model looks deceptively simple. However, the competition between the kinetic
energy and the interaction leads to a complicated many-body problem, which is impossible to
solve analytically except in dimension d = 1 [16]. This model provides the basis for most of
the theoretical research on correlated electrons during the last few decades.
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2 Approximation schemes for correlated electrons

Theoretical investigations of quantum-mechanical many-body systems are faced with severe
technical problems, particularly in those dimensions which are most interesting to us, namely
d = 2, 3. This is due to the complicated quantum dynamics and, in the case of fermions, the
non-trivial algebra introduced by the Pauli exclusion principle.

In view of the fundamental limitations of exact analytical approaches one might hope that, at
least, modern supercomputers can provide detailed numerical insights into the thermodynamic
and spectral properties of correlated fermionic systems. However, since the number of quantum
mechanical states increases exponentially with the number of lattice sites L, numerical solutions
of the Hubbard model and related models are limited to relatively small systems. This shows
very clearly that there is still a great need for analytically tractable approximation methods [17],
in particular for non-perturbative approximation schemes which are applicable for all input
parameters.

2.1 Mean-field theories

In the theory of classical and quantum many-body systems an overall description of the prop-
erties of a model is often obtained within a mean-field theory. Although the term is frequently
used it does not have a precise meaning, since there exist numerous ways to derive mean-field
theories. One construction scheme is based on a factorization of the interaction, as in the case
of the Weiss mean-field theory for the Ising model, or the Hartree-Fock theory for electronic
models. The decoupling implies a neglect of fluctuations (or rather of the correlation of fluctu-
ations; for details see Ref. [18]) and thereby reduces the original many-body problem to a solv-
able problem where a single spin or particle interacts with a mean field provided by the other
particles. Another, in general unrelated, construction scheme makes use of the simplifications
that occur when some parameter is assumed to be large (in fact, infinite), e.g., the magnitude
of the spin S, the spin degeneracy N , the number Z of nearest neighbors of a lattice site (the
coordination number), or the spatial dimension d.1 Investigations in this limit, supplemented, if
possible, by an expansion in the inverse of the large parameter, 2 often provide valuable insight
into the fundamental properties of a system even when this parameter is not large. One of the
best-known approximations obtained in this way is the Weiss mean-field theory for the Ising
model [19]. This is a prototypical “single-site mean-field theory,” which becomes exact not
only in the limit Z → ∞ or d → ∞, but also for an infinite-range interaction. It contains no
unphysical singularities and is applicable for all values of the input parameters, i.e., coupling
parameters, magnetic field, and temperature.

1For regular lattices both a dimension d and a coordination numberZ can be defined. However, there exist other
lattices, such as the Bethe lattice, which cannot be associated with a physical dimension d although a coordination
number Z is well-defined.

2In three dimensions one has Z = 6 for a simple cubic lattice, Z = 8 for a bcc lattice, and Z = 12 for an
fcc-lattice. The parameter 1/Z is therefore quite small already in d = 3.
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2.2 Variational wave functions

Another useful approximation scheme for interacting quantum many-body systems makes use
of variational wave functions. They allow for approximate but explicit and physically intuitive
investigations of correlations among quantum particles and are particularly valuable in situa-
tions where standard perturbation theory fails. Correlation problems where variational wave
functions have been employed include such diverse examples as the quantum liquids Helium-
3 and Helium-4 [20], rotons in superfluid 4He [21], nuclear physics [22], and the fractional
quantum Hall effect [23]. Variational wave functions received renewed attention in the study of
heavy fermions [24, 25] and high-Tc superconductivity [26].
The general strategy is to construct an explicit wave function of the form

|Ψvar〉 = Ĉ|Ψ0〉 (3)

where |Ψ0〉 is a tractable one-particle starting wave function on which a correlation operator
Ĉ(λ1, . . . , λn) acts. The latter depends on variational parameters λi and describes the micro-
scopic interaction between the particles in an approximate way. This wave function is then used
to calculate the expectation value of an operator Ô as

〈Ô〉var =
〈Ψvar|Ô|Ψvar〉
〈Ψvar|Ψvar〉

. (4)

In particular, by calculating and minimizing the ground state energy Evar = 〈Ĥ〉var, where Ĥ
is the Hamiltonian, the variational parameters contained in Ĉ (and perhaps also in |Ψ0〉) can be
determined. These parameters are used to suppress those configurations in |Ψ0〉 which for given
interaction strength are energetically unfavorable. The variational principle guarantees thatEvar

provides a rigorous upper bound for the exact ground state energy.

3 Gutzwiller wave functions

For the Hubbard model, (1), the simplest variational wave function of the form (3) is the so-
called Gutzwiller wave function

|ΨG〉 = gD̂ |FG〉 (5a)

=
∏
Ri

[1− (1− g)D̂i] |FG〉 , (5b)

where gD̂, with 0 ≤ g ≤ 1, is the correlation operator and |FG〉 is the ground state of the non-
interacting Fermi gas. Hence the correlation operator globally reduces the amplitude of those
spin configurations in |FG〉 with too many doubly occupied sites. The limit g = 1 corresponds
to the non-interacting case, while g → 0 describes the limit U → ∞. Indeed, for g → 0 one
finds

gD̂
∣∣∣
g=0

=
∏
Ri

[1− D̂i] ≡ P̂G . (6)
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The projection operator P̂G eliminates all configurations with doubly occupied sites (Gutzwiller
projection). The ground state energy in terms of the Gutzwiller wave function is then given by

EG = 〈Ĥ〉G ≡
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

. (7)

By replacing |FG〉 with a more general starting wave function one can also describe states
with broken symmetry; examples are the antiferromagnetic Hartree-Fock wave function (spin
density wave)

|SDW〉 =
∏
k,σ

[ukâ
†
kσ + σvkâ

†
k+Q,σ] |0〉 , (8a)

where Q is half a reciprocal lattice vector and |0〉 is the vacuum, and the BCS wave function [27]

|BCS〉 =
∏
k

[uk + vkâ
†
k↑â
†
−k↓] |0〉 , (8b)

which after projection leads to a resonating valence bond state (RVB) [26].

3.1 Gutzwiller approximation

In addition to introducing the wave function (5a) Gutzwiller constructed a non-perturbative
approximation scheme that allowed him to obtain an explicit expression for the ground state
energy of the Hubbard model [13, 28].3 We will see in Sec. 4.1.1 that this Gutzwiller approxi-
mation yields the exact result for expectation values calculated with Gutzwiller wave functions
in the limit of infinite spatial dimensions (d =∞). The idea behind the Gutzwiller approxima-
tion is easily understood [29,30] and will be illustrated below by calculating the norm 〈ΨG|ΨG〉.
Working in configuration space the ground state of the Fermi gas can be written as

|FG〉 =
∑
D

∑
{iD}

AiD |ΨiD〉, (9)

where |ΨiD〉 is a spin configuration with D doubly occupied sites and AiD the corresponding
probability amplitude. The sum extends over the whole set {iD} of different configurations
with the same D, and over all D. For a system with L lattice sites and Nσ electrons of spin σ
(σ-electrons) the number ND of different configurations in {iD} is given by the combinatorial
expression

ND =
L!

L↑!L↓!D!E!
, (10)

where Lσ = Nσ−D and E = L−N↑−N↓+D are the numbers of singly occupied and empty
sites, respectively. Since |ΨiD〉 is an eigenstate of D̂, the norm of |ΨG〉 reads

〈ΨG|ΨG〉 =
∑
D

g2D
∑
{iD}

|AiD |2. (11)

3By studying lattice electrons with a local Coulomb repulsion Gutzwiller wanted to understand the origin of
ferromagnetism in metals.
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The Gutzwiller approximation effectively amounts to neglecting spatial correlations between
the spins of the electrons. The probability |AiD |2 is then the same for all configurations of elec-
trons on the lattice, i.e., is given by the classical combinatorial result for uncorrelated particles

|AiD |2 = P↑P↓. (12)

Here Pσ = 1/
(
L
Nσ

)
' nNσσ (1 − nσ)L−Nσ , with nσ = Nσ/L, is the probability for an arbitrary

configuration of σ-electrons. In this case (11) reduces to

〈ΨG|ΨG〉 = P↑P↓
∑
D

g2DND. (13)

In the thermodynamic limit the sum in (13) is dominated by its largest term corresponding to a
value D = D̄, where D̄ = Ld̄ is determined by

g2 =
d̄(1− n↑ − n↓ + d̄)

(n↓ − d̄)(n↑ − d̄)
. (14)

Equation (14) has the form of the law of mass action where, however, the correlation parameter
g2 rather than the Boltzmann factor regulates the dynamical equilibrium between the concen-
trations of singly occupied sites on one side of this “chemical reaction” and that of doubly
occupied sites and holes on the other.4 Eq. (14) uniquely relates d̄ and g, such that g may be
replaced by the quantity d̄. The calculation of the expectation values of the kinetic and the in-
teraction energy of the Hubbard model proceeds similarly [30]. The Gutzwiller approximation
for quantum mechanical expectation values, which is based on the counting of classical spin
configurations, belongs to the class of quasiclassical approximations.

3.1.1 Brinkman-Rice transition

The ground state energy per lattice site of the Hubbard model as a function of the variational
parameter d̄(g) is then found as

EG[ d̄(g)]/L =
∑
σ

qσ(d̄, n↑, n↓)ε0,σ + Ud̄, (15)

which is to be minimized with respect to d̄. Here ε0,σ is the energy of non-interacting σ-electrons
and qσ ≤ 1 may be viewed as a reduction factor of the kinetic energy (or the band width) due to
correlations. In particular, for n↑ = n↓ one has qσ ≡ q = 2(1−δ−2d̄)(

√
d̄+ δ+

√
d̄)2/(1−δ2),

where δ = 1−n, with n = n↑+n↓ as the particle density, and ε↑ = ε↓. So one finds that within
the Gutzwiller approximation the correlations only lead to a multiplicative renormalization of
the non-interacting kinetic energy. Brinkman and Rice [32, 33] showed that in the special case
nσ = 1/2 (half-filled band) the minimization of (15) yields

q = 1− U2
, (16a)

d̄ = (1− U)/4, (16b)

E/L = −|ε0| (1− U)2, (16c)
4It is interesting to note that (14), with g2 replaced by the Boltzmann factor e−βU , is the exact result for the

Hubbard model with infinite-range hopping [31].
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where U = U/(8|ε0|) and ε0 = ε0↑ + ε0↓. Eq. (16c) implies that the ground state energy
E, which equals −L |ε0| at U = 0, increases with U and vanishes at a finite critical value
Uc = 8 |ε0|, since the density of doubly occupied sites d̄ (and hence the reduction factor q)
vanishes at this point. The fact that Ekin → 0 and EI → 0 for U → Uc means that the particles
become localized, which implies that a charge current can no longer flow. So the Gutzwiller ap-
proximation actually describes a Mott-Hubbard metal-insulator transition at a finite interaction
strength (Brinkman-Rice-transition). It occurs only for nσ = 1/2. A transition to a localized,
paramagnetic state with E = 0 at a finite value of U clearly does not describe the behavior
of the electrons completely. It is well known that for U � t localized spins couple antiferro-
magnetically, which leads to a lowering of the energy E = 0 by an amount EAF ∝ −t2/U .
This effect is not included in the Gutzwiller approximation, since spatial correlations were ex-
plicitly neglected. On the other hand, the magnetic coupling is an additional effect, which can
be derived within second-order perturbation theory from the localized state. Therefore, as long
as one is not too close to U = Uc the overall results of the Gutzwiller approximation are not
invalidated by the magnetic coupling and give important insight into the correlation-induced
approach to the localized state.

3.2 Connection to Fermi liquid theory

Since the results of the Gutzwiller approximation describe correlated, paramagnetic fermions
with a renormalized kinetic energy one can make contact with Landau’s Fermi liquid theory
[32, 30]. In particular, it turns out that the reduction factor q in (15) describes the discontinuity
of the momentum distribution nk at the Fermi level and may thus be identified with the inverse
effective mass ratio (m∗/m)−1 of the quasiparticles. Since m∗/m = q−1 <∞ for U < Uc, the
system is a Fermi liquid, i.e., a metal. At U = Uc the effective mass diverges and the system
becomes an insulator.
One can use (15) to calculate the spin susceptibility χs = χ0

s (m∗/m)/(1 + F a
0 ) and compress-

ibility κ = κ0 (m∗/m)/(1 + F s
0 ) within the Gutzwiller approximation, where χ0

s and κ0 are the
results for the non-interacting Fermi gas [32,30]. For nσ = 1/2, and assuming Galilei invariance,
one finds [30] m∗/m ≡ 1 + 1

3
F s
1 = 1/(1 − U2

). The corresponding Fermi liquid parameters
are given by

F a
0 = p

(
1

(1 + U)2
− 1

)
, (17a)

F s
0 = p

(
1

(1− U)2
− 1

)
, (17b)

F s
1 =

3U
2

1− U2 , (17c)

where p = 2|ε0|N(0), with N(0) as the density of states at the Fermi energy. For typical
symmetric densities of states one finds p ' 1. Hence, for U → Uc the Landau parameter F a

0

levels off and saturates at ' −3/4, while F s
0 increases much faster than linearly and eventually
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diverges. In particular, for U → Uc the Wilson ratio remains constant:

χs/χ
0
s

m∗/m
=

1

1 + F a
0

→ const. (18)

So the strong increase of χs as a function of U for U → Uc is mainly due to the rapid increase of
the effective mass ratio m∗/m and not due to an incipient ferromagnetic instability [34], which
would demand F a

0 → −1.
As first pointed out by Anderson and Brinkman [35] and discussed in detail in Ref. [30], the be-
havior expressed by (17c) and (18) is indeed observed in the prototypical Fermi liquid Helium-3
(3He). Normal-liquid 3He is an isotropic, strongly correlated fermionic system. The effective
mass m∗ and the spin susceptibility χs of the quasiparticles are strongly enhanced, while the
compressibility κ is strongly reduced. Normal-liquid 3He has therefore been called an almost-
localized Fermi liquid.

4 From the Gutzwiller approximation to infinite dimensions

My 1984 Review of Modern Physics article [30] explained Gutzwiller’s variational approach
to the Hubbard model, the Gutzwiller approximation, and the Brinkman-Rice transition and
thereby drew attention to the usefulness of this non-perturbative investigation scheme for cor-
related fermions. Nevertheless there remained questions about the nature of the Gutzwiller
approximation, whose results are simple and mean-field-like. In fact, the latter feature is one of
the reasons why the results of the Gutzwiller approximation, which originally had been derived
for lattice fermions, are applicable even to liquid 3He [30, 36]. The question was, therefore,
whether the Gutzwiller approximation could also be derived by other, more conventional meth-
ods of quantum many-body theory in some limit. During 1983-84 I discussed this question
with several colleagues, in particular with Andrei Ruckenstein at Bell Laboratories, Murray
Hill, in 1983. At that time, Andrei tried to understand whether it was possible to generalize
the Brinkman-Rice transition to correlated electronic systems in the presence of disorder [37].
This eventually led him and Gabi Kotliar to formulate a functional integral representation of
the Hubbard and Anderson models in terms of auxiliary bosons, whose simplest saddle-point
approximation (slave-boson mean-field theory) reproduces exactly the results of the Gutzwiller
approximation [38]. Thus they had shown that the results of the Gutzwiller approximation could
also be obtained without the use of the Gutzwiller variational wave function. We will return to
this mean-field theory in Section 4.1.1.

4.1 Calculation of expectation values with the Gutzwiller wave function

As mentioned earlier, mean-field theories can be constructed in different ways. In particular,
the Gutzwiller approximation, which was originally based on the quasi-classical counting of
electronic configurations on a real-space lattice [13, 28], had been re-derived as a saddle-point
approximation for electrons expressed in terms of auxiliary bosons [38]. At the same time, the
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question of whether the Gutzwiller approximation could also be derived in a controlled way
by calculating expectation values with the Gutzwiller wave function using conventional many-
body perturbation theory was still open. In 1986, I suggested to Walter Metzner, then a diploma
student of physics at the Technical University of Munich, to calculate the ground-state energy
of the one-dimensional Hubbard model with the Gutzwiller wave function by means of many-
body perturbation theory. It turned out that expectation values of the momentum distribution
and the double occupation can be expressed as power series in the small parameter g2−1, where
g is the correlation parameter in the Gutzwiller wave function (5a).5 The coefficients of the ex-
pansions are determined by diagrams which are identical in form to those of a conventional Φ4

theory. However, lines in a diagram do not correspond to one-particle Green functions of the
non-interacting system, G0

ij,σ(t), but to one-particle density matrices, g0ij,σ = 〈ĉ†iσ ĉjσ〉0. Walter
showed that it was possible to determine these coefficients to all orders in d = 1. This facil-
itated the exact analytic calculation of the momentum distribution and the double occupation,
and thereby of the ground state energy of the Hubbard chain, in terms of the Gutzwiller wave
function [40, 41].
In particular, for n = 1 and U � t the ground state energy obtained with the Gutzwiller wave
function in d = 1 has the form [40, 41]

EG = −
(

4

π

)2
t2

U

1

lnU
, (19)

where U = U/(8|ε0|), with ε0 < 0 as the energy of the non-interacting particles. Hence
the exact result, E ∼ −t2/U , obtained from second-order perturbation theory is found to be
multiplied by a factor which is non-analytic in U . This explained why the ground state energy
EG for the Hubbard model is not very accurate, as noted earlier on the basis of numerical
investigations of one-dimensional rings [42].
Does the result (19) automatically imply that |ΨG〉 is a poor wave function in the strong-coupling
limit? The answer is quite subtle: while it is true that |ΨG〉 is not a very good wave function for
the Hubbard model at U � t, it is nevertheless an excellent wavefunction in d = 1 for the t-J
model, the effective model for large U , where doubly occupied sites have been projected out;
for a more detailed discussion see Section 2.1 of Ref. [43]. This is demonstrated by the results
for the spin-spin correlation function CSS

j , with j ≡ |Rj|. Florian Gebhard, also a diploma
student at the Technical University of Munich at that time, to whom I had suggested to calculate
correlation functions for the Hubbard model in terms of the Gutzwiller wave function using
the technique developed in Refs. [40, 41], was able to analytically evaluate four different cor-
relation functions in d = 1 [44, 45]. The result for the spin-spin correlation function explicitly
showed that in the strong coupling limit (U = ∞) the Gutzwiller wave function describes spin
correlations in the nearest-neighbor, isotropic Heisenberg chain extremely well. For n = 1 and
U =∞ we obtained [44, 45]

CSS
j>0 = (−1)j

Si(πj)

πj

j→∞∼ (−1)j

2j
(20)

5For a more detailed account see Section 2.3 of Ref. [39].
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where Si(x) is the sine-integral. The asymptotic behavior implies a logarithmic divergence at
momentum 2kF , signaling antiferromagnetic fluctuations. Comparison with the exact analytic
result for the spin correlation function of the Heisenberg model for j = 1, 2 and for large j,
where [46, 47] CSS

j ∼ (−1)jj−1(ln j)1/2, shows that the Gutzwiller wave function without
doubly occupied sites (U = ∞) yields excellent results in d = 1 [44, 45]. The same is true
for hole-hole correlations in the limit n . 1 and U = ∞. Shortly afterwards Haldane [48]
and Shastry [49] independently proved that the Gutzwiller wave function for U = ∞ is the
exact solution of the spin-1/2 antiferromagnetic Heisenberg chain for an exchange interaction
Jij which decreases as6 Jij ∼ 1/|i − j|2. Thus the Gutzwiller wave function corresponds [48]
to the one-dimensional version of Anderson’s resonating valence bond (RVB) state [26].

4.1.1 Simplifications in the limit d → ∞

Our results [40, 41, 44, 45] had demonstrated that in d = 1 it was possible to calculate expec-
tation values in terms of the Gutzwiller wave function analytically for all interaction strengths.
However, our attempts to generalize this to dimensions d > 1 failed. To gain insight into the
density dependence of the coefficients of the power series in g2− 1 in dimensions d > 1 Walter
Metzner computed the sums over the internal momenta of the diagrams of many-body pertur-
bation theory by Monte-Carlo integration. The results for the lowest-order contribution to the
correlation energy for d= 1 up to d= 15 led to a surprise. Namely, the plot of the results for the
second-order diagram as a function of d (Fig. 2) showed that for large d the value of this diagram
converged to a simple result which could also be obtained if one assumed that the momenta car-
ried by the lines of a diagram are independent, i.e., that there is no momentum conservation at
a vertex. When summed over all diagrams this approximation gave exactly the results of the
Gutzwiller approximation [40,41]. Thus we had re-derived the Gutzwiller approximation within
conventional many-body perturbation theory! In view of the random generation of momenta in
a typical Monte-Carlo integration over momenta we concluded that the assumed independence
of momenta at a vertex is correct in the limit of infinite spatial dimensions (d → ∞). The
results of the Gutzwiller approximation thus correspond to the evaluation of expectation values
in terms of the Gutzwiller wave function in the limit of infinite dimensions. This provided a
straightforward explanation of the mean-field character of the Gutzwiller approximation.
The drastic simplifications of diagrammatic calculations in the limit d→∞ allow one to calcu-
late expectation values of the kinetic energy and the Hubbard interaction in terms of Gutzwiller-
type wave functions exactly [50,51]. However, these calculations become quite difficult or even
untractable when it comes to calculating with Gutzwiller-correlated wave functions of the more
general form

|ΨG〉 = gD̂ |Ψ0〉 (21)

where |Ψ0〉 is no longer the ground state of the Fermi gas, but a more complicated one-particle
starting wave function. This has to do with the fact that, in spite of the simplifications arising

6This distance dependence of the exchange coupling leads to a partial frustration of the spin orientation whereby
the antiferromagnetic correlations are weaker than in the original Heisenberg model.
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Fig. 2: Value of the second-order diagram for the ground state energy of the Hubbard model (see
insert) as calculated with the Gutzwiller wave function for spatial dimensions d = 1, . . . , 15,
and normalized by the value for d = 1, v(1) = (2/3)(n/2)3, where n is the particle density.
In the limit of high dimensions the normalized values v(d)/v(1) approach the constant 3n/4.
As discussed in the text the same result is obtained within a diagrammatic approximation that
yields the results of the Gutzwiller approximation; from Ref. [41].

from the diagrammatic collapse in d = ∞, the remaining diagrams have to be calculated in
terms of |Ψ0〉. Florian Gebhard [52] showed that this problem can be overcome when |Ψ0〉 in
(21) is written in the form

|Ψ0〉 = g
−

∑
iσ
µiσn̂iσ

|Ψ̃0〉 (22)

where |Ψ̃0〉 is again an arbitrary, normalized one-particle wave function and the local chemical
potentials µiσ are explicit functions of g and the local densities ñiσ = 〈Ψ̃0|n̂iσ|Ψ̃0〉. The operator
in (22) corresponds to a gauge-transformation by which the local chemical potentials can be
chosen such that all Hartree bubbles disappear in d = ∞. With this re-interpretation all dia-
grammatic calculations remain identical to the earlier ones, but vertices are given a new value
and lines correspond to

g̃0ij,σ = g0ij,σ (1− δij), (23)

where now g̃0ii,σ ≡ 0, and henceΣii,σ ≡ 0. Consequently, in d =∞ results are obtained without
the calculation of a single diagram. So what remains in d =∞ at all? First of all one finds that
the “law of mass action”, (14), is valid even locally and for arbitrary states |Ψ̃0〉 (even for states
with long-range order). Secondly, the expectation value of the Hubbard-Hamiltonian in terms
of (21), (22) assumes the following general form for arbitrary |Ψ̃0〉:

〈Ĥ〉 = −t
∑
〈Ri,Rj〉

∑
σ

√
qiσ
√
qjσ g

0
ij,σ + U

∑
i

d̄i, (24)

where 〈Ri,Rj〉 denotes nearest-neighbor sites, d̄i = 〈D̂i〉, and qiσ is given by qσ in (15) with
nσ replaced by ñiσ. In the translationally invariant case |Ψ0〉 ≡ |FG〉 the two wave-functions
|Ψ0〉 and |Ψ̃0〉 are the same up to a trivial factor, and qiσ ≡ qi, whereby (15) is re-derived.
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Fig. 3: Contribution to the irreducible self-energy for the Hubbard model in second-order per-
turbation theory in U and its collapse in the limit d→∞.

Interestingly, the result (24) is identical to the saddle-point solution of the slave-boson mean-
field theory for the Hubbard model [38] mentioned at the beginning of Section 4. In fact,
one finds that in d = ∞ the general set of Gutzwiller-correlated wave functions (21) with (22)
reproduce the full set of static saddle-point equations of the slave-boson approach. This provides
a direct connection between two seemingly different approaches, the slave-boson mean-field
theory and the diagrammatic calculation of expectation values in terms of the Gutzwiller wave
function in the limit d = ∞. It also shows that the slave-boson approach obeys the variational
principle and is valid for an arbitrary starting wave function |Ψ̃0〉; for a brief review see Ref. [53].

Calculations with the Gutzwiller wave function in d = ∞ are thus possible without the calcu-
lation of a single diagram. Later Gebhard and collaborators generalized this approach to multi-
band Hubbard models. This led them to the formulation of a Gutzwiller density-functional
theory which can be used to calculate, for example, the dispersion of quasi-particle excitations
in the Fermi liquid state of transition metals and other materials [54, 55].

4.2 Lattice fermions in infinite spatial dimensions

By studying the Hubbard model with the Gutzwiller wave function Walter Metzner and I had
found that in the limit d → ∞ diagrammatic calculations greatly simplify. Apparently, this
limit was not only useful for the investigation of spin models, but also in the case of lattice
fermions. To better understand this point, we analyzed the diagrams involved in the calculation
of expectation values with the Gutzwiller wave function in more detail. As mentioned earlier,
the form of the diagrams is identical to that of the usual Feynman diagrams in many-body
perturbation theory, but lines correspond to one-particle density matrices, g0ij,σ = 〈ĉ†iσ ĉjσ〉0. We
showed that in the limit d → ∞ diagrams collapse in position space [50, 51], such that only
local contributions remain (Fig. 3). In other words, momentum conservation at a vertex of a
skeleton diagram becomes irrelevant in the limit d → ∞, implying that the momenta carried
by the lines of a graph are indeed independent. In particular, the diagrams contributing to the
proper self-energy are purely diagonal in d =∞.
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4.2.1 Diagrammatic collapse in d = ∞

The reason behind the diagrammatic collapse can be understood as follows. The one-particle
density matrix may be interpreted as the amplitude for transitions between site Ri and Rj . The
square of its absolute value is therefore proportional to the probability for a particle to hop from
Rj to a site Ri. In the case of nearest-neighbor sites Ri, Rj on a lattice with coordination
number Z, this implies |g0ij,σ|2 ∼ O(1/Z). For nearest-neighbor sites Ri, Rj on a hypercubic
lattice (where Z = 2d), one therefore finds for large d

g0ij,σ ∼ O
(

1√
d

)
. (25)

For general i, j one finds [56, 51]

g0ij,σ ∼ O
(

1/d‖Ri−Rj‖/2
)
, (26)

where ‖ R ‖=
∑d

n=1 |Rn| is the length of R in the Manhattan metric.
It is important to bear in mind that, although g0ij,σ ∼ 1/

√
d vanishes for d→∞, the particles are

not localized but are still mobile. Indeed, even in the limit d→∞ the off-diagonal elements of
g0ij,σ contribute, since a particle may hop to d nearest neighbors with reduced amplitude t∗/

√
d.

For non-interacting electrons at T = 0 the expectation value of the kinetic energy is given by

E0
kin = −t

∑
〈Ri,Rj〉

∑
σ

g0ij,σ . (27)

On a hypercubic lattice the sum over the nearest neighbors (NN) leads to a factorO(d). In view
of the 1/

√
d dependence of g0ij,σ it is therefore necessary to scale the NN-hopping amplitude t

t→ t∗√
d
, t∗ = const., (28)

since only then the kinetic energy remains finite for d → ∞. The same result is obtained in a
momentum-space formulation.7

A rescaling of the microscopic parameters of the Hubbard model with d is only required in the
kinetic energy. Namely, since the interaction term is purely local, it is independent of the spatial
dimension. Altogether this implies that only the Hubbard Hamiltonian with a rescaled kinetic
energy

Ĥ = − t∗√
d

∑
〈Ri,Rj〉

∑
σ

ĉ†iσ ĉjσ + U
∑
Ri

n̂i↑n̂i↓ (29)

has a non-trivial d → ∞ limit where both terms, the kinetic energy and the interaction, are of
the same order of magnitude in d.

7This can be seen by calculating the density of states (DOS) of non-interacting particles. For nearest-neighbor
hopping on a d-dimensional hypercubic lattice εk has the form εk = −2t

∑d
i=1 cos ki (here and in the following

we set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity). The DOS correspond-
ing to εk is given by Nd(ω) =

∑
k δ(ω − εk), which is the probability density for finding the value ω = εk for

a random choice of k = (k1, . . . , kd). If the momenta ki are chosen randomly, εk is the sum of d independent
(random) numbers −2t cos ki. The central limit theorem then implies that in the limit d → ∞ the DOS is given

by a Gaussian, i.e., Nd(ω)
d→∞−→ 1

2t
√
πd

exp
[
−
(

ω
2t
√
d

)2]
. Only if t is scaled with d as in (28) does one obtain a

non-trivial DOS N∞(ω) in d =∞ [57, 50] and thus a finite kinetic energy.



From Gutzwiller to DMFT 1.15

Fig. 4: Correlation energy E(2)
c = (2U2/|ε0|)e2 of the Hubbard model calculated in second-

order Goldstone perturbation theory in U vs. density n for dimensions d = 1, 3,∞. Here ε0 is
the kinetic energy for U = 0 and n = 1; from Ref. [50].

4.2.2 Simplifications of quantum many-body perturbation theory in the limit d → ∞

Walter and I now wanted to understand to what extent the simplifications that occur in dia-
grammatic calculations with the Gutzwiller wave function in d = ∞ carry over to general
many-body calculations for the Hubbard model. For this purpose, we evaluated the second-
order diagram in Goldstone perturbation theory [58] that determines the correlation energy at
weak coupling [50]. Due to the diagrammatic collapse in d =∞, calculations were again found
to be much simpler.8 Namely, the nine-dimensional integral in d = 3 over the three internal mo-
menta reduces to a single integral in d =∞, implying that in d =∞ the calculation is simpler
than in any other dimension. More importantly, the numerical value obtained in d = ∞ turned
out to be very close to that in the physical dimension d = 3 and therefore provides an easily
tractable, quantitatively reliable approximation (see Fig. 4).

These results clearly showed that microscopic calculations for correlated lattice fermions in d =

∞ dimensions were useful and very promising. Further insights were made quickly: Müller-
Hartmann [59] showed that in infinite dimensions only on-site interactions remain dynamical,

8The one-particle Green function (propagator) G0
ij,σ(ω) of the non-interacting system obeys the same 1/

√
d

dependence as the one-particle density matrix g0ij,σ (see (25)). This follows directly from g0ij,σ = limt→0− G
0
ij,σ(t)

and the fact that the scaling properties do not depend on the time evolution and the quantum mechanical represen-
tation. The Fourier transform of G0

ij,σ(ω) also preserves this property. For this reason the same results as those
obtained in the calculation with the Gutzwiller wave function hold: all connected one-particle irreducible diagrams
collapse in position space, i.e., they are purely diagonal in d =∞.
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that the proper self-energy becomes momentum-independent

Σσ(k, ω)
d→∞≡ Σσ(ω) (30a)

and hence is purely local in position space

Σij,σ(ω)
d→∞
= Σii,σ(ω)δij , (30b)

as in the case of diagrams calculated with the Gutzwiller wave function [50, 51], and therefore
typical Fermi liquid features are preserved (Sec. 4.2.5) [60]. Schweitzer and Czycholl [61]
demonstrated that calculations for the periodic Anderson model also become much simpler
in high dimensions.9 In particular, Brandt and Mielsch [65] derived the exact solution of the
Falicov-Kimball model for infinite dimensions by mapping the lattice problem onto a solvable
atomic problem in a generalized, time-dependent external field.10 They also noted that such a
mapping is, in principle, also possible for the Hubbard model.
Due to the property (30), the most important obstacle for actual diagrammatic calculations
in finite dimensions d ≥ 1 – namely, the integration over intermediate momenta – is greatly
simplified in d = ∞. Nevertheless, the limit d → ∞ does not affect the dynamics of the
system. Hence, in spite of the simplifications in position (or momentum) space, the problem
retains its full dynamics in d =∞.

4.2.3 Interactions beyond the on-site interaction

In the case of more general interactions than the Hubbard interaction, e.g., nearest neighbor
interactions such as

Ĥnn =
∑
〈Ri,Rj〉

∑
σσ′

Vσσ′n̂iσn̂jσ′ (31)

the interaction constant has to be scaled, too, in the limit d→∞. In the case of (31), which has
the form of a classical interaction, the “classical” scaling

Vσσ′ →
V ∗σσ′

Z
(32)

is required. Of course, the propagator still has the dependence (26). Due to (32), all contri-
butions, except for the Hartree-term, are found to vanish in d = ∞ [59]. Hence, nonlocal
interactions only contribute through their Hartree approximation, which is purely static. This
gives the Hubbard interaction a unique role: of all interactions for fermionic lattice models only
the Hubbard interaction remains dynamical in the limit d→∞ [59].

9For a more detailed discussion of the simplifications occurring in the investigation of Hubbard-type lattice
models or the t-J model [62, 63] in high dimensions see Ref. [64].

10Alternatively, it can be shown that in the limit Z →∞ the dynamics of the Falicov-Kimball model reduces to
that of a non-interacting, tight-binding model on a Bethe lattice with coordination number Z = 3, which can thus
be solved exactly [66].
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4.2.4 One-particle propagator

Due to the k-independence of the irreducible self-energy, (30a), the one-particle propagator of
an interacting lattice fermion system is given by

Gk,σ(ω) =
1

ω − εk + µ−Σσ(ω)
. (33)

Most importantly, the k dependence of Gk(ω) comes entirely from the energy dispersion εk
of the non-interacting particles. This means that in a homogeneous system described by the
propagator

Gij,σ(ω) =
1

L

∑
k

Gk,σ(ω) eik·(Ri−Rj) , (34)

its local part, Gii,σ, is given by

Gii,σ(ω) =
1

L

∑
k

Gk,σ(ω) =

∞∫
−∞

dε
N0(ε)

ω − ε+ µ−Σσ(ω)
, (35)

where N0(ε) is the density of states of the non-interacting system. In the paramagnetic phase
we can suppress site and spin indices and write Gii,σ(ω) ≡ G(ω). The spectral function of the
interacting system (often referred to as the DOS as in the non-interacting case) is then given by

A(ω) = − 1

π
ImG(ω + i0+) . (36)

4.2.5 Consequences of the k-independence of the self-energy: Fermi liquid behavior

We now discuss some further consequences of the k-independence of the self-energy in the
paramagnetic phase as derived by Müller-Hartmann [60]. At T = 0, the one-particle propagator
(33) takes the form (again we suppress the spin index)

Gk(ω) =
1

ω − εk + EF −Σ(ω)
. (37)

In general, even when Σ(ω) is k-dependent, the Fermi surface is defined by the ω = 0 limit of
the denominator of (37) as

εk +Σk(0) = EF . (38a)

According to Luttinger and Ward [67], the volume within the Fermi surface is not changed by
interactions, provided the latter can be treated in perturbation theory. This is expressed by

n =
∑
kσ

Θ
(
EF − εk −Σk(0)

)
, (38b)

where n is the particle density and Θ(x) is the step function. The k-dependence of Σk(0) in
(38a) implies that, in spite of (38b), the shape of the Fermi surface of the interacting system will
be quite different from that of the non-interacting system (except for the rotationally invariant
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case εk = f(|k|). By contrast, for lattice fermion models in d =∞, where Σk(ω) ≡ Σ(ω), the
Fermi surface itself (and hence the volume enclosed) is not changed by interactions. The Fermi
energy is simply shifted uniformly from its non-interacting value E0

F , i.e., EF = E0
F + Σ(0),

to keep n in (38b) constant. Thus the ω = 0 value of the local propagator, G(0), and hence of
the spectral function, A(0) = − 1

π
ImG(i0+), is not changed by interactions. This behavior is

well-known from the single-impurity Anderson model [4]. Renormalizations of N(0) can only
come from a k-dependence of Σ, i.e., if ∂Σ/∂k 6= 0.
For ω → 0 the self-energy has the property

ImΣ(ω) ∝ ω2, (38c)

which implies Fermi liquid behavior. The effective mass of the quasiparticles

m∗

m
= 1− dΣ

dω

∣∣∣∣
ω=0

= 1 +
1

π

∫ ∞
−∞
dω

ImΣ(ω + i0−)

ω2
≥ 1 (38d)

is seen to be enhanced. In particular, the momentum distribution

nk =
1

π

∫ 0

−∞
dω ImGk(ω) (39)

has a discontinuity at the Fermi surface, given by nk−F −nk+F = (m∗/m)−1, where k±F = kF±0+.

5 Dynamical mean-field theory for correlated lattice fermions

The diagrammatic simplifications of many-body perturbation theory in infinite spatial dimen-
sions provide the basis for the construction of a comprehensive mean-field theory for lattice
fermions that is diagrammatically controlled and whose free energy has no unphysical sin-
gularities. The construction is based on the scaled Hamiltonian (29). Since the self-energy is
momentum independent but retains its frequency dependence, i.e., describes the full many-body
dynamics of the interacting system,11 the resulting theory is mean-field-like and dynamical and
hence represents a dynamical mean-field theory (DMFT) for lattice fermions which is able to
describe genuine correlation effects.

5.1 Derivation of the self-consistent DMFT equations

The DMFT equations can be derived in different ways. They all employ the fact that in d =

∞ lattice fermion models with a local interaction reduce to an effective many-body problem
whose dynamics corresponds to that of correlated fermions on a single site embedded in a bath
provided by the other fermions. This is illustrated in Fig. 5.
The single-site action and the DMFT equations were first derived by Václav Janiš [68] within a
generalization of the self-consistent coherent potential approximation (CPA)12 to lattice fermion

11This is in contrast to Hartree-Fock theory where the self-energy is merely a static potential.
12The CPA is a well-known mean-field theory for non-interacting, disordered systems. It becomes exact in the

limit d, Z →∞ [69].
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Fig. 5: In the limit Z → ∞ the Hubbard model effectively reduces to a dynamical single-site
problem, which may be viewed as a lattice site embedded in a dynamical mean field. Electrons
may hop from the mean field onto this site and back, and interact on the site as in the original
Hubbard model (see Fig. 1). The local propagator G(ω), i.e., the return amplitude, and the
dynamical self-energy Σ(ω) of the surrounding mean field play the main role in this limit. The
quantum dynamics of the interacting electrons is still described exactly.

models with local interaction and local self-energy, such as the Falicov-Kimball and Hubbard
model in the limit d = ∞; for details see Refs. [68, 70, 18]. Shortly after that Václav joined
me, then at the RWTH Aachen University, on an Alexander-von-Humboldt fellowship. Before
we could start to solve the self-consistency equations [70], I received a preprint from Antoine
Georges and Gabi Kotliar [71] in which they had formulated the DMFT by mapping the lat-
tice problem onto a self-consistent single-impurity Anderson model. This mapping was also
employed by Mark Jarrell [72].
Although the DMFT equations derived within the CPA approach and the single-impurity ap-
proach are identical, the latter was immediately adopted by the community since it is connected
with the well-studied theory of quantum impurities and Kondo problems [4], for whose solution
efficient numerical codes such as the quantum Monte-Carlo (QMC) method [73] had been de-
veloped and were readily available. For this reason the single-impurity based derivation of the
DMFT immediately became the standard approach. For a detailed discussion see the review by
Georges, Kotliar, Krauth, and Rozenberg [74]; for an introductory presentation see the article
by Gabi Kotliar and myself [75].
The DMFT equations are given by
(A) the local propagator Gσ(iωn), which is expressed as a functional integral

Gσ(iωn) = − 1

Z

∫ ∏
σ

Dc∗σDcσ [cσ(iωn)c∗σ(iωn)] e−Sloc (40)
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with the partition function

Z =

∫ ∏
σ

Dc∗σDcσ e
−Sloc (41)

and the local action

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1σ (τ1 − τ2)cσ(τ2) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ). (42)

Here Gσ is the effective local propagator (also called bath Green function, or Weiss mean field)13

which is defined by a Dyson-type equation

Gσ(iωn) =
(

[Gσ(iωn)]−1 +Σσ(iωn)
)−1

. (43)

Furthermore, by identifying the Hilbert transform of the lattice Green function

Gk σ(iωn) =
1

iωn − εk + µ−Σσ(iωn)
(44)

with the local propagator (40) one obtains
(B) the self-consistency condition

Gσ(iωn) =
1

L

∑
k

Gk σ(iωn) =

∞∫
−∞

dε
N(ε)

iωn − ε+ µ−Σσ(iωn)
(45)

= G0
σ(iωn −Σσ(iωn)) . (46)

In (45) the ionic lattice on which the electrons live is seen to enter only through the DOS of the
non-interacting electrons. Eq. (46) illustrates the mean-field character of the DMFT-equations
particularly clearly: the local Green function of the interacting system is given by the non-
interacting Green function G0

σ with a renormalized energy iωn − Σσ(iωn), which corresponds
to the energy iωn measured relative to the energy of the surrounding dynamical fermionic bath,
i.e., the energy of the mean field Σσ(iωn).
The self-consistent DMFT equations can be solved iteratively: starting with an initial value for
the self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (45) and thereby the
bath Green function Gσ(iωn) from (43). This determines the local action (42) that is needed
to compute a new value for the local propagator Gσ(iωn) from (40) and, by employing the old
self-energy, a new bath Green function Gσ, and so on. In spite of the fact that the solution can be
obtained self-consistently, there remains a complicated many-body problem which is generally
not exactly solvable. A generalization of the DMFT equations for the Hubbard model in the
presence of local disorder was derived in Ref. [76].
It should be stressed that although the DMFT corresponds to an effectively local problem, the
propagator Gk(ω) is a momentum-dependent quantity. Namely, it depends on the momentum
through the dispersion εk of the non-interacting electrons. However, there is no additional
momentum-dependence through the self-energy, since it is strictly local within the DMFT.

13In principle, the local functions Gσ(iωn) and Σσ(iωn) can both be viewed as a “dynamical mean field” acting
on particles on a site, since they all appear in the bilinear term of the local action (42).
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5.1.1 Solution of the self-consistent DMFT equations

The dynamics of the Hubbard model remains complicated even in the limit d = ∞ due to the
purely local nature of the interaction. Hence an exact, analytic evaluation of the self-consistent
set of equations for the local propagator Gσ or the effective propagator Gσ(iωn) is not possible.
A valuable semi-analytic approximation is provided by the iterated perturbation theory (IPT)
[71,77]. Exact evaluations become feasible when there is no coupling between the frequencies.
This is the case, for example, in the Falicov-Kimball model [65, 78].
Solutions of the self-consistent DMFT equations require extensive numerical methods, in par-
ticular quantum Monte Carlo simulations [72, 79, 80, 74, 81], the numerical renormalization
group [82–84], exact diagonalization [85–87], and other techniques.
It quickly turned out that the DMFT is a powerful tool for the investigation of electronic sys-
tems with strong correlations [88, 74]. It provides a non-perturbative and thermodynamically
consistent approximation scheme for finite-dimensional systems that is particularly valuable
for the study of intermediate-coupling problems where perturbative techniques fail; for detailed
discussions see Refs. [89, 75, 90, 91, 43].

5.2 The LDA+DMFT approach to correlated materials

The Hubbard model is able to explain important general features of correlated electrons, but it
cannot describe the physics of real materials in any detail. Namely, realistic approaches must
take into account the explicit electronic and lattice structure of the systems.
For a long time the electronic properties of solids were investigated by two essentially separate
communities, one using model Hamiltonians in conjunction with many-body techniques, the
other employing density functional theory (DFT) [92, 93]. DFT and its local-density approxi-
mation (LDA) are ab initio approaches that do not require empirical parameters as input. They
proved to be highly successful techniques for the calculation of the electronic structure of real
materials [94]. Still, it was soon recognized that DFT/LDA is severely restricted in its ability
to describe strongly correlated materials such as f -electron systems and Mott insulators. For
such systems the model Hamiltonian approach is more powerful since there exist systematic
theoretical techniques to investigate the many-electron problem with increasing accuracy. Nev-
ertheless, the uncertainty in the choice of the model parameters and the technical complexity
of the correlation problem itself prevent the model Hamiltonian approach from being flexible
enough to study real materials. The two approaches are therefore largely complementary. In
view of the individual power of DFT/LDA and the model Hamiltonian approach, respectively,
a combination of these techniques for ab initio investigations of real materials is clearly desir-
able. One of the first successful attempts in this direction was the LDA+U method [95, 96],
which combines LDA with a Hartree-like, static mean-field approximation for a multi-band
Anderson lattice model. This method turned out to be a very useful tool in the study of long-
range ordered, insulating states of transition metals and rare-earth compounds. However, the
paramagnetic metallic phase of correlated electron systems clearly requires a treatment which
includes dynamical effects, i.e., the frequency dependence of the self-energy.
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Here the so-called LDA+DMFT approach, whose foundations were laid in the papers by Anisi-
mov, Poteryaev, Korotin, Anokhin, and Kotliar [97] as well as Lichtenstein and Katsnelson
[98], has led to an enormous progress in our understanding of correlated electron materi-
als [97–106,75]. LDA+DMFT is a computational scheme that merges electronic band structure
calculations in the local density approximation (LDA) or generalized-gradient approximations
(GGA) with many-body physics originating from the local Hubbard interaction and Hund’s rule
coupling terms, and then solves the corresponding correlation problem by DMFT. Sometimes
this combined approach is also referred to as DFT+DMFT.
As in the case of the Hubbard model the many-body model constructed within the LDA+DMFT
scheme consists of two parts: a kinetic energy which describes the specific band structure of
the uncorrelated electrons, and the local interactions between the electrons in the same orbital
as well as in different orbitals. It is then necessary to take into account a double counting of the
interaction, since the LDA already includes some of the static contributions of the electronic
interaction; for details, see Refs. [101–106]). This complicated many-particle problem with its
numerous energy bands and local interactions is then solved within DMFT, usually by the ap-
plication of quantum Monte-Carlo (QMC) techniques. By construction, LDA+DMFT includes
the correct quasiparticle physics and the corresponding energetics. It also reproduces the LDA
results in the limit of weak Coulomb interaction U . More importantly, LDA+DMFT correctly
describes the correlation induced dynamics near a Mott-Hubbard metal-insulator transition and
beyond. Thus, LDA+DMFT and related, material-specific dynamical mean-field approaches
that are presently being developed [107–109] are, in principle, able to account for the physics
at all values of the Coulomb interaction and doping.

6 Summary and outlook

By now the DMFT has developed into a powerful method for the investigation of electronic
systems with strong correlations. It provides a comprehensive, non-perturbative and thermody-
namically consistent approximation scheme for the investigation of finite-dimensional systems
(in particular for dimension d = 3), and is particularly useful for the study of problems where
perturbative approaches fail. For this reason, the DMFT has now become the standard mean-
field theory for fermionic correlation problems. The generalization of this approach and its
applications is currently a subject of active research. Here non-local generalizations of the
DMFT play an important role [90, 81]. They make it possible to study and explain even short
range correlation effects which occur on the scale of several lattice constants. Furthermore, in-
vestigations of inhomogeneous bulk systems and of internal and external inhomogeneities, such
as surfaces and interfaces [110–116], lead to an improved understanding of correlation effects
in thin films and multi-layered nanostructures. This is particularly desirable in view of the novel
functionalities of these structures and their possible applications in electronic devices.
The investigation of correlation phenomena in the field of cold atoms in optical lattices is an-
other intriguing field of current research. Within a short time it led to the development of a
versatile instrument for the simulation and investigation of quantum mechanical many-particle
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systems [117–121]. While for electrons in solids the Hubbard model with its purely local inter-
action is a rather strong assumption, it can describe cold atoms in optical lattices very accurately
since the interaction between the atoms is indeed extremely short ranged. Here the DMFT has
once again proved to be extremely useful. Experiments with cold atoms in optical lattices can
even assess the quality of the results of the DMFT. The results obtained in this way show that
the DMFT indeed leads to reliable results even for finite dimensional systems [120].
The study of correlated electrons out of equilibrium within non-equilibrium DMFT [122–128]
has become yet another fascinating new research area. Non-equilibrium DMFT will be able to
explain, and even predict, the results of time-resolved experiments; for an upcoming review, see
Ref. [129].
The combination of the DMFT with methods for the computation of electronic band structures
(LDA+DMFT) has led to a conceptually new theoretical framework for the realistic study of cor-
related materials. In 10 to 15 years from now, DMFT-based approaches can be expected to be as
successful and standardized as the presently available density-functional methods. The devel-
opment of a comprehensive theoretical approach which allows for a quantitative understanding
and prediction of correlation effects in materials, ranging from complex inorganic materials all
the way to biological systems, is one of the great challenges for modern theoretical physics. For
details I refer to the scientific program of the Research Unit FOR 1346 Dynamical Mean-Field
Approach with Predictive Power for Strongly Correlated Materials [130] which is being funded
by the Deutsche Forschungsgemeinschaft since 2010. The Research Unit FOR 1346 initiated
the series of Autumn Schools on correlated materials which are held at the Forschungszentrum
Jülich since 2011. The lecture notes of these Autumn Schools provide an excellent introduction
into this very active field of research [131–134].
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1 First-principles approaches and model Hamiltonians
The standard model of solid state physics, described in solid state textbooks, has been extraor-
dinarily successful in describing the properties of simple metals, semiconductors, and insula-
tors. It is firmly grounded in the Landau Fermi Liquid Theory and perturbative expansions
around the, by now standard, implementations of the density-functional theory (DFT), such as
the Local-Density Approximation (LDA) or Generalized-Gradient Approximations (GGA) by
means of the GW method.

Strongly correlated electron systems are materials that fall outside the standard model. They
display remarkable phenomena ranging from high-temperature superconductivity in iron pnic-
tides and copper-oxides, huge volume collapses in the 4f and 5f elemental series, to metal-to-
insulator transitions in many transition-metal oxides such as V2O3 and VO2, to name a few.

From a theoretical perspective, these systems display remarkable emergent phenomena that
cannot be accessed by perturbation theory starting from the band limit. Strong correlation phe-
nomena require a different reference frame for their description and a methodology that is quite
different from what is learned in traditional solid-state or many-body physics courses. Forty
years ago, the theoretical toolbox to treat strong correlations was very limited. The focus was
on variational wave functions of the type written by Gutzwiller [1] as used in the mixed-valence
problem by Varma and Yaffet [2] and on the decoupling of equations of motion used by Hub-
bard [3]. Development of renormalization group methods for simple condensed matter physics
problems was just beginning [4]. Methods for treating the unusual excitation spectra and the
finite-temperature properties of strongly correlated materials were badly needed. At that time,
we could not even contemplate a realistic treatment nor even a system-specific study of actual
strongly correlated materials. The situation is completely different today, and the methods that
brought about this change are the subject of these introductory notes, compiled by Wenhu Xu
from lectures delivered by the author. They are intended as an orientation for beginning students
in the field of electronic-structure calculations of strongly correlated materials. Their goal is to
motivate students to enter the field by highlighting a couple of research achievements, rather
than provide a complete overview with a complete list of references which can be found in the
excellent collection of reviews in Reviews of Modern Physics [5–7]. The focus is on meth-
ods that target not only total energies, but finite-temperature properties and, most important,
correlation functions.

Modern electronic-structure methods that treat correlated materials have developed into theoret-
ical spectroscopies. This allows detailed comparison with experiments, which in turn catalyzes
further theoretical progress. This iterative feedback loop is one of the characteristic strengths
of condensed matter physics. Hence, some comparisons to experimetal results are included in
this lecture. While they convey some sense of collective achievement, they should also be a
reminder that the theory of strongly correlated electron systems is still in its infancy. The goal
is to highlight, in broad strokes, some advances that have taken place while indicating some
problems that remain to be tackled to pave the way for a predictive theory of strongly correlated
materials.
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Historically, there have been two approaches to understanding and describing the physical prop-
erties of strongly correlated materials. First-principles (also called ab-initio) methods begin
from the full Hamiltonian of electrons in the solid. This theory of everything is given by

H =
∑
i

∇2
i

2me

+
∑
α

∇2
α

2mα

−
∑
α,i

Zαe
2

|~Rα − ~Ri|
+

1

2

∑
i6=j

e2

|~Ri − ~Rj|
+

1

2

∑
α6=β

Z2
αe

2

|~Rα − ~Rβ|

+ relativistic effects. (1)

Here i and j are indices of electrons; α and β are indices of nuclei. Relativistic effects include
spin-orbit coupling and are actually very important and give rise to qualitatively new physics
in strongly correlated materials. One term,

∑
i

~li·~si
R3
i

, is essential to have non zero magnetocrys-
talline anisotropy, which selects the magnetization axis in crystals. We will not consider these
terms in the lectures. We treat ions as very heavy objects (adiabatic approximation). In this
limit

∑
α,β

ZαZβe
2

|~Rα−~Rβ |2
becomes a number and

∑
α,i

Zαe2

|~Rα−~Ri|2
≡
∑

i Vcrystal(Ri) becomes an ex-
ternal potential for the electrons. Fluctuations around the equilibrium positions give rise to the
lattice vibrations (phonons). Therefore, with these approximations Zα and ~Rα are the only input
parameters, and approaches starting from Eq. (1) are referred to as first principles methods.
The standard model of solid state physics is grounded on two firm pillars. The first is the Fermi
liquid theory, which justifies the use of free electrons as a reference system to describe the prop-
erties of an interacting Fermi system. In its renormalization group formulation [8], this can be
understood by the statement that, in many instances, the interactions flow rapidly to zero as one
approaches the Fermi surface. Then, below a certain scale, materials behave as non-interacting
electrons, since the interactions have renormalized away. The only interactions that remain are
Hartree-like terms that renormalize the responses to external fields (Landau Parameters). When
this Fermi liquid scale is much larger than the temperatures of interest, the textbook picture of
free fermions, in the presence of a periodic Bloch potential with renormalized parameters is
thus justified.
The second pillar of the standard model enables the actual calculation of the quasiparticle dis-
persions and Fermi liquid parameters. It starts with the Kohn-Sham formulation [9] of density
functional theory. It states the existence of a potential VKS(r), which is itself a functional of
the density. One should write VKS(~r)[{ρ(~r ′)}] to indicate this dependence, but we omit this
in the following. The exact (but unknown) functional is such that the solution of the set of
self-consistent equations, [

−∇2 + VKS (~r)
]
ψ~kj (~r) = ε~kj ψ~kj (~r) . (2)∑

~kj

|φ~kj(~r)|
2 f(ε~kj) = ρ(~r) (3)

reproduces the density of the solid. It is useful to divide the Kohn-Sham potential into several
parts: VKS = VHartree + Vcryst + Vxc, where one lumps into Vxc exchange and correlation effects
beyond Hartree.
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The eigenvalues ε~kj of the solution of the self-consistent set of Eq. (2) and (3) are not to be
interpreted as excitation energies. The excitation spectra should be extracted from the poles of
the one particle Green’s function

G (ω) =
1

[ω +∇2 + µ− VHartree − Vcryst]−Σ (ω)
. (4)

Here µ is the chemical potential and we have singled out in Eq. (4) the Hartree potential ex-
pressed in terms of the exact density and the crystal potential, and lumped the rest of the effects
of the correlation in the self-energy operator, which depends on frequency as well as on two
space variables.
In a weakly correlated material, the one-particle excitation spectrum is perturbatively connected
to the LDA Kohn-Sham spectrum, in the sense that the first-order correction in the screened
Coulomb interactions for the self-energy ΣGW (see the diagrams in figure 1) is such that Σ =

ΣGW −Vxc is relatively small and able to bring the spectra sufficiently close to the experimental
results. In fact, we can define weakly correlated materials as those solids for which the previous
statement is true. Lowest order perturbation theory in the screened Coulomb interactions is
called the GW method [10]. It has been very successful in predicting the trends of the gaps in
semiconducting materials [11]
The GW method involves several steps, summarized in the diagrams shown in Fig. 1.

1. Computation of the polarization bubble

Π (t, t′) = G0 (t, t
′)G0 (t

′, t) . (5)

2. Evaluation of the screened Coulomb potential W in random-phase approximation (RPA)

W−1 = v−1Coul −Π. (6)

where vCoul is the bare Coulomb potential.

3. Evaluation of the ΣGW contribution to self-energy by lowest-order perturbation theory in
W; it is given in real space by (see Fig. 1)

ΣGW = G0W. (7)

4. From the self-energy one obtains the full Green’s function using the Dyson equation
where one removes the Vxc term fromG0 and adds the GW contribution to the self-energy
to obtain an approximation to Eq. (4)

G−1 = G−10 −Σ . (8)

We have not yet specified what one should take forG0 in this algorithm. Various ideas have been
discussed and implemented, leading to different variants of the GW method. In the “one-shot”
GW method one uses the LDA Kohn-Sham Green’s function

G0 (iω)
−1 = iω + µ+∇2 − VHartree − Vcryst − V LDA

xc . (9)

and the self-energy is thus taken to be Σ = ΣGW − V LDA
xc .
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Fig. 1: Schematic diagrams for the GW method. Starting from some G0, a polarization bubble
is constructed, which is used to screen the Coulomb interactions resulting in an interaction W.
This W is then used to compute a self-energy ΣGW using W and G0 . To obtain the full Green’s
function G in Eq. (4), one goes from ΣGW to Σ by subtracting the necessary single-particle
potential and uses the Dyson equation G−1 = G−10 −Σ as discussed in the text.

In the original self-consistent scheme proposed by Hedin [10] (the self-consistent GW)G0 = G

is used and in this case Vxc = 0 is not needed and is not used in intermediate steps. There are
numerous advantages, however, in using a non-interacting form for G0 in the algorithm. In the
quasi-particle self-consistent GW (QPGW) [11] the “best” non-interacting Green’s function is
used for G0 which uses an “exchange and correlation potential” V QPGW

xc chosen to reproduce
the same quasiparticle spectra as the full GW greens function.

G0 (iω)
−1 = iω + µ+∇2 − VHartree − Vcryst − V QPGW

xc . (10)

The GW or RPA method captures an important physical effect. Electrons are charged objects
that interact via the long range Coulomb interactions. Quasiparticles, on the other hand, are
neutral. They are composed of electrons surrounded by screening charges, thus reducing the
strength and the range of their interaction. For this reason, in many model Hamiltonians de-
scribing metals, only the short range repulsion is kept. To get a feeling for the screening effect,
let’s evaluate Eqs. (5) and (6) for an effective interaction W in the case that there is only one
band of electrons with dispersion εk

Π (iΩ = 0, ~q) = T
∑
ω

∑
~k

1

iω − ε~k+~q
1

iω − ε~k
=
∑
~k

f(ε~k+~q)− f(ε~k)
ε~k+~q − ε~k

' −
∑
~k

(
∂f (ε)

∂ε

)
ε~k

'
∑
~k

δ
(
ε~k
)
= ρDOS , (11)

where ρDOS is the density of states at the Fermi surface.
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In momentum space, vCoul (~q) = 4πe2/q2. Then

W (~q) =
vCoul (~q)

1 + vCoul (~q) ρDOS
' 1

q2 + 4πe2ρDOS
(12)

and its Fourier transform W (~r), which is now a function of one variable due to translation
invariance, decays exponentially in space.
Model Hamiltonians are simplified Hamiltonians describing a reduced set of degrees of free-
dom, and involve a number of parameters. They are extremely useful for learning the qualitative
physics exhibited by strongly correlated materials. Conceptually, we can obtain model Hamil-
tonians by selecting low-energy degrees of freedom (usually a few bands) and describing their
interactions, which in metals at low energies are short-ranged due to the screening mechanism.
The most famous example is the multi-orbital Hubbard model.

H =
∑
i,j

c†α(i) t
αβ
ij cβ(j) +

∑
i

Uαβγδ c
†
α(i)c

†
β(i)cγ(i)cδ(i). (13)

Even simplified model Hamiltonians have proved to be very difficult to solve exactly in the
thermodynamical limit except for the cases of one dimension [12] and the limit of infinite di-
mensions [13], a limit where Dynamical Mean-Field Theory (DMFT) becomes exact.
Another celebrated model, the Anderson Impurity Model, was introduced by Anderson in the
sixties to describe transition-metal impurities in metallic hosts [14]. It will play an important
role in the DMFT analysis of the Hubbard model in Sec. 3.

2 Slave-boson methods and emergence of local Fermi-liquids

The spectra of strongly correlated electron materials are very far from those of free fermions.
The one electron spectral function A(~k, ω) displays not only a dispersive quasiparticle peak but
also other features commonly denoted as satellites. The collective excitation spectra, which
appear in the spin and charge excitation spectra, do not resemble the particle-hole continuum of
the free Fermi gas, with additional collective modes (zero sound, spin waves) produced by the
residual interactions among them. Finally, the damping of the elementary excitations in many
regimes does not resemble that of a Fermi liquid.
The key idea of the slave-boson method is to enlarge the Hilbert space so as to be able to more
explicitly introduce operators that closely describe the physical excitations.
This is done by reformulation of the Hamiltonian in terms of additional slave variables, with
additional Lagrange multipliers that impose constraints. We illustrate this idea with the multi-
orbital Hubbard model following Refs. [15] and [16]. We first focus on one site and on the local
interaction term

Hloc =
∑
α

ε0α n̂α +
∑
αβ

Uαβ n̂αn̂β (14)

acting on a Hilbert space
|n〉 =

(
d†1

)n1

· · ·
(
d†M

)nM
|vac〉 . (15)
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We notice that Eq. (14) is equivalent to another Hamiltonian which acts on a larger Hilbert space
on which we will impose some constraints to retrieve the original problem

|n〉 ≡ φ†n|vac〉 ⊗ |n〉f , (16)

|n〉f ≡
(
f †1

)n1

· · ·
(
f †M

)nM
|vac〉. (17)

The states in the original Hilbert space, denoted by a bar, are in one-to-one correspondence with
the states of the enlarged Hilbert space once the constraints∑

n

φ†nφn = 1, (18)∑
n

nα φ
†
nφn = f †αfα, ∀α (19)

are imposed. In the enlarged Hilbert space, the physical electron is described by

d†α = Rα[φ] f
†
α, (20)

where
Rα[φ] =

∑
nm

〈n|f †α|m〉
[
∆̂α

]−1/2
φ†nφm

[
1− ∆̂α

]−1/2
(21)

with
∆̂α [φ] ≡

∑
n

nα φ
†
nφn. (22)

The kinetic energy is then

H =
∑
ij

Rα[φ]f
†
α (i) t

αβ
ij Rβ[φ]fβ (j) . (23)

while the local energy and interaction terms in the enlarged Hilbert space are reproduced by a
quadratic Hamiltonian

Hloc =
∑
n

φn
†φnεn (24)

where εn =
∑

α(nα +
∑

β Uαβnαnβ).
The fact that the Hamiltonian is now quadratic in bosons and fermions suggests simple approx-
imations for its treatment. The square root factors are largely arbitrary, in the sense that they
only affect the degrees of freedom outside the physical Hilbert space, and they were chosen
so as to give the same results as the Gutzwiller approximation and have a simple probabilistic
interpretation.
The self-energy of the Green’s function that results from the mean-field approximation (replac-
ing φ’s and Lagrange multipliers λ by numbers) has the form

Σα(ω) = Σα(0) + ω

(
1− 1

Zα

)
, (25)
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where
Zα = |Rα|2, (26)

and
Σα(0) = λα/|rα|2 − ε0α. (27)

Hence this theory describes the emergence of a local Fermi liquid. Non-local self-energies can
be obtained with the significant extension introduced in Ref. [17].
This formulation explicitly exhibits the local collective modes (local charge, spin, and orbital
fluctuations) in terms of the slave-boson operators. It has been extended [17–19] to make it
manifestly rotationally invariant. For example, in the one-band Hubbard model in the sim-
ple slave-boson formulation, the state with one spin is described by the slave-boson φσ and
transforms according to the fundamental representation of SU(2). The spin fluctuations are
naturally described by objects that transform according to the adjoint representation of SU(2),
which requires a matrix representation of the slave particles. Another advantage of the rotation-
ally invariant formulation [17] is that it allows the treatment of realistic Hamiltonians including
general multiplet interactions.
The physical electron operator is now represented in the enlarged Hilbert space by

dα = R̂αβ[φ] fβ. (28)

At the mean-field level, R̂ has the interpretation of the quasiparticle residue, exhibiting the
strong renormalizations induced by the electronic correlations. An important feature of the ro-
tationally invariant formalism is that the basis that diagonalizes the quasiparticles represented
by the operators f is not necessarily the same basis as that which would diagonalize the one
electron density matrix expressed in terms of the operators d and d†. Strongly renormalized
fermionic quasiparticles emerge in this treatment. This slave-boson formulation [15], repro-
duces at the saddle point level the results of the Guztwiller approximation. Fluctuations around
the saddle point generate the Hubbard bands in the one-particle spectra [20]. This method can
be applied to the Anderson impurity model. When supplemented by the DMFT self-consistency
condition, it gives the same results as its direct application to the lattice [21]. We envision many
synergistic applications of the slave-boson technique and exact implementations of the DMFT,
and we will return to this perspective at the end of Sec. 9.

3 DMFT for model Hamiltonians: Embedding and truncation

Dynamical mean field theory [22] is the natural extension of the Weiss mean-field theory of
spin systems to treat quantum mechanical model Hamiltonians. It involves two steps. The
first step focuses on a single lattice site and describes the rest of the sites by a medium with
which an electron at this site hybridizes. This truncation to a single site problem is common
to all mean-field theories. In the Weiss mean-field theory one selects a spin at a given site and
replaces the rest of the lattice by an effective magnetic field or Weiss field. In the dynamical
mean-field theory, the local Hamiltonian at a given site is kept, and the kinetic energy is replaced
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Fig. 2: Dynamical Mean-Field Theory (DMFT) maps (or truncates) a lattice model to a single
site embedded in a medium (impurity model) with a hybridization strength that is determined
self-consistently. Adapted from Ref. [23]

Weiss mean field theory dynamical mean-field theory
Ising model→ Hubbard-type model→

single spin in an effective Weiss field impurity in an effective bath
Weiss field: heff effective bath: ∆ (iωn)
local observable: local observable:

m = 〈si〉 Gloc (iωn)
self-consistent condition: self-consistent condition:

tanh
(
β
∑

j Jijsj

)
= m iωn − Eimp−∆ (iωn)−Σ (iωn) =

[∑
~kG~k (iωn)

]−1
Table 1: Corresponding quantities in dynamical mean-field theory (right) and Weiss or static
mean-field theory in statistical mechanics (left).

by a hybridization term with a bath of non-interacting electrons, which allows the atom at the
selected site to change its configuration. This is depicted in Fig. 2.

The second step involves the reconstruction of lattice observables by embedding the local impu-
rity self-energy into a correlation function of the lattice. Glatt(~k, iω)

−1 = iω+µ−t~k−Σimp(iω).
Here Σimp(iω) are viewed as functionals of the Weiss field. The requirement

∑
kGlatt = Gloc

determines the Weiss field. Table 1 summarizes the analogies between Weiss mean-field theory
and dynamical mean-field theory.

The DMFT mapping of a lattice model onto an impurity model gives a local picture of the solid
in terms of an impurity model, which then can be used to generate lattice quantities, such as the
Green’s function of electrons and the magnetic susceptibility, by computing the corresponding
irreducible quantities. This is illustrated in Fig. 3.
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Fig. 3: The DMFT impurity model is used to generate irreducible quantities such as self-
energies and two-particle vertices. These are then embedded in the lattice model to generate
momentum dependent lattice quantities such as spectral functions or spin susceptibilities.

The self-consistent loop of DMFT is summarized in the following iterative cycle

Eimp, ∆ (iωn) −→ Impurity Solver −→ Σimp (iωn) , Gloc (iωn)

↑ ↓

Truncation ←− G~k (iωn) =
1

iωn + µ− t
(
~k
)
−Σ (iωn)

. ←− Embedding

The impurity model is the engine of a DMFT calculation. Multiple approaches have been
used for its solution, and full reviews are needed to do this topic justice. Recent advances
in the continuous-time quantum Monte Carlo method for impurity models [24] have provided
numerically exact solutions at relatively low computational cost. Dynamical mean-field theory
becomes exact in the limit of infinite dimensions that was introduced by Metzner and Vollhardt
[13]. With suitable extensions, it plays an important role in realistically describing strongly
correlated materials. This is the subject of the following sections.

4 Correlations in the solid state, LDA, hybrids, LDA+DMFT

In the context of the simple Hubbard model, a clear measure of the strength of the electronic
correlations is the ratio U/t. But how do we quantify correlation-strength in an actual solid
described by Eq. (1), which has no reference to a U or a t?
To address this question we need to start from the exact one-particle Green’s function in the
solid that we introduced in Eq. (4) and focus on the self-energy Σ which should be viewed as
an infinite-dimensional matrix in a specified basis set.
For a chemist, correlations mean large departures of Σ with respect to the Fock self-energy.
Hence, a strongly correlated system is a system whereΣ−ΣFock is large. From this perspective,
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even simple metals are strongly correlated since pure exchange is a poor approximation to the
self-energy of even simple metals.
We adopt a different definition, the one used by physicists, and measure the strength of the
correlation by the departure of the self-energy from the exchange-correlation potential of the
LDA. A correlated material is one where

Σ (ω)− Vxc(LDA) (29)

is large in some low frequency range. Notice that at infinite frequencies Σ is given by just
the Fock diagram and therefore at large frequencies the difference in Eq. (29) is large, but this
usually occurs above the plasma frequency, a fairly large energy scale.
Sometimes the difference in Eq. (29) is local and restricted to a few orbitals, as will be explained
in the following. In this case we can describe this difference using DMFT. This is the basis of
the DFT+DMFT methodology, to be described below. Notice, however, that this methodology
should be used as a description of the spectra below the plasma frequency.
Introducing a complete basis set of localized wavefunctions labeled by site and orbital index,
we can expand the self-energy as

Σ (~r, ~r ′, ω) =
∑

α~R,β ~R′

χ∗
α~R

(~r) Σ (ω)α~R,β ~R′ χβ ~R′ (~r
′) . (30)

Eq. (30) allows us to introduce an approximate or simplified representation of the self-energy
[25] involving a sum of a non-local but frequency independent term plus a frequency-dependent
but local self-energy.

Σ(~k, ω) ' Σ(~k) +
∑

~R,αβ∈L

|~Rα〉Σ(ω)loc, ~R~R 〈~Rβ| . (31)

Notice that the notion of locality is defined with reference to a basis set of orbitals. The self-
energy is approximately local when the on-site term ~R = ~R ′ in Eq. (30) is much larger than the
rest, and the ansatz is useful when the sum over orbitals in Eq. (31) runs over a small setL (much
smaller than the size of the basis set), for example over a single shell of d- or f -orbitals. The
validity of the local ansatz for graphs beyond the GW approximation was tested for transition
metals in an LMTO basis set by N. Zein et al. [26].
For semiconductors, non-local (but frequency-independent) correlation effects are needed to
increase the gap from its LDA value. This admixture of exchange can be done within the GW
method or using hybrid density functionals. It reflects the importance of exchange beyond the
LDA, which is due to the long-range but static part of the Coulomb interaction. It has recently
been shown that this type of correlation effect is important in materials near a metal-to-insulator
transition such as BaBiO3 or HfClN [27]. In these systems, Σ(~k) is much more important than
the frequency dependence in the self-energy.
Frequency dependence implies non-locality in time and is important in materials governed by
Mott or Hund’s physics. This physics tends to be local in space and can be captured by DMFT.
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Static mean-field theories such as the LDA do not capture this non-locality in time, and therefore
fail to describe Mott or Hund’s phenomena.
In the quantum chemistry jargon the frequency-independent self-energy is ascribed to dynam-
ical correlation effects, while the frequency-dependent self-energy is ascribed to static corre-
lation effects. This difference in terminologies among two communities that are describing
similar effects has been a continuous source of confusion. In real materials, both effects are
present to some degree thus motivating physically the ansatz of Eq. (31). Some examples dis-
cussed recently are CeO3 (using hybrid DFT+DMFT ) in Ref. [28] and the iron pnictides and
chalcogenides in Ref. [25].
This discussion motivates the DFT+DMFT method, which was introduced in Ref. [29] (see also
Ref. [30]). DFT here stands for density-functional theory, and refers to the standard practical
implementations of this theory, such as LDA or GGA, which are used with similar frequency.
However DFT could be replaced by another static mean-field theory like hybrid DFT or QPGW.
In the following we will use the terminology LDA+DMFT.
Starting from the model Hamiltonian point of view, one divides the orbitals into two sets, the
first set containing the large majority of the electrons, which are properly described by the
LDA Kohn-Sham matrix. The second set contains the more localized orbitals (d-electrons in
transition metals and f -electrons in rare earths and actinides), which require the addition of
DMFT corrections. A subtraction (called the double-counting correction) takes into account
that the Hartree and exchange correlation has been included in that orbital twice since it was
treated both in LDA and in DMFT. The early LDA+DMFT calculations proceeded in two steps
(one-shot LDA+DMFT). First an LDA calculation was performed for a given material. Then
a model Hamiltonian was constructed from the resulting Kohn-Sham matrix corrected by EDC

written in a localized basis set. The values of the Coulomb matrix for the correlated orbitals
were estimated or used as fitting parameters. Finally DMFT calculations were performed to
improve on the one-particle Green’s function of the solid.
In reality, the charge is also corrected by the DMFT self-energy, which in turn changes the
exchange and correlation potential away from its LDA value. Therefore charge self-consistent
LDA+DMFT is needed.
For this purpose, it is useful to notice that the LDA+DMFT equations can be derived as station-
ary points of an LDA+DMFT functional, which can be viewed as a functional of the density
and local Green’s function of correlated orbitals. This is a spectral density-functional

ΓDFT+DMFT

[
ρ (~r) , Gαβ,~R, VKS (~r) , Σαβ,~R

]
= −Tr ln

[
iωn +

∇2

2
− VKS −

∑
R,αβ∈L

χ∗
α~R

(~r) Σαβ ~R(iω)χβ ~R (~r)

]

=

∫
VKS (~r) ρ (~r) d

3r −
∑
n

Tr [Σ (iωn)G (iωn)] +

∫
d3rVext (~r) ρ (~r) d

3r

= +
1

2

∫
ρ (~r) ρ (~r′)

|~r − ~r′|
d3rd3r′ + EDFT

xc [ρ] +
∑
~R

Φ
[
Gαβ,~R, U

]
− ΦDC . (32)
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Φ is the sum of two-particle irreducible diagrams written in terms of G and U . It was written
down for the first time in Ref. [31] building on the earlier work of Chitra [32,33] and is essential
for total energy calculations which require the implementation of charge self-consistency in the
LDA+DMFT method. The first implementation of charge self-consistent LDA +DMFT was
carried out in a full-potential LMTO basis set [31]. It was used to compute total energy and
phonons of δ-plutonium.
The form of the LDA+DMFT functional makes it clear that the method is independent of the
basis set used to implement the electronic structure calculation provided that the basis is com-
plete enough. On the other hand, it is clearly dependent on the parameter U chosen, on the form
of the double counting correction and the choice of the projector (i.e., the orbitals χα(~r) with
α ∈ L that enter this definition). A projector of the form P (r, r′) =

∑
αβ∈L χ

∗
α~R

(~r)χβ ~R(~r
′)

was used to define a truncation from G to Gloc. The inverse of P is the embedding operator
E defined by P · E = IL where IL is the identity operator in the correlated subspace. If one
restricts E · P to the space L, one also obtains the identity operator in that space. E is used to
define an embedding of the self-energy Σ(r, r′) = Eα,β(r, r′)Σloc

α,β .
However, more general projectors can be considered as long as causality of the DMFT equations
is satisfied. Ideas for choosing an optimal projector for LDA+DMFT based on orbitals were
presented in Ref. [34]. Choosing suitable projectors (and correspondingly a suitable value of the
U matrix and a proper double counting correction) is crucial for the accuracy of an LDA+DMFT
calculation as demonstrated recently in the context of the hydrogen molecule [35].

5 Electronic structure methods from a diagrammatic
many-body perspective

The formulation of LDA+DMFT presented in the previous section is rooted in the model Hamil-
tonian approach, which contains parameters such as the screened Coulomb interaction matrix or
hopping matrix elements. These elements are absent in the starting point of the first principles
approaches Eq. (1). We now describe a route proposed by Chitra [32,33] to embed DMFT into a
many-body approach of electronic structure within a purely diagrammatic approach formulated
in the continuum.
The starting point once again is the theory of everything:

S =

∫
dx ψ† (x)

[
∂τ −∇2 + Vext (x)

]
+
1

2

∫
dx dx′ ψ† (x)ψ† (x′) vCoul (x− x′)ψ (x)ψ (x′) , (33)

which can be rewritten exactly in terms of a Hubbard-Stratonovich field φ (x) that represents
the electric field present in the solid,

S =

∫
dx ψ† (x)

[
∂τ −∇2 + Vext (x)

]
1

2

∫
dx dx′ φ (x) v−1Coul (x− x

′)φ (x′) +

∫
dx iφ (x)ψ† (x)ψ (x) . (34)
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Fig. 4: Lowest order graphs in the Φ-functional of Eq. (37). They give rise to the fully self-
consistent GW approximation.

From this action, one can compute the Green’s function

G (x, x′) = −〈ψ (x)ψ† (x′)〉 (35)

and
W (x, x′) = 〈φ (x)φ (x′)〉 − 〈φ (x)〉〈φ (x′)〉 , (36)

which are the same symbols as used in the GW method [10].
The free energy of the solid can be written as an exact functional of G (x, x′) and W (x, x′) by
means of a Legendre transformation and results in

Γ [G,W,Σ,Π] = −Tr ln
[
G−10 −Σ

]
− Tr [ΣG] +

1

2
Tr ln

[
v−1CoulΠ

]
−1

2
Tr [ΠW ] + EHartree + Φ [G,W ] . (37)

This reformulation is exact but not practical unless some approximations are made on the func-
tional Φ, defined as sum of all two-particle irreducible diagrams. The lowest order graphs of
this functional are shown in Fig. 4, which reproduce the self-consistent GW approximation.
If one selects a projector, which allows us to define a local Green’s function, it was suggested
in Refs. [32, 33, 36] that one can perform a local approximation and keep only the local higher
order graphs in selected orbitals Φ [G,W ] ' ΦEDMFT [Gloc,Wloc, Gnonlocal = 0,Wnonlocal = 0]

+ ΦGW − ΦGW [Gloc,Wloc, Gnonlocal = 0,Wnonlocal = 0]. Since the lowest graph is contained in
the GW approximation, one should start from the second order graph and higher order .
These ideas were formulated and fully implemented in the context of a simple extended Hub-
bard model by Ping Sun and the author [37, 38]. An open problem in this area, explored in
Ref. [38], is the level of self-consistency that should be imposed. As discussed in Sec. 1, this
important issue is already present in the implementation of the GW method, and the work of
Ref. [38] should be revisited using the lessons from the QPGW method [25].
The functional Φ can be viewed as the functional of an impurity model which contains a
frequency-dependent interaction U , obeying the self-consistency condition

U−1 = W−1
loc +Πloc . (38)
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One can understand the successes of LDA+DMFT from the GW+EDMFT perspective. Con-
sider a system such as cerium, containing light spd-electrons and heavier, more correlated,
f -electrons. We know that for very extended systems, the GW quasiparticle band structure is
a good approximation to the LDA band structure. Therefore the self-energy of a diagrammatic
treatment of the light electrons can be approximated by the exchange-correlation potential of
the LDA (or by other improved static approximations if more admixture of exchange is needed).
Diagrams of all orders, but in a local approximation, are used for the f -electrons. In the full
many-body treatment, Σff is computed using skeleton graphs with Gloc and Wloc. To reach
the LDA+DMFT equations, one envisions that, at low energies, the effects of the frequency
dependent interaction U(ω) can be taken into account by a static U , which should be close to
(but slightly larger than) U(ω = 0). The f -f -block of the Green’s function now approaches
Σff − EDC.
We reach the LDA+DMFT equations, with some additional understanding on the origin of
the approximations used to derive them from the EDMFT+GW approximation as summarized
schematically in

ΣGW+DMFT

(
~k, ω

)
−→

(
0 0

0 Σff − EDC

)
+

(
Vxc[~k]spd,spd Vxc[~k]spd,f
Vxc[~k]f,spd Vxc[~k]f,f

)
. (39)

Realistic implementations of combinations of GW and DMFT have not yet reached the maturity
of LDA+DMFT implementations and are a subject of current research.

6 Discretization of basis-sets and Coulomb integrals

There are now a large number of implementations of LDA+DMFT in various electronic struc-
ture codes in progress and this is an active area of research. In this section we provide some
background elementary material, to give the student a feeling for the various parameters that en-
ter in these modern LDA+DMFT calculations. This involves one-electron ideas such as muffin-
tin radii and augmentation spheres as well as atomic physics concepts such as Slater integrals.
The applications described in Sec. 8 and Sec. 9 were carried out using the LDA+DMFT imple-
mentation of K. Haule described in Ref. [39]. Early studies mentioned in section Sec. 9 used
the LMTO basis set and the implementation described in Ref. [31].
Eq. (2) is a partial differential equation. To solve it on a computer, a discretization is needed
to reduce it to a finite matrix diagonalization problem. More generally, the Kohn-Sham matrix
is infinitely dimensional and model Hamiltonians require some reduction to finite dimensional
matrices to be used in conjunction with DMFT. This is generally done by introducing a a basis
set χi,

ψ =
∑
i

ciχi. (40)

The Schrödinger equation becomes

〈χj|H|χi〉 =
∑
i

ci〈χj|H|χi〉 = ε
∑
i

〈χj|χi〉. (41)



2.16 Gabriel Kotliar

That is, ∑
i

hji ci = ε
∑
i

Oji ci. (42)

hji = 〈χj|H|χi〉 = 〈χj| − ∇2 + vKS (~r) |χi〉.
Oji = 〈χj|χi〉 (overlap matrix)

(43)

The linear augmented plane wave (LAPW) [40, 41] method divides the space into two cat-
egories, the interstitial region (I) and the muffin-tin region (MT ). The LAPW basis set is
defined by

χ~k, ~G (~r) =

ei(
~k+ ~G)·~r, for ~r ∈ I;∑
lm alm(

~k)φlm + blm(~k)φ̇lm, for ~r ∈MT
(44)

In the interstitial region, plane waves constitute a natural basis. In the muffin-tin sphere, the ba-
sis set contains linear combinations of atomic-like wavefunctions φlm (~r, Eν) and their deriva-
tives, φ̇lm (~r, Eν), with respect to the energy parameter Eν , which is called the linearization
energy. The key idea is to allow enough variational freedom to reproduce the exact solution of
the one-particle Schrödinger equation in the sphere [40]. The basis functions are

φlm (~r, ε) = φlm (~r, Eν) + (ε− Eν) φ̇lm (~r, Eν) , (45)

where the atomic-like wavefunctions satisfy[
−∇2 + Vav (~r)

]
φlm (~r, Eν) = Eν φlm (~r, Eν) (46)

and their derivatives with respect to Eν satisfiy[
−∇2 + Vav (~r)

]
φ̇lm = φlm . (47)

Besides the one-particle Hamiltonian, one also needs to discretize the Coulomb interaction part
of the Hamiltonian. We explain how this is done in the context of a single atom. In a model
Hamiltonian language, the two most important terms are the Hubbard U , which suppresses
charge fluctuations, and the Hund’s rule coupling J , which promotes locally large values of
spin

Hint ∼ UN̂2 + JŜ2. (48)

To see the origin of these terms we start from the atomic Hamiltonian with the Coulomb inter-
action written in second quantized form

1

2

∫
d3rd3r′ ψ†σ (~r)ψ

†
σ′ (~r

′)
1

|~r − ~r′|
ψσ′ (~r′)ψσ (~r) =

1

2

∑
αβγδ

c†ασc
†
βσ′ 〈αβ|V |γδ〉 cδσ′cγσ (49)

with
〈αβ|V |γδ〉 =

∫
d3r1d

3r2 φ
∗
α (~r1)φ

∗
β (~r2)

1

|~r1 − ~r2|
φδ (~r2)φγ (~r1) . (50)
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Using φlm (r, ϑ, ϕ) = Rl (r)Ylm (ϑ, ϕ) and

1

|~r − ~r′|
= 4π

∞∑
k=0

rk<
rk+1
>

1

2k + 1

k∑
q=−k

Ykq (r̂)Y
∗
kq (r̂

′) , (51)

we restrict ourselves to the d-shell (l = 2) as an example. The interaction has the form we
encountered previously in the context of the multi-band Hubbard model, Eq. (13)∑

m1m2m3m4

∑
σσ′

Um1m2m3m4 c
†
m1σ

c†m2σ′cm3σ′cm4σ, (52)

Here U is a four-index tensor. In the atom, its form is strongly constrained by symmetries and
is parametrized in terms of a few parameters (Slater integrals) F k.

Um1m2m3m4 =
∑
k

4π

2k + 1

k∑
q=−k

∫
d3r1φ

∗
2m1

(~r1)φ2m4 (~r1)Y
∗
kq (ϑ1, ϕ1)

×
∫
d3r2φ

∗
2m2

(~r2)φ2m3 (~r2)Ykq (ϑ2, ϕ2)×
rk<
rk+1
>

=
∑
k

F k

k∑
q=−k

〈Y2m1|Y ∗kq|Y2m4〉〈Y2m2|Ykq|Y2m3〉, (53)

and

F k =
4π

2k + 1

∫
r21 dr1

∫
r22 dr2

rk<
rk+1
>

R2
l=2 (r1)R

2
l=2 (r2) . (54)

When k = 0 and hence q = 0, 〈Y2m1|Y ∗00|Y2m4〉 ∝ δm1m4 and 〈Y2m2|Y ∗00|Y2m3〉 ∝ δm2m3 . The
k = 0 contribution in the Coulomb interaction is

Hk=0
Coul ' F 0

∑
m,m′

∑
σ,σ′

(
c†mσcmσ

) (
c†m′σ′cm′σ′

)
. (55)

Thus, F 0 defines the Hubbard U in the atom. It involves the direct Coulomb integral Unmmn.
We now turn to the exchange Coulomb integral

Umnmn =

∫
d3r1d

3r2 φ
∗
m(~r1)φn(~r1)

1

|~r1 − ~r2|
φ∗n(~r2)φm(~r2) . (56)

and its average J = 1
2l+1

∑
m<n Umnmn. To understand its physical meaning consider the

case that the full interaction is replaced by its more symmetric (averaged) form Um1m2m3m4 =

Jδm1,m3δm2,m4 +
J
2
δm1,m4δm2,m3 . Then it is easy to evaluate the form of the interaction Hamil-

tonian using the Fierz identity
∑

a σ
a
αβσ

a
γδ + δαβδγδ = 2δαδδβγ to obtain

H ∼ −2JS2 (57)

with Sa = 1
2

∑
m,αβ c

†
mασ

a
αβcmβ . Notice the sign in Eq. (57), which gives rise to the famous

Hund’s rule: to minimize the energy one has to maximize the spin. The Hund’s J for d-electrons
can be expressed in terms of the Slater integrals [42] by

J =
1

14
(F 2 + F 4), (58)
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A second parameter in addition to J is needed to parametrize the Slater integrals

C =
1

14

(
9

7
F 2 − 5

7
F 4

)
(59)

When C = 0, additional symmetries are present in the spectra [43]. Sometimes F 2 and F 4 are
viewed as parametrized by the Hund’s coupling, as F 2 ' 14

1.6
J and F 4 ' 0.6

1.6
J . This relation

between F 2 and F 4 is exact only for the hydrogen atom. Note that in the case of instantaneous
interactions, the terms of odd l, (F 1, F 3, . . . ) are absent due to parity symmetry. Finally we
give the expression for the atomic energy averaged over all the configurations for d-electrons

Uav = F 0 − 2

63
(F 2 + F 4). (60)

The Hund’s interaction is very important in determining the physical properties of many solids
and we will return to this point in Sec. 8.

7 Bridging between first-principles and model Hamiltonian
approaches

The ideas that we have pursued in this lecture are rooted in the philosophy of the Anderson
model [14]. Many-body correlations are applied to a small subset of orbitals and are kept rela-
tively local in space. The rationale, is that the large majority of electronic states can be treated
accurately by some static mean-field plus low-order perturbative corrections, while a summa-
tion to all orders is only needed for a small subset of orbitals. This should be contrasted with
other methods, such as GW or variational Monte Carlo where all electrons are treated at the
same level of approximation. The advantage of LDA+DMFT-like approaches is that they focus
the available computational power on the orbitals or sectors that need it the most. The disad-
vantage is that, like all methods rooted in model Hamiltonians, there is some arbitrariness that
has to be resolved, for example in the determination of the form of the projector and the value
of the concomitant interaction. The derivation of model Hamiltonians and their parameters can
be carried out along two different lines.
The first is a Wilsonian approach, where high-energy degrees of freedom are eliminated. It
involves the following schematic steps which results in a model Hamiltonian with well defined
parameters:

1. start with the theory of everything in the path integral formulation

2. in metallic systems, screen the long range part of the Coulomb interaction

3. eliminate (integrate-out, approximately) degrees of freedom which are not of interest and
therefore outside the scope of the model

A different philosophy for deriving parameters of low-energy Hamiltonian involves matching
observables:
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1. choose an approximate method

2. apply the method to the first-principle theory and the model

3. match enough quantities to determine (or over-determine) a few physical observables

An good example of this approach is the constrained RPA [44] proposed by Aryasetiawan and
developed with his collaborators [45].
The model Hamiltonian will only keep bands within a low energy window near the Fermi sur-
face as degrees of freedom of interest. The observables to be matched are the screened Coulomb
interaction among the electrons W. The screened Coulomb potential in first-principle theory is
given by

W =
vCoul

1 + vCoulΠ
=

vCoul

1 + vCoul (Πmodel +Πrest)
. (61)

Πmodel is the polarization of the low-energy bands. Πrest is the polarization due to excitations
between low- and high-energy bands and within the high-energy bands. The screened Coulomb
potential in the model is

Wmodel =
U

1 + UΠmodel

. (62)

U is the “bare” interaction in the model Hamiltonian. The matching between the low energy
theory and the full theory is

W = Wmodel , (63)

which results in
U

1 + UΠmodel

=
vCoul

1 + vCoul (Πmodel +Πrest)
, (64)

leading to
U =

vCoul

1 + vCoulΠrest

. (65)

This is constrained RPA [44]. In general, U (ω;~r, ~r′) is a function of ω, ~r, and ~r′. Hence
this method delivers both local and non-local frequency dependent interactions. Evaluating the
results at zero frequency and projecting U on the relevant orbitals gives rise to the parameters
of the model Hamiltonian.
A variant of this approach, a constrained local GW, was proposed in Ref. [46]. Here the observ-
able to be matched is the local W, defined by projecting W onto local orbitals using the same
projector to be used in DFT+DMFT. The matching equations are

Wloc = (Wmodel)loc , (66)

Πloc = (Πmodel)loc , (67)

which result in a different definition of the frequency dependent U in a solid

W−1
loc = U−1 −Πloc (68)

The constrained RPA method, as GW, depends significantly on the level of self-consistency
(one-shot, full self-consistency, or QPGW). It was observed in Ref. [46] that the one-shot ap-
proximation used in all earlier studies considerably underestimates the values of U that should
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Fig. 5: (Left Panel) Resistivities as a function of Hund’s rule coupling J , Ref. [50]. Notice the
extreme sensitivity to J . The effects of U on the correlation strength are small even for values
of U comparable to the bandwidth. The correlations are induced very rapidly by the Hund’s
J , and a coherence-incoherence crossover as a function of temperature was predicted. (Right
Panel) Recent observation of this behavior in ultra-pure KFe2As2 [51].

be used together with a localized projector. On the other hand, the fully self-consistent GW
which was implemented for solids in Ref. [47] gives instead fairly reasonable U values and
total energies, while being less accurate than the QPGW and the one-shot GW for electronic
spectra. Further investigations of this point in other materials are needed. Furthermore, the
determination of the parameters and the type of projectors to be used in LDA+DMFT-like im-
plementations remains a fundamental challenge in condensed matter physics.

8 Applications: Iron pnictides and Hund’s metals

The field of correlated-electron materials continues to periodically produce surprising discov-
eries. The latest in the series is the high-temperature superconductivity in materials contain-
ing iron pnictide layers [48]. This recent development provided a unique opportunity to con-
front electronic structure methods with rapidly developing experiments and assess the predictive
power of current methodologies and implementations. We use this as a first example in these
lectures.
Shortly after the experimental discovery of the iron pnictides, it was determined that the electron-
phonon coupling was not responsible for their superconductivity and correlations in the form of
a mass enhancement (m∗/m between 3 and 5) were predicted [49]. Even more surprising was
the origin of the mass enhancement which was elucidated in Ref. [50]. The left panel of Fig. 5
shows the crossover from coherence (Fermi-liquid behavior) at low temperatures to incoher-
ence (bad-metal behavior) at high temperatures predicted in Ref. [49]. The right panel of Fig. 5
describes the evolution of the resistivity as a function of J , for a reasonably large value of the
Hubbard U (U=5, comparable to the bandwidth). For small J , the system behaves as a weakly
interacting material, with very low resistivity and negligible mass enhancement [49]. The rea-
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Fig. 6: J promotes metallicity in a d6 configuration (middle) and insulating behavior in a d5

configuration. The figure on the right shows the experimental dependence of the Kondo temper-
ature on the d-valence [53]. It falls exponentially as the half filled shell (Mn) is approached.

son for this behavior is the very small value of the crystal-field splittings in the pnictides (of the
order of ten meV as opposed to the value characteristic of oxides which is of the order of eV).
The orbital degeneracy is then very large, with considerable room to move within the d-shell,
rendering Mott blocking ineffective. In different words, the critical U for the Mott transition
scales with N [52], (Uc2 ∼ N2 and Uc1 ∼ N ) and enormous values of U would be needed to
induce Mott localization in this system.
The iron pnictide materials were therefore not just new high-temperature superconductors aris-
ing from a magnetic element. They were a new class of strongly correlated materials, where
the correlations derive not from the blocking effect of the Mott Hubbard U , but from the effects
of the Hund’s rule coupling J . The theory of Hund’s metals is not fully developed yet. Some
basic understanding can be traced to the early work of van der Marel and Sawatzky [42], who
observed that while in a half filled configuration such as Mn d5, Hund’s rule J enhances the
Mott Hubbard gap, in a d6 configuration the Hund’s rule J reduces the gap between the Hub-
bard bands, thus promoting metallicity, as shown in Fig. 6. Hundness is also clearly seen in the
valence histogram, describing pictorially the diagonal elements of the local many body density
matrix. Physically, it represents the fraction of the time that the shell spends in each different
atomic eigenstate. It is shown in the right panel of Fig. 9 for BaFe2As2. The material is clearly
metallic with a very large number of configurations and several valences participating in the
histogram. The Hund’s J weights heavily the maximal spin states within each valence.
The Hund’s coupling also has a dramatic impact at low energies. This has been known from
the studies of magnetic impurities in transition-metals which were discussed intensively in the
1960s [54]. The Kondo temperature of transition metals decreases dramatically as it approaches
the half-filled shell as shown in the right panel of Fig. 6. This can be understood as a result of
the blocking of the orbitals which reduces the Kondo interaction to a diagonal form. The Kondo
scale is exponential in the Kondo coupling. In a SU(2N)-symmetric situation, containing only
the interaction U , the Kondo scales as exp(−1/JρN) where N is the orbital degeneracy. Intro-
duction of Hund’s coupling removes the degeneracy from SU(N) to SU(2), and renormalizes
the Kondo-coupling from J to J/N , resulting in a Kondo scale exp(−N/Jρ). These con-
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Fig. 7: Effective masses across the families of iron pnictides. All calculations were performed
with fixed F 0, F 2, F 4, and double-counting correction parameters. The variations in corre-
lation strength agree reasonably well with experiment and can be traced to the position of the
pnictogen height.

siderations are suitable for understanding the half-filled situation [55]. A full weak-coupling
renormalization group treatment of the impurity model underlying the Hund’s metal was only
given very recently [56].

The question of whether the iron pnictides should be thought of as weakly correlated itiner-
ant magnets, doped Mott insulators, or Hund’s metals continues to be actively debated in the
community. An important question is what controls the strength of the correlations within
LDA+DMFT. At this point, technical advances in implementation finally enable the calculation
of physical properties for whole families of compounds as illustrated in Fig. 7 from Ref. [57].

A big advantage of this type of calculation is that while absolute values of physical quantities
are very sensitive to the strength of the Hund’s coupling, this quantity is not expected to vary
much from material to material and can be kept fixed as the chemical trends across similar
materials are examined. This type of calculation clarified early confusion which classified some
iron pnictides such as the 1111 system as weakly correlated, while placing others such as the
122 system in the strong correlation regime as a result of variations in the atomic parameters
and double-counting corrections. This unified picture of the iron pnictide families was also
confirmed by subsequent experimental optical studies.

The other factor that controls the strength of the interaction in the iron pnictides is the variation
of the pnictide valence, with the correlation strength being an increasing function of decreasing
valence. Arguments in favor of this point of view, in a very itinerant picture of Hund’s metals,
was advanced in Refs. [56] and [58].
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Fig. 8: Theoretical prediction for the phonon spectra of the δ-phase of Pu (empty circles) [60]
and observation by inelastic X-ray scattering (black squares) [61]. The overall agreement is
reasonable with maximum deviations near the L-point of the Brillouin-zone as indicated.

9 Applications: Actinides

Computation of total energies was almost exclusively the domain of density-functional theory.
This can be rationalized by saying that density-functionals target the density and total energy
of the material and therefore are more accurate for these quantities than for their corresponding
excitation spectra. This is supported by the fact that even in materials as correlated as the high-
temperature superconductors, LDA or GGA predict the structural properties with a few percent
accuracy. A notable exception to this rule is provided by a 5f system, elemental plutonium.
Nonmagnetic LDA or GGA underestimates the volume of the δ-phase by more than 30%, while
allowing for magnetism gives a volume close to experiment but with a very large moment, of the
order of 5µB, which is not observed experimentally. A similar problem arises in other electronic
structure methods, ranging from GW to hybrid density-functionals.

The computation of total energies and phonon frequencies became possible with the introduc-
tion of the LDA+DMFT functional. The first application of charge self-consistent LDA+DMFT
[59] pointed a path to solving the Pu conundrum by demonstrating that the correct volume of
δ-Pu emerges from the paramagnetic LDA+DMFT calculation. Predictions for the phonon
spectra [60] were largely confirmed by inelastic X-ray experiments at the ESRF.

The difference between theory and experiment highlighted in Fig. 8 focuses the research by
raising interesting questions. In that early work, simplified impurity solvers were used. Hence,
the calculations can be improved further. Also, temperature-dependent experimental studies
should be performed, since the calculations were zero temperature calculations. Finally, effects
of alloying and inhomogeneities could be investigated. This is clearly an area where theory
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Fig. 9: LDA+DMFT valence histogram for different materials. In Cm (right) the ordinary
notion of valence applies. Pu (middle) exhibits a clear mixed valence character [62]. The left
panel displays the valence histogram of a Hund’s metal BaFe2As2 [46].

of strongly correlated materials can continue to make important contributions to an area where
experiments are very difficult.
Another important aspect of LDA+DMFT calculations is the qualitative insights they provide
into the behavior of a material. Plutonium was shown to be a strongly mixed-valence system,
and the absence of magnetism was explicitly demonstrated [62]. The LDA+DMFT valence
histograms describe the fraction of the time that the atom spends in each atomic eigenstate.
When the f -electron is very localized, there is only one atomic eigenstate that is important. This
is illustrated in Fig. 9 for curium. Plutonium is very different, having appreciable fluctuations
into the 5f 6 configuration as shown in Fig. 9. The mixed valence of Pu is responsible for its
unique physical properties.
The studies of Pu over the last decade illustrate very nicely the advances in the quality of the
LDA+DMFT implementations. Very recently, calculations for the ground state of Pu, α-Pu,
a complicated monoclinic structure with many atoms in the unit cell, were carried out, using
CTQMC as an impurity solver [63].
Another recent development is the determination of the energy vs. volume for all the phases of
Pu, carried out in Ref. [64]. It was shown that all their phases are mixed-valent. Furthermore,
correcting the LDA energy with the mean-field slave-boson (or Gutzwiller) correction brings
all the phases very close together in energy as highlighted in Fig. 10 (Ref. [64]). These calcu-
lations are outside the scope of what can be currently done using exact impurity solvers but are
easily accessible to the formalism introduced in Sec. 2 or the equivalent (at zero temperature)
Gutzwiller approximation introduced by Xi Dai and collaborators. This brings us back to the
beginning of the lectures.

10 Summary and outlook

After completing the development of quantum mechanics Dirac stated that “the underlying
laws necessary for the mathematical theory of the whole chemistry are thus completely known
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Fig. 10: Left: Energy vs. volume of all the phases of Pu from the work of Lanatà et al. [64].
Notice that within the slave-boson method the energy differences are two orders of magnitude
smaller, explaining the extreme sensitivity of the material to changes in concentration of impuri-
ties, temperature, etc. This sensitivity is highlighted in the right panel showing the experimental
volume-temperature phase-diagram of Pu. The dotted lines indicate the zero-temperature equi-
librium volumes extrapolated by linear interpolation. Correlations shift the region of volumes
(highlighted) that becomes relevant at zero pressure. LDA already contains the relevant infor-
mation about structural differences.

and the difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble.” But he proceeded to add that “approximate practical methods of
applying quantum mechanics should be developed which can lead to an explanation of the main
features of complex atomic systems without too much computation.”

In his famous article More is Different [65], P.W. Anderson, remarked that “the constructionist
hypothesis breaks down when confronted with the twin difficulties of scale and complexity.”
He goes on to say that “at each level of complexity entirely new properties appear, and the
understanding of the new behaviors requires research which I think is as fundamental in its
nature as any other,” stressing that at each level of description new concepts are needed to
describe nature and there are new laws to be discovered.

Dirac and Anderson’s dictums are sometimes viewed as contradictory, but in condensed matter
physics and in particular in the field of strongly correlated electrons both are needed to make
progress. The quest for ideas to describe the emergent phenomena as well as the invention of
techniques to compute physical properties using the basic laws of quantum mechanics of matter
both play a very important role.

The developments of methodologies to treat correlated materials are an illustration of Dirac’s
vision and they have lead to concepts, abstractions, and physical pictures that enable us to
understand the behavior of correlated materials that are useful and will guide further studies.

There is a close interaction between scientific advances and the development of new method-
ologies. New methodologies enable breakthroughs in challenging scientific problems, and in
turn outstanding scientific problems spur the development of new methodologies.

The development of DMFT for model Hamiltonians led to a detailed understanding of the mech-
anism of the Mott transition. In turn, the need to understand the Mott transition, a transition that
lacks an obvious order parameter, was an important driving force for the development of DMFT.
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DMFT and its extensions to clusters enabled accurate solutions of model Hamiltonians. It also
gave us useful concepts for thinking about strongly correlated materials. The DMFT Weiss field
makes quantitative the notion of the degree of localization of the electron. The local Green’s
function, with its characteristic three peak structure, gives a precise formulation of the Mott
transition in terms of the transfer of one-electron spectral weight. The existence of a finite-
temperature Mott transition marks a sharp boundary beyond which perturbation theory in the
interactions fails.
Condensed matter theory has a dual role. One one side, it provides tools for predicting the
properties of materials. On the other side, it builds the conceptual framework in which to frame
and understand the results of experiments. We used two classes of materials, the actinides and
the iron pnictides to illustrate the rapid progress in the field. The Pu problem was intractable
with the tools of band theory, but using a combination of slave-boson and DMFT methods the
determination of its phase diagram appears within sight. The iron pnictides provided a real-time
demonstration of the power of the LDA+DMFT methodology for their quantitative description
and at the same time resulted in a surprising discovery of a new class of strongly correlated
systems. There are many more that have been studied already, and even more to be discovered.
The introduction of LDA+DMFT enabled the computation of the photoemission and inverse
photoemission spectra of correlated materials starting from first principles. The intensity and
position of the qualitative features, already present in the model Hamiltonian, are now made
quantitative and system-specific in a way that allowed comparison with experiments. The calcu-
lated spectral properties (ARPES, optics, neutron scattering, etc.) of a large number of p, 3d, 4d,
4f , 5d, and 5f -based materials were in surprisingly good agreement with experiments. Through
the study of a very large number of materials, the community has gained confidence that we have
a zeroth-order picture of strongly correlated materials, with the Kohn-Sham Hamiltonian with a
double-counting correction subtracted, as a one-particle Hamiltonian and a Coulomb interaction
matrix parametrized by a few Slater-Racah parameters. We have a working practical approach
that gives a zeroth order-picture of correlated solids, an important challenge is to quantify its
accuracy and limitations. We can start looking for deviations from this framework as well as
continue to improve its implementation and foundation to increase its accuracy.
Finally it is worth reminding students that all the remarkable discoveries in strongly correlated
electron materials have been the result of serendipity, and there is no reason to doubt that this
will continue in the foreseeable future. Still, at this point in time, theorists working on strongly
correlated electrons have in their hand sufficiently powerful tools to participate more closely in
the process of understanding of these fascinating materials and accelerate their discovery. These
are very exciting times to enter the field of correlated electron material research.
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[19] R. Fresard and P. Wölfle, Int. J. Mod. Phys. B 6, 685 (1992)

[20] R. Raimondi and C. Castellani, Phys. Rev. B. 48, 11453(R) (1993)

[21] N. Lanata, Y. Yao, C Wang K.M. Ho and G. Kotliar arXiv:1405.6934

[22] A. Georges, and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

[23] G Kotliar and D Vollhardt, Physics Today, March 2004, p. 53

[24] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, and P. Werner,
Rev. Mod. Phys. 83, 349 (2011)



2.28 Gabriel Kotliar

[25] J.M. Tomczak, M. van Schilfgaarde, and G. Kotliar, Phys. Rev. Lett. 109, 237010 (2012)

[26] N.E. Zein, S.Y. Savrasov, and G. Kotliar, Phys. Rev. Lett. 96, 226403 (2006)

[27] Z.P. Yin, A. Kutepov, and G. Kotliar, Phys. Rev. X 3, 021011 (2013)

[28] D. Jacob, K. Haule, G. Kotliar, EPL 84, 57009 (2008)

[29] V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar,
J. Phys: Condens. Mat. 9, 7359 (1997)

[30] A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

[31] S.Y. Savrasov and G. Kotliar, Phys. Rev. B 69, 245101 (2004)

[32] R. Chitra and G. Kotliar, Phys. Rev. B 62, 12715 (2000)

[33] R. Chitra, and G. Kotliar, Phys. Rev. B 63, 115110 (2001)

[34] I. Paul and G. Kotliar I. Paul and G. Kotliar, Eur. Phys. Jour. B 51, 189 (2006)

[35] J. Lee and K. Haule arXiv:1403.2474

[36] S. Biermann F. Aryasetiawan, A. Georges PRL 90, 086402 (2003)

[37] P. Sun, G. Kotliar, Phys. Rev. B 66, 085120 (2002)

[38] P. Sun, and G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004)

[39] K. Haule, C. H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).

[40] O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

[41] D. J. Singh and L. Nordström: Planewaves, Pseudopotentials and the LAPW Method
(Springer, New York, 2006)

[42] D. van der Marel and G.A. Sawatzky, Phys. Rev. B 37, 10674 (1988)

[43] O. Laporte and J.R. Platt, Phys. Rev. 61, 305 (1942)

[44] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein,
Phys. Rev. B 70, 195104

[45] T Miyake, F. Aryasetiawan, and M. Imada, Phys. Rev. B 80, 155134 (2009),

[46] A. Kutepov, K. Haule, S.Y. Savrasov, and G. Kotliar, Phy. Rev. B 82, 045105 (2010)

[47] A. Kutepov S. Savrasov and G. Kotliar Phys. Rev. B 80, 041103(R) (2009)

[48] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono,
J. Am. Chem. Soc. 130, 3296 (2008)



Electronic Structure of Correlated Materials 2.29

[49] K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008)

[50] ] K. Haule, and G. Kotliar, New Journal of Physics 11, 025021 (2009)
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1 Introduction

Materials are made of atoms. Kanada in ancient India and Democritus in ancient Greece al-
ready had this intuition, and by now this is not exactly a surprising or revolutionary statement.
However, many standard solid-state physics textbooks do not emphasize this point of view very
strongly, to say the least. Condensed matter physics is often presented there as the science of the
electron gas, the underlying atoms being merely responsible for producing a periodic potential.
Thanks to Bloch’s theorem and independent particles pictures, invoking Walter Kohn and Lev
Landau as tutelary figures, the emphasis is quickly put on electrons, or at best quasiparticles.
So much for the atoms, which many students will then view as annoying curiosities that one
should soon forget, and of no use for the final exam.
Chemists of course, know better. We condensed-matter physicists have a lot to learn from
chemists, but we have trouble discussing with them when the first thing we show is a bunch of
energy bands (notwithstanding that a colourful plate of spaghetti can be truly enjoyable food
for thought). To enter a constructive dialogue with a chemist, better speak about atomic or
molecular orbitals, bonding, hybridization, etc.
Physicists working on materials with strong electron correlations have learned the hard way
that atoms matter. More precisely: an atom is a small many-body problem in itself, whose
eigenstates are multiplets (not just Slater determinants built out of the hydrogen atom single-
particle levels). In order to describe the physics of strongly correlated materials (especially the
ones with the most localized orbitals such as f -electron compounds), it is a good idea to adopt
a theoretical framework in which these atomic multiplets are correctly described, at least for a
subset of the atomic shells.
Of course, how we perceive reality depends on the scale at which we look at it. This has been
beautifully formalized by the renormalization group: to each scale (in terms of distance, energy,
or time) corresponds an appropriate effective theory. While there is no doubt that at high-
enough energy (short time-scales, short distances) localized atomic excitations are important,
why should they matter at low-energy (long time-scales, long distances)?
For many materials (the weakly correlated ones), they do not – hence the validity of the standard
model of condensed-matter theory textbooks alluded to above. The reason is that, in this case,
the kinetic energy of the quasiparticles (which are only slightly renormalized from independent
electrons in their periodic potential) is a very high-energy scale. Over all the range of energies
or temperatures where most experiments are conducted, the quasiparticles remain long-lived
and form a non-degenerate Fermi gas with a very high effective Fermi energy (or, equivalently,
a high degeneracy temperature or quasiparticle coherence scale).
In materials with strong electronic correlations, this is no longer true. The relevant orbitals (typ-
ically: the d-orbitals of transition-metals and their oxides, the f -orbitals of rare-earths, actinides
and their compounds, the molecular orbitals of organic conductors) are very localized and their
bandwidth (just the bare one obtained from bandstructure) is comparable or even smaller than
the typical matrix elements of the screened Coulomb interaction. In such a situation, there is
not such a clear separation of energy scales, and we cannot dispose of atomic correlations so
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easily. In Mott insulators [1], this has a dramatic consequence: the electrons remain localized
because the cost in Coulomb energy is too high for them to move in comparison to the potential
gain in kinetic energy.
In metallic systems, strong correlations also have drastic effects: the effective degeneracy tem-
perature of the quasiparticles is often renormalized to very low values, for example down to a
few Kelvin in heavy-fermion compounds (Kondo effect [2]), and still as low as ∼ 25 K in a
metallic oxide such as Sr2RuO4 [3]. As a consequence, Landau’s Fermi liquid theory, which
postulates a degenerate Fermi gas of very long-lived quasiparticles, only applies below a very
low energy scale (when it applies at all). Dealing properly with atomic correlations is then cru-
cial. In particular, these atomic correlations determine how, and by how much, the quasiparticle
coherence scale is renormalized in comparison to the bare bandwidth. Furthermore, regimes
where quasiparticles are no longer fully coherent become apparent in experiments even at not
very high temperatures. The crossover corresponding to the gradual destruction of the quasi-
particles as the system is heated up (or equivalently, how quasiparticles emerge as the system
is cooled down) must be addressed in order to understand the experimental observations – of-
ten characterized by large transfers of spectral weight between low-energy and intermediate- or
high-energy excitations.
In order to address these issues, we need a theoretical description that adapts itself to the energy
scale at which we look at the system. At high-energy, it has to correctly describe atomic physics,
correlations, and multiplet structures. At low energy, it has to account for the emergence of
long-lived quasiparticles. And it has to describe how this process takes place as the energy scale
is lowered. This is what Dynamical Mean-Field Theory (DMFT) does. The term dynamical is
perhaps not ideally chosen, since we are not talking here about the out-of-equilibrium dynamics
of the system. Instead, it indicates that the theory handles the different time-scales or energy-
scales involved in the excitation spectrum of the system at equilibrium. In order to do so, DMFT
introduces a generalization of the classical Weiss mean-field concept to that of a full function
of energy (or time scale).
Let me end this introduction on a disclaimer. These are not standard lecture notes (such as
the ones in [4]). Many good reviews exist by now which can be consulted for an introduction
to DMFT and its extensions, as well as for detailed technical aspects. Rather, I would like to
present a set of physical issues which in my view motivate the DMFT concept. I will do this
with hindsight, not necessarily following the historical development of the theory.

2 Why DMFT?

2.1 Atomic physics in the solid-state: Mott insulators

In Fig. 1, I reproduce the early angular-integrated photoemission spectra of some transition
metal oxides, from the pioneering work of Fujimori and coworkers [5]. All these oxides have a
common feature: the d-shell of the transition-metal is nominally occupied by a single electron
(d1 configuration). As one moves from top (ReO3) to bottom (YTiO3), the degree of correlation
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Fig. 1: Photoemission spectra of several d1 transition metal oxides, as reported in Ref. [5]. The
strength of electronic correlations increases from ReO3 (a weakly correlated metal) to YTiO3

(a Mott insulator). The plain lines are the densities-of-states obtained from band structure
calculations. A lower Hubbard band around −1.5 eV is clearly visible for the most correlated
materials, both for the metallic (SrVO3) and the Mott insulating (LaTiO3, YTiO3) materials.

increases (for reasons mentioned below). LaTiO3 and YTiO3 are Mott insulators. Their spectra
display a clear peak around −1.5 eV binding energy. This feature cannot be reproduced from
band-structure calculations (based, e.g., on DFT-LDA). It is, however, very easy to understand
as an atomic-like transition. The photoelectron kicks an electron out of the d-shell, inducing
a d1 → d0 transition. In the jargon of correlated electrons physicists, this is called a lower
Hubbard band (LHB), but it really has nothing to do with a band – at least not when we look at it
from the point of view of single-particle spectroscopy: it is an atomic-like transition, broadened,
of course, by the solid-state environment.
The simplest way to model this is to consider a caricature of an atom: a single atomic level at
energy εd, which can be occupied by zero, one, or two electrons with opposite spin. Neglecting
any orbital quantum number, the hamiltonian of such a Hubbard atom reads

Hat = εd(n̂↑ + n̂↓) + U n̂↑n̂↓ (1)
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in which U is the repulsion energy that the two electrons have to pay to sit in the same atomic
level (In the solid, screening has to be taken into account when evaluating U ). There are four
eigenstates: |0〉, | ↑ 〉, | ↓ 〉, | ↑↓ 〉, with energies 0, εd, εd, 2εd + U , respectively. The energy
of the transition d1 → d0 is εd, hence the above measurement provides information on the
effective position of the transition-metal atomic level in the solid. In such a simple model, one
would also expect another peak in the electron addition spectrum (inverse photoemission) at an
energy εd + U , corresponding to the transition d1 → d2. Measuring both transitions provides
information about U . This can be summarized in the spectral function of this simple isolated
Hubbard atom, which reads (nd = 〈n̂↑ + n̂↓〉)

Ad(ω) =
(
1− nd

2

)
δ(ω − εd) +

nd
2
δ(ω − εd − U) . (2)

The message of this section is: the single-particle excitation spectrum of Mott insulators is most
easily understood in terms of atomic transitions. Bandstructure calculations do not handle this
properly. A proper description of many-body atomic eigenstates (multiplets) [6] is required
to understand these spectra. Of course, the eigenstates of our oversimplified Hubbard atom
are so simple that they hardly deserve to be called multiplets. Orbital degrees of freedom
and additional matrix elements of the Coulomb interaction must be included for a realistic
description.

2.2 Atomic physics in the solid-state: metals close to the Mott transition

Let us now turn to the spectrum of SrVO3 shown in Fig. 1. This material is a metal, as indicated
by the presence of low-energy spectral-weight and the absence of a gap. Nonetheless, the
atomic-like transition (LHB) at ∼ −1.5 eV is still visible. Hence, the high-energy spectrum
of such a metal is not so different from that of related Mott insulators, indicating that atomic
physics is relevant for correlated metals as well. This is not even a very correlated metallic state,
rather one with an intermediate level of correlations still far away from the Mott transition. As
compared to the band-theory mass, the measured quasiparticle effective mass is enhanced by
approximately a factor of two.
But this is high-energy. What about low-energy excitations ? For this, we have to turn to more
recent photoemission experiments, which have disentangled the relative contributions of the
surface and the bulk [7,8]. The spectra obtained in Ref. [8] are reproduced in Fig. 2. There, we
see that the bandwidth of the low-energy part of the density of states, corresponding to quasi-
particle excitations, is narrowed by roughly a factor of two as compared to the bandstructure
(LDA) calculation. This is in line with the measured enhancement of the quasiparticle effective
mass.
This phenomenon was understood early on by Brinkman and Rice [9] as being due to the Hub-
bard repulsion U . Their description was based on the simple Gutzwiller approximation. As the
system approaches the metal-to-Mott-insulator transition, the spectral weight Z of the quasi-
particle excitations diminishes, and vanishes at the transition point UBR. In this simple de-
scription (which neglects the effect of the superexchange on quasiparticles), the effective mass



3.6 Antoine Georges

Fig. 2: Photoemission spectra of SrVO3 and CaVO3 . Left: comparison to an LDA calculation
(dashed curve) and to the LDA spectrum narrowed by a factor 0.6 (plain curve). Right: com-
parison to an LDA+DMFT calculation. Reproduced from Ref. [8]. See also Ref. [11] for the
LDA+DMFT spectrum of SrVO3 and of the oxides in Fig. 1.

correspondingly diverges at the transition as m?/m = 1/Z. The quasiparticle bandwidth is
uniformly reduced by a factor Z.

The Brinkman-Rice description focuses solely on quasiparticles, however, and cannot address
at the same time the high-energy part of the excitation spectrum. An important achievement
of DMFT is the ability to describe both types of excitations on an equal footing. The actual
spectrum of a Mott-correlated metal has three salient spectral features (Fig. 3): lower and upper
Hubbard-bands at high energy, and a narrowed density of states corresponding to quasiparticle
excitations at low energy. This three-peak structure has become some sort of icon of DMFT,
and is to a large extent a prediction of the theory [10]. Confirmation and precise comparison
to photoemission had to wait, in particular, for a proper identification of the photoemission
signal associated with the bulk. As the Mott transition is reached, spectral weight is trans-
ferred from the quasiparticles to the Hubbard bands. DMFT allows for a detailed description
of these spectral-weight transfers, as coupling or temperature is varied, and this is essential
in comparing to experiments. The development of materials-realistic calculations with DMFT
(the LDA+DMFT framework, which combines DFT-based electronic structure with a DMFT
treatment of many-body correlations) makes quantitative comparison to experiments possible,
as displayed in Fig. 2 for SrVO3 . Importantly, it also allows for both a qualitative and precise
answer to questions such as: why are SrVO3 and CaVO3 metallic, while LaTiO3 and YTiO3

are insulating? The answer [11] is that increased distortions of the structure (tilts of the octa-
hedra) lead to a smaller bandwidth but also, importantly, to an increased splitting between the
energy levels within the t2g shell, hence reducing orbital degeneracy and lowering the critical
coupling associated with the Mott transition.
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Fig. 3: Schematic evolution of the momentum-integrated spectral function (total density of
states) as the coupling is increased, for the half-filled Hubbard model in its paramagnetic phase,
according to single-site DMFT. The low-energy (quasiparticle) part of the spectrum gradually
narrows down, while the corresponding spectral weight is transferred to the lower and upper
Hubbard bands (atomic-like excitations). Adapted from Ref. [12].

2.3 Origin of the Mott phenomenon: blocking of charge, not magnetism

A material with a partially filled band may end up being an insulator because of interactions
between electrons; this is the Mott phenomenon. Here, I want to address the following issue: is
the cause of this phenomenon related to magnetism? This question has often caused confusion
in the field and also provides a key motivation for DMFT.
At strong coupling (when, say, the Hubbard U is larger than the bandwidth 2D), the answer
to this question is quite clear: magnetism is not the cause of the Mott phenomenon. The driv-
ing force behind the Mott phenomenon in this regime is the blocking of translational (charge)
degrees of freedom. The electrons would have to pay too much in repulsive Coulomb energy
(U ) to get delocalized in comparison to the potential gain in kinetic energy. In this regime,
the Mott insulating gap is of order ∆g ' U − 2D ∼ U . Of course, we have to worry about
spin physics, but in this regime this physics involves a much smaller energy scale: the superex-
change J ∼ D2/U � U,D. As long as ∆g & T & J , the system is in a paramagnetic state
with fluctuating local moments signaled by a Curie-Weiss law for the magnetic susceptibility
and a large spin-entropy. When the system is cooled down below T ∼ J , this entropy starts to
be quenched out, and the local moments usually order (or in more exotic situations, they might
bind into singlets and form a spin liquid state). This is illustrated on Fig. 4. In many oxides,
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Fig. 4: Phase diagram of the Hubbard model for a three-dimensional cubic lattice with one
particle per site on average. The red line denotes the phase transition into a long-range ordered
antiferromagnet (Néel temperature). The black dashed line denotes the Mott gap; to the right of
this line the paramagnetic phase behaves as an incompressible Mott insulator. The blue dashed
line denotes the quasiparticle coherence scale. To the left of this line, the paramagnetic phase
behaves as an itinerant fermionic liquid with long-lived quasiparticles. Typical snapshots of
the wave-function in real space are displayed for each regime.

long-range spin ordering (and even the onset of spin correlations) occur at a temperature much
lower than the insulating gap. For example [1], LaTiO3 with ∆g ' 0.2 eV orders antiferro-
magnetically below TN ' 140 K, and YTiO3 with ∆g ' 1 eV orders ferromagnetically below
TC ' 30 K. Hence, there is an extended regime of temperature in which the system is a dis-
ordered insulating paramagnet with clearly insulating properties (apart from a small amount of
thermal excitations in the gap). Cuprates are, in this respect, rather exceptional in view of their
very high Néel temperature and large superexchange.
The weak-coupling regime is a different story. Magnetic long-range order and the opening of the
insulating gap occur simultaneously (Fig. 4). This is the Slater regime. There are actually very
few documented examples of antiferromagnetic Slater insulators, a recently investigated one
being NaOsO3 [13] – a rather weakly correlated oxide of a transition metal of the 5d series. This
crossover between a weak-coupling (Slater) regime in which the insulating character is linked to
magnetism and a strong-coupling (Mott) regime in which they become two completely distinct
phenomena is the U > 0 analogue of the BCS-BEC crossover that applies to the attractive
U < 0 case.
In a nutshell: the Mott phenomenon has nothing to do with magnetism at strong coupling.
The reason I am emphasizing this is because many theoretical descriptions, such as LDA+U,
can only describe Mott insulators by going into the ordered phase with magnetic long-range
order. The problem with this is that the magnetism is then the cause of the gap opening, and
this is not physically correct. A proper description must account for the fact that the system
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Fig. 5: Generic phase diagram of the half-filled fermionic Hubbard model, as obtained from
DMFT. For a lattice with frustration (e.g., with next-nearest neighbour hopping), the transition
temperature into phases with long-range spin ordering is reduced. Then, a first-order transition
from a metal to a paramagnetic Mott insulator becomes apparent. Adapted from Ref. [17].

is insulating even when the local moments fluctuate, and that this is due to charge blocking.
This is very difficult to achieve in any static (energy-independent) mean-field in which the
insulating gap develops because of a rigid shift of spin-polarized bands. Instead, a proper
theory must handle two widely separated energy scales: the gap in the charge sector and the
much smaller superexchange scale in the spin sector. This is a key motivation for DMFT (and
LDA+DMFT), which is able to describe a Mott insulator with fluctuating local moments and
no broken symmetry in the regime ∆g & T & J .

These considerations raise the following question. Imagine one is able to frustrate magnetic
long-range order to a large degree, e.g., by considering the Hubbard model on a lattice with
next-nearest neighbour hopping or geometric frustration. What would eventually happen at
low-temperature to the crossover between the metallic state at small U/D and the paramag-
netic Mott insulating state at large U/D? DMFT answers this question in the following way
(Fig. 5): the crossover becomes a first-order transition below a critical temperature TMIT. The
point (TMIT, UMIT) is a second-order (Ising) critical endpoint, and the situation is analogous to
the liquid-gas transition between two phases which have the same symmetry. Such a first-order-
metal to Mott insulator transition ending in a critical endpoint is observed in several materials,
such as V2O3 and κ-BEDT organic compounds. In those materials, the transition is always
accompanied by a discontinuous change in lattice parameters. In my view however, the driv-
ing force behind the transition is clearly of electronic origin, and the lattice just follows. From
a theory point of view, however, it is still a somewhat open call whether such a purely elec-
tronic first-order transition occurs for finite-dimensional frustrated lattices. Cluster extensions
of DMFT (for reviews, see e.g. [14–16]) have provided solid evidence that this is indeed the
case, as have recent variational Monte Carlo studies by M. Ogata et al.
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3 DMFT in a nutshell

3.1 DMFT: solids as self-consistently embedded atoms

How does DMFT manage to simultaneously describe atomic-like excitations at high energy
and the formation of long-lived quasiparticles at low energy? The basic concept is illustrated
in Fig. 6. The idea is to start from the atom (or from a specific atomic shell) and embed it
into an effective medium with which it can exchange electrons [10] (for a review, see e.g. [18]).
Focusing for simplicity on the single-level Hubbard atom introduced above, this embedding can
be described by the following Hamiltonian (single-impurity Anderson model)

Himp = Hat +
∑
pσ

Ep a
†
pσapσ +

∑
pσ

(
Vp a

†
pσdσ + V ∗p d

†
σapσ

)
. (3)

This Hamiltonian was introduced many decades ago in order to describe a magnetic impurity
atom embedded into a conduction electron gas [2]. It is important to note that the physics
of the impurity atom does not depend on the details of the dispersion relation Ep and of the
hybridisation matrix elements Vp. All the relevant information can be condensed in the energy-
dependent hybridisation function

∆(iωn) =
∑
p

|Vp|2

iωn − Ep
=

∫
dω
−Im∆(ω)/π

iωn − ω
, − 1

π
Im∆(ω) =

∑
p

|Vp|2δ(ω − Ep) . (4)

The second equation expresses Fermi’s golden rule: when coupled to the bath, the atomic level
is broadened in an energy-dependent way, proportionally to the square of the hybridisation
matrix element and to the available density of states in the bath. For path-integral afficionados,
one can equivalently state that the physics of the embedded atom is described by the following
effective action (obtained by performing the Gaussian integral over the bath degrees of freedom)

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

d†σ(τ)G−10 (τ − τ ′) dσ(τ ′) + U

∫ β

0

dτ n↑(τ)n↓(τ) (5)

in which
G−10 (iωn) = iωn − εd −∆(iωn) (6)

plays the role of an effective bare propagator for this action.
In the DMFT context, the Anderson impurity model is introduced in order to provide a repre-
sentation of the local Green’s function of the lattice problem. Denoting by G(k, iωn) the lattice
Green’s function, one requires that

Gloc(iωn) ≡
∑
k

G(k, iωn) = Gimp[iωn, ∆] . (7)

This equation should be understood in the following manner. Imagine one knows the exact
local Green’s function Gloc of the lattice model under consideration. One then requires that,
when solving the impurity model (5), one obtains an impurity Green’s function that coincides



DMFT: Materials from an Atomic Viewpoint 3.11

Material
(crystalline solid)

Atom

Effective
Medium

Fig. 6: The Dynamical Mean-Field Theory (DMFT) concept. A solid is viewed as an array of
atoms exchanging electrons, rather than as a gas of interacting electrons moving in an periodic
potential. DMFT replaces the solid by a single atom exchanging electrons with a self-consistent
medium and takes into account local many-body correlations on each site.

withGloc. This can be achieved by a proper choice of the energy-dependent hybridisation∆(ω).
Hence, equation (7) should be viewed as a functional equation which determines the function∆
(and εd) given a knownGloc. Note that in this context, the quantum number p that appears in (3)
is merely a label for the energy shell, which is only necessary when one insists on a Hamiltonian
form such as (3) for which auxiliary degrees of freedom describing the bath explicitly must be
introduced.
At this point, all we have done is to introduce a representation of the exact local Green’s function
by that of an embedded atom (impurity model). We now introduce an approximation that allows
one to obtain a closed set of equations determining both ∆ and Gloc. To do this, we need to be
more specific about the lattice model under consideration. Let us consider the simplest case,
that of the single-band Hubbard model. This simply describes a lattice of single-level Hubbard
atoms, in which electrons hop from an atom on a given lattice site i to another one on site j with
an amplitude tij

HHubbard =
∑
i

Hat(i) −
∑
ij

tij

(
d†iσdjσ + d†jσdiσ

)
. (8)

The single-electron Green’s function of this model can be written as (assuming no translational
or spin symmetry-breaking):

G(k, iωn) =
1

iωn + µ− εk −Σ(k, iωn)
(9)

in which µ is the chemical potential (simply related to the atomic level position by µ = −εd)
and εk is the dispersion relation of the tight-binding Bloch band (lattice Fourier transform of
the hopping tij).
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In (9), Σ(k, iωn) is the single-particle self-energy, which is, in general, a function of both fre-
quency and momentum. The DMFT approximation consists in neglecting this momentum de-
pendence (i.e., ignoring all non-local terms of the self-energy, keeping the local term only) and
approximating the local component by that of the impurity model (embedded atom) introduced
above. That is, requiring that

Σij(iωn) ' Σimp(iωn) δij , Σimp ≡ G−10 −G−1imp (10)

Using G−10 (iωn) = iωn + µ−∆(iωn), this allows us to rewrite (7) in the following form:

Gimp[iωn, ∆] =
∑
k

1

Gimp[iωn;∆]−1 +∆(iωn)− εk
(11)

In a nutshell, the DMFT construction involves the solution of a self-consistent local many-body
problem: an atomic shell embedded in a self-consistent medium with which it exchanges elec-
trons. In the simplest case (Hubbard model, no symmetry breaking), the embedded atom is
defined by the effective action (5) or equivalently by the Hamiltonian (3). The impurity Green’s
function Gimp, obtained by solving this problem, and the energy-dependent hybridisation func-
tion (dynamical mean-field) ∆, which enters its definition, should obey the functional equation
(11) (self-consistency condition). These requirements provide enough constraints to determine
the two unknown functions Gimp and ∆. In practice, this is done by following an iterative
scheme, as illustrated in Fig. 7. For this purpose, efficient algorithms must be used to calculate
the impurity Green’s function, self-energy and possibly two-particle response functions of the
embedded atomic shell (impurity solvers). Remarkable progress on this front has been achieved
in the past few years, thanks to continuous-time quantum Monte Carlo techniques (see [19] for
a review). Code libraries are available on the web [20–22].

3.2 When is DMFT exact or accurate?

The single-site DMFT construction becomes exact in the following limits.

• In the atomic limit tij = 0, by construction (then, ∆ = 0).

• In the non-interacting limit U = 0. Indeed, in this case the self-energy Σ = 0, so that it
is trivially k-independent.

• Hence, both the limit of a non-interacting band and that of isolated atoms are correctly
reproduced by DMFT, which provides and interpolating scheme between these extreme
cases.

• In the limit of infinite lattice coordination (infinite number of spatial dimensions), first in-
troduced for fermions in the pioneering work of Metzner and Vollhardt [23]. The hopping
must be scaled as tij = t/

√
d for this limit to be properly defined and non-trivial.

• Being an exact solution of Hubbard-like models in the limit of infinite dimensions, it is
thus guaranteed that DMFT preserves all sum-rules and conservation laws.
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EFFECTIVE LOCAL IMPURITY PROBLEM

THE

DMFT

LOOP

Effective bath

Local G.F

SELF-CONSISTENCY CONDITION

Fig. 7: The DMFT iterative loop. The following procedure is generally used in practice: start-
ing from an initial guess for G0, the impurity Green’s function Gimp is calculated by using an
appropriate solver for the impurity model (top arrow). The impurity self-energy is also calcu-
lated from Σimp = G−10 (iωn) − G−1imp(iωn). This is used in order to obtain the on-site Green’s
function of the lattice model by performing a k-summation (or integration over the free density
of states): Gloc =

∑
k[iωn+µ−εk−Σimp(iωn)]

−1. An updated Weiss function is then obtained
as G−10,new = G−1loc + Σimp, which is injected again into the impurity solver (bottom arrow). The
procedure is iterated until convergence is reached.

Besides these formal considerations, it is important to emphasize when single-site DMFT is
accurate and physically meaningful. Obviously, this is the case when inter-site correlations do
not strongly affect single-particle properties. This is true when the correlation lengths for any
kind of incipient ordering are small, i.e., sufficiently far away from critical boundaries. The
local approximation (single-site DMFT) is a good starting point when spatial correlations are
short-range, which is the case in any of the following regimes: high temperature, high energy,
high doping, large number of fluctuating degrees-of-freedom competing with each other, large
orbital degeneracy, large degree of frustration. For further considerations along these lines,
especially in relation to the high-temperature regime, see [24].

3.3 From particles to waves

As emphasized above, in strongly-correlated materials, electrons are “hesitant” entities with a
dual character. At high energy they behave as localized, and the relevant excitations are particle-
like atomic excitations. At low energy in metallic compounds, they eventually form wave-like
itinerant quasiparticles.
Having introduced the basic concept behind DMFT, we are now in a position to understand how
this theory handles this dual nature of excitations, from particle-like at high energy to wave-like
at low energy. The key point here is the energy- and temperature-dependence of the dynamical
mean-field ∆(ω).
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At high temperature, Im∆(ω) has spectral weight mostly at high energy, in the range ω ∼ −µ
and ω ∼ U − µ, corresponding to the lower and upper Hubbard bands. The value of the
hybridisation function in this energy range determines the broadening of the Hubbard bands
by the solid-state environment. In this high-temperature regime, several atomic states compete
with comparable spectral weight. Let us focus for simplicity on the half-filled case. There, the
ground-state of the isolated atom is doubly degenerate ( | ↑ 〉 or | ↓ 〉). At high temperature, the
system fluctuates between these two states, leading to a fluctuating local moment when charge
excitations are suppressed (T . U ).
As temperature is lowered (or as hopping is turned on starting from the isolated atom), the key
issue is whether this degeneracy is lifted or not. In the Mott-insulating paramagnetic phase,
it is not. The spectral density of the dynamical mean-field Im∆(ω) self-consistently vanishes
within the energy gap, and the local moment is unscreened. In contrast, in the metallic phase
U < UBR, Im∆(ω) is non-zero at low-energy, and grows as the temperature is lowered. This
allows the screening of the local moment through the Kondo effect: spin-flip processes involv-
ing exchanges of electrons between the atom and the bath become more and more frequent at
low energy and low temperature.
DMFT thus describes the formation of quasiparticles as a self-consistent Kondo effect. At
low-enough temperature, a local Fermi liquid description applies below a scale TFL, which is
the self-consistent Kondo scale. Hence, how quasiparticles form, and most importantly the
scale below which they form, depends on how the local atomic multiplet is screened by the
solid-state environment. This is why starting from a proper description of the atomic physics
and describing how this screening process takes place is essential for understanding strongly
correlated metallic phases.

4 How good metals turn bad: quasiparticles beyond Landau
theory and spectral weight transfers

Because DMFT is able to describe both the atomic-like excitations and the low-energy quasi-
particles, it is also able to describe the full crossover between the Fermi-liquid regime at low
temperature and the regime of bad-metallic transport at high temperature. This question has
been the subject of several recent works [25, 26].
For T . TFL, long-lived quasiparticles excitations exist and obey a local version of Landau’s
Fermi-liquid theory. They give rise to the central peak of the spectral function (Fig. 3), of
spectral weight ∼ Z and width ∼ ZD. The quasiparticle spectral weight Z vanishes at the
Brinkman-Rice critical point. Because the self-energy is momentum-independent, the quasipar-
ticle effective mass is large ∝ 1/Z, corresponding to a low-energy Fermi velocity suppressed
by Z. The inverse quasiparticle lifetime obeys Z ImΣ ∝ T 2, ω2.
A key observation is that the Fermi-liquid scale TFL is actually much smaller than the width of
the quasiparticle peak, i.e., the Brinkman-Rice scale associated with the reduced quasiparticle
bandwidth ∼ ZD. This point was clarified in recent studies [25] and also explained from the
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Fig. 8: Left: Temperature-dependence of the resistivity for the single-band Hubbard model
(U/D = 4), as obtained from DMFT for several values of the hole-doping δ. The plain arrows
indicate the temperature at which the Mott-Ioffe-Regel (MIR) value is reached, indicating bad-
metal behaviour. Inset: resistivity at low temperatures vs. T/δD: Fermi liquid T 2 behavior
applies up to TFL ' 0.05 δD, indicated by the empty arrow. Right: The different regimes:
Fermi liquid (blue), bad metal (red) and intermediate regime with resilient quasiparticles. The
crossover into the bad metal is gradual: the onset of red shading corresponds to the optical
spectroscopy signatures, while the red points indicate where the MIR value is reached. Repro-
duced from Ref. [25].
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Fig. 9: Optical conductivity of the single-band Hubbard model with δ = 20% hole-doping,
as obtained from DMFT. Inset: optical spectral weight integrated up to Ω, normalized to the
kinetic energy. Reproduced from Ref. [25].

point of view of local Kondo screening, the self-consistent Kondo scale being much smaller than
the width of the effective Kondo resonance [27]. This separation of scale leads to three distinct
regimes, summarized in Fig. 8: a Fermi-liquid regime with Landau quasiparticles for T < TFL,
an intermediate regime in which well-defined resilient quasiparticle excitations exist for TFL .

T . ZD, and a bad metal regime for T & ZD. Accordingly, the optical conductivity, Fig. 9,
displays transfers of spectral-weight that involve the Drude and mid-infrared regions only in the
resilient quasiparticle regime, and a much broader energy range in the bad metal regime.
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5 Atomic physics in the solid-state: Hund’s metals

One of the most striking illustration of the relevance of atomic physics to strongly correlated
but quite itinerant metals is to be found in the notion of Hund’s metals. Indeed, it has been
recently recognized through the work of several groups (see e.g. [28–32] and see [33] for a
review) that materials that are not directly close to the Mott transition display strong electronic
correlations because of the Hund’s rule coupling (Fig. 10). The basic mechanism behind this
observation is illustrated on Fig. 11, which displays the quasiparticle weight of a multi-orbital
Kanamori-Hubbard model. It is seen that (i) the Mott critical coupling is increased by the
Hund’s coupling and that (ii) in the metallic phase, the Fermi-liquid (Kondo screening) scale is
drastically suppressed by the Hund’s coupling. These observations apply to a generic integer
filling, except when the shell is half-filled or occupied by a single electron or hole. In the Hund’s
metal or Janus regime, the local atomic multiplet is difficult to screen, resulting in a low value
of TFL and a distinctive non Fermi-liquid behavior for T > TFL. This regime has relevance to
transition-metal oxides of the 4d series, as well as to iron superconductors.

Fig. 10: Colour intensity map of the degree-of-correlation (as measured by the quasiparti-
cle weight Z; right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the
description of early transition-metal oxides with a partially occupied t2g shell (bare DOS in in-
set). The vertical axis is the interaction strength U normalized to the half-bandwidth D; a finite
Hund’s coupling J = 0.15U is taken into account. The horizontal axis is the number of elec-
trons per site, from 0 (empty shell) to 6 (full shell). Darker regions correspond to good metals,
lighter to correlated metals. The black bars signal the Mott-insulating phases for U > Uc. The
arrows indicate the evolution of Uc upon further increasing J , and emphasize the opposite trend
between half-filling and a generic filling. Crosses denote the values of Uc for J = 0. One notes
that, among integer fillings, the case of 2 electrons (2 holes) displays correlated behaviour in
an extended range of coupling, with “spin-freezing” above some low coherence scale. Specific
materials are schematically placed on the diagram. Adapted from Refs. [32, 33]
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Fig. 11: Quasiparticle weight Z vs. U/D for 2 (or 4) electrons for a three-orbital Hubbard-
Kanamori model. The grey arrows indicate the influence of an increasing Hund’s rule coupling
J/U and emphasize the Janus effect (see text). From Ref. [32]

6 Growing correlations: superexchange, pseudogap, and
cluster extensions of DMFT

In spin-1/2 one-band systems with a large nearest-neighbour superexchange, inter-site magnetic
correlations are particularly significant, because no orbital fluctuations or frustration compete
with spin correlations. As a result, a strong momentum dependence is expected at low doping
δ . J/t. This is indeed what is observed in the normal state of cuprates, in the temperature
range Tc < T < T ∗ where a pseudogap opens up in the antinodal region of the Brillouin zone,
while reasonably well-defined quasiparticles survive in the nodal region. As doping is reduced
towards the insulator, an increasingly large fraction of the Fermi surface is eaten up by the
pseudogap. This is a quite different route to the Mott transition than the uniform reduction of
quasiparticle weight following from local theories, and one clearly needs to go beyond single-
site DMFT to describe it.

Cluster extensions of DMFT have been quite successful at addressing this problem (for re-
views of these approaches, and of the numerous works in the field over the past ten years, see
e.g., [14–16]). As for single-site DMFT, those approaches should be viewed as approaching
the problem from the high-energy/high-temperature/high-doping side. Very low energies or
small doping levels require very good momentum resolution which is hard to reach currently
within those approaches. Nevertheless, robust qualitative trends can be established which do
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Fig. 12: From weak momentum dependence at high doping to strong momentum selectivity
close to half-filling: the various doping regimes of the two-dimensional single-band Hubbard
model, as found in cluster extensions of DMFT (reproduced from [34]).

not depend strongly on the specific scheme or cluster size. In [34], a comparative study of
different clusters was performed in order to establish these robust qualitative trends which are
summarized in Fig.12. At large doping levels, the momentum dependence is weak and single-
site DMFT is quite accurate. At intermediate doping, momentum differentiation emerges: on
the hole-doped side, antinodal quasiparticles acquire a shorter lifetime than nodal ones. Fi-
nally, on the hole doped side, these approaches produce a transition at a critical doping below
which the antinodal quasiparticles become gapped. This momentum-selective gapping is the
cluster-DMFT description of the pseudogap. It is clearly associated with the physics of the
antiferromagnetic superexchange and the formation of inter-site singlets, as can be checked by
investigating the statistical weights of the different local states. Hence, at a qualitative level,
those approaches seem to support some of the resonating-valence-bond ideas, while extending
them considerably by providing a theoretical framework in which the consequence of singlet
formation can be studied in an energy- and momentum-dependent way.

7 Hiking down the energy trail: DMFT as a compass

In closing, let me comment on the title of this chapter. A well established and very successful
way of thinking about condensed matter is to start from an understanding of the ground-state
and, most importantly, of the low-energy excitations built on this ground-state. Crossovers
encountered as temperature or energy are increased are then described as fluctuations of the
T = 0 long-range order and proliferation of low-energy excitations.
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DMFT, to a large extent, reverses this perspective, in a manner which is closer in spirit to
the renormalization-group approach. The starting point is high-energy: atomic physics. The
formation of long-lived coherent excitations is described as an emerging phenomenon as the
energy scale is reduced. Crossovers between high-temperature incoherent regimes and low-
temperature coherent ones, so important to the physics of strongly correlated materials, are
encountered and described along the way.
While hiking down the energy trail, some correlation lengths may grow. Single-site DMFT
then becomes insufficient, and cluster extensions of DMFT must be used in order to describe
these tendancies to short-range ordering and their effect on quasiparticles. Other techniques
may prove necessary as long-wavelength physics becomes relevant. DMFT can in this sense be
viewed as a compass when hiking down the energy trail.
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4.2 Alexander Lichtenstein

1 Introduction

In this lecture, we give an introduction to the theoretical description of strongly correlated ma-
terials based on the dynamical mean-field theory (DMFT) and its extensions. The goal of this
theoretical construction is to retain the many-body aspects of local atomic physics within the
extended solid. The effects of short-range non-local correlations within cluster extensions of the
DMFT scheme, as well as long-range fluctuations within the fully renormalized dual-fermion
perturbation scheme, are discussed extensively. Recent progress in the numerical solution of
the DMFT effective quantum impurity problem within the recently developed continuous-time
quantum Monte Carlo schemes is reviewed. We then describe realistic extensions of this ap-
proach that combine the accuracy of first-principles density-functional theory (DFT) with the
treatment of local many-body effects within DMFT.

Scientific progress in the last century was closely related with the design of silicon based materi-
als for the semiconductor industry. Therefore, the theoretical developments of the last fifty years
were associated with realistic electronic structure calculations of such weakly correlated mate-
rials. Density-functional theory (DFT) emerged from seminal works of Walter Kohn, Pierre
Hohenberg, and Lu Sham [1, 2]. This first-principles scheme is based on an exact theorem,
stating that the ground state of interacting electron systems can be found by minimizing a uni-
versal functional of the density in some additional external field. The main problem of the DFT
scheme is related with the fact that this functional is not known in general and can be calculated
numerically with a reasonable accuracy only for the simple case of the homogeneous electron
gas. These calculations, which proved to be very useful for the DFT scheme, have been done by
David Ceperley and Berni Alder [3] using a two-step quantum Monte Carlo procedure starting
from the fixed-node approximation and then releasing the nodal constraint. Nevertheless, the ac-
curacy of such a scheme is still limited and sensitive to the computational details [4]. The main
restriction of density-functional theory is that in practice it is restricted to ground state proper-
ties, while spectral properties can be found only within the time-dependent DFT scheme [5].
Whereas the structural minimization of complex materials can be carried out very efficiently
in the generalized gradient approximation of the DFT, due to the almost spherical properties of
the exchange-correlation hole [6], the quality of the spectral properties crucially depends on the
systems in question. The TDFT scheme has more problems than the static DFT approach, since
there are no suitable time-dependent reference systems to find the exchange-correlation kernel.

Understanding the properties of transition-metal systems is key to important materials like high-
temperature superconductors, biological molecules like hemoglobin containing iron, and many
others. The enormous progress of the last three decades in designing completely new materi-
als for high-Tc superconductivity, giant and colossal magnetoresistance, or artificially created
two-dimensional lattices brings new problems to the theory of transition-metal systems. It turns
out that even the ground-state properties of antiferromagnetic oxides or orbitally-ordered com-
pounds are not described well in the DFT scheme [7]. The accurate angle-resolved photoe-
mission study of the cuprate superconductors clearly shows that the spectral properties of such
systems with strong electron-electron interactions in the 3d-shell of transition metals have pro-
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Fig. 1: Schematic view of ARPES spectra for normal (left) and correlated materials (right).

nounced incoherent features [8]. We present in Fig. 1 the qualitative difference between the
spectral function of normal metals with well defined quasiparticle peaks at all momenta k and
the strongly correlated case with an incoherent part and a non-quasiparticle spectrum in the
Brillouin zone. The main source of the complex correlated behavior of electronic systems,
related to strong fluctuations between different low-energy fermionic configurations, is shown
schematically in Fig. 2. For example, if the free-energy of electronic systems has only one well
defined minimum at zero local moment, then one can expect small electron fluctuations and
normal paramagnetic quasiparticle behavior. In the case of two low-lying minima correspond-
ing to singlet and triplet excitations, one can expect strong many body fluctuations and possibly
non-quasiparticle behavior related to local Hund’s rule physics [9]. In order to treat systems
with such effective energy profiles, we need to use the path-integral approach and calculate the
corresponding correlation functions using complicated quantum Monte Carlo schemes, which
can handle many local minima in the free-energy functional on equal footing.
In this lecture, a general functional approach to the strongly correlated electron systems will be
discussed. We will separate the local and non-local correlations and show that it is possible to
solve the local correlation problem using the recently developed continuous time Monte Carlo
(CT-QMC) scheme. Finally, we discuss an efficient way to go from simple model investigation
of strongly correlated systems to realistic investigation of complex electronic materials.

Fig. 2: Schematic representation of magnetic and orbital fluctuations in correlated systems.
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2 Functional approach: from DFT to DMFT

We introduce a general functional approach which will cover the DFT, Dynamical Mean Field
Theory (DMFT) and Baym-Kadanoff (BK) theories [10]. Let us start from the full many–body
Hamiltonian describing electrons moving in a periodic external potential of ions V (r) with
chemical potential µ and interacting via the Coulomb law: U(r − r′) = 1/|r − r′|. We use
atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian has the
following form:

H =
∑
σ

∫
drψ̂†σ(r)[−1

2
52 + V (r)− µ]ψ̂σ(r) (1)

+
1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†σ(r)ψ̂†σ′(r

′)U(r− r′)ψ̂σ′(r
′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,
with a full set of quantum numbers, e.g. site, orbital and spin index: n = (i,m, σ) and expand
the fields in creation and annihilation operators

ψ̂(r) =
∑
n

φn(r)ĉn (2)

ψ̂+(r) =
∑
n

φ∗n(r)ĉ+n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-
tional integral representation for the partition function of the many-body Hamiltonian in the
imaginary time domain using the Euclidean action S

Z =

∫
D[c∗, c]e−S (3)

S =
∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2U1234c4c3, (4)

where the one- and two-electron matrix elements are defined as following:

t12 =

∫
drφ∗1(r)[−

1

2
52 + V (r)− µ]φ2(r) (5)

U1234 =

∫
dr

∫
dr′φ∗1(r)φ

∗
2(r
′)U(r− r′)φ3(r)φ4(r

′)

and we use the following short definition of the sum∑
1

... ≡
∑
im

∫
dτ... (6)

The one-electron Green function is defined via a simple correlation function for fermions

G12 = −〈c1c∗2〉S = − 1

Z

∫
D[c∗, c] c1c

∗
2 exp(−S) (7)
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Fig. 3: Representation of full two-particle Green function in terms trivial products of single-
particle Green function and the full vertex function Γ .

The main problem of strongly interacting electronic systems is related to the fact that the higher-
order correlation functions are not separated into a product of lower-order correlation functions.
For example, the two-particle Green function or generalized susceptibility (X) is defined in the
following form [11]

X1234 =< c1c2c
∗
3c
∗
4 >S=

1

Z

∫
D[c∗, c] c1c2c

∗
3c
∗
4 exp(−S), (8)

and can be expressed graphically through the Green functions and the full vertex function Γ1234

[12] (see Fig (3))

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations X are reduced to the
antisymmetrized product of lower-order correlationsG, which would correspond to the first two
terms (Hartree- and Fock-like) with the vertex function Γ in Eq. (9) equal to zero. In strongly
correlated electron systems, the part with the vertex is dominant and even diverges close to
electronic phase transitions.
The Baym–Kadanoff functional [13] gives the one–particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym–Kadanoff) we modify the action by introducing the source term J in the following form

S[J ] = S +
∑
12

c∗1J12c2. (10)

The partition function Z, or equivalently the free energy of the system F, becomes a functional
of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c]e−S

′[J ]. (11)

Variation of this source functional gives all correlation functions, for example the Green func-
tion

G12 =
δF [J ]

δJ21

|J=0. (12)

If we use the definition of the generalized susceptibility as a second variation of the F [J ] func-
tional instead of Z[J ], one will get only the connected part of the X-function, which is repre-
sented by the last term in Eq. (9).
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The Baym–Kadanoff functional can be obtained via Legendre transform from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single-particle part and the
correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single-particle self-energy and Φ[G] is the correlated part of the Baym–Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. In the stationary
point, this functional gives the free energy of the system. One can use different Legendre
transforms and obtain functionals of the self-energy Σ [14] or complicated functionals of two
variables G and Γ [15] or a more simple functional of G and screened Coulomb interactions
W [10] useful in the GW theory.
In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem
of the functional in the density-functional theory. Moreover, this general functional approach
reduces to the DFT if one uses the only the space- and time-diagonal part of the Green function,
which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn–Sham potential VKS = Vext + VH + Vxc playing the role of the “constrained
field” - J . Here, Vext is the external potential, and VH is the Hartee potential. In principle, the
exchange-correlation potential Vxc is known only for the homogeneous electron gas; therefore,
in all practical applications, one use a so-called local density approximation to DFT. In this
case, the DFT functional is defined in the following way:

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] , (16)

where T0 is the kinetic energy of the non-interacting system. Finally, if we define the total
electron density as

n(r) =
∑
i

φ∗i (r)φi(r),

the local density approximation to the DFT reads

T0[n] + Vext[n] =
∑
i

∫
drφ∗i (r)

[
−1

2
52 + Vext(r)− µ

]
φi(r) (17)

VH [n] =
1

2

∫
drn(r)U(r− r′)n(r′) (18)

Vxc[n] =

∫
drn(r)ε(n(r)) , (19)

where ε(n) is exchange-correlation density for the homogeneous electron gas, which can be
calculated within a QMC-scheme [3].
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In the DFT scheme, we lose information about the non-equal-time Green function, which gives
the single-particle excitation spectrum as well as the k-dependence of the spectral function,
and restrict ourself only to the ground state energy of the many-electron system. Moreover, we
also lose information about all collective excitations in solids, such as plasmons or magnons,
which can be obtained from the generalized susceptibility or from the second variation of the
free-energy.
One can probably find the Baym–Kadanoff interacting potential Φ[G] for simple lattice models
using the quantum Monte Carlo scheme (QMC). Unfortunately, due to the sign problem in
lattice simulations, this numerically exact solution of electronic correlations is not possible. On
the other hand, one can obtain the solution of the local interacting quantum problem in a general
fermionic bath using the QMC scheme, which has no sign problem if it is diagonal in spin- and
orbital-space. Therefore, a reasonable approach to strongly correlated systems is to keep only
the local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT),
one can obtain numerically the correlated part of the local functional. In this scheme, we only
use the local part of the many-electron vertex and obtain in a self-consistent way an effective
functional of the local Green function. In the following section we discuss the general dual
fermion (DF) transformations [16] that help us to separate the local fluctuations in many-body
system and shows a perturbative way to go beyond the DMFT approximations.

3 Local correlations: DMFT and beyond

We will only consider the local but multiorbital interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving
an idea of how to generalize a DF scheme to the multiorbital case [17,18]. The general strategy
to separate the local and non-local correlation effects is associated with the introduction of
auxiliary fermionic fields that will couple separated local correlated impurities models back to
the lattice [16]. In order to include the smaller non-local part of the Coulomb interactions, one
can use a more general approach consists of auxiliary fermionic and bosonic fields [19].
We rewrite the corresponding original action from Eq. (3) in Matsubara space as a sum of the
non-local one-electron contribution with t12 and the local interaction part U :

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[
(iω + µ)1− tmm′kσ

]
cωkσm′ +

∑
i

SU[c∗i , ci]. (20)

where ω = (2n + 1)π/β, (Ω = 2nπ/β), n = 0,±1, ... are the fermionic (bosonic) Matsubara
frequencies, β is the inverse temperature, µ is the chemical potential. The index i labels the
lattice sites, m refers to different orbitals, σ is the spin projection, and the k-vectors are quasi-
momenta. In order to keep the notation simple, it is useful to introduce the combined index
α ≡ {m,σ}. Translational invariance is assumed for simplicity in the following, although a
real-space formulation is straightforward. The local part of the action SU may contain any type
of local multi-orbital interaction.
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Fig. 4: From the lattice model (left) to the real-space DMFT (middle) following up with the
non-local DF perturbation (right).

In order to formulate an expansion around the best possible auxiliary local action, a quantum
impurity problem is introduced:

Sloc[c
∗, c] = −

∑
ω αβ

c∗ωα
[
(iω + µ)1−∆αβ

ω

]
cωβ + SU[c∗, c], (21)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an
auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a
quantum impurity model is that such a reference system can be solved numerically exactly for
an arbitrary hybridization function using the CT-QMC method [20]. Using the locality of the
hybridization function ∆ω, the lattice action (20) can be rewritten exactly in terms of individual
impurity models and the effective one-electron coupling (tij−∆ω) between different impurities:

S[c∗, c] =
∑
i

Sloc[c
∗
i , ci] +

∑
ωkαβ

c∗ωkα

(
tαβk −∆

αβ
ω

)
cωkβ. (22)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
the second term in Eq. (22) is very hard to treat even perturbatively, since the impurity action
is non-Gaussian and one cannot use the Wick theorem . The main idea of a dual-fermion
transformation is to change variables from (c∗, c) to weakly correlated Grassmann fields (f ∗, f)

in the path-integral representation for the partition function from Eq. (3), followed by a simple
perturbation treatment. The new variables were introduced through the following Hubbard-
Stratonovich transformation

exp
(
c∗αbα(M−1)αβbβcβ

)
=

1

detM

∫
D[f ∗, f ] exp

(
−f ∗αMαβfβ − c∗αbαfα − f ∗βbβcβ

)
. (23)

In order to transform the exponential of the bilinear term in (22), we choose the matrices Mαβ ,
and scaling function bα (if we assume for simplicity that the local Green function is diagonal in
orbital and spin space) in accordance with Refs. [16] as

M = g−1ω (∆ω − tk)−1 g−1ω , b = g−1ω , (24)
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where gω is the local, interacting Green function of the impurity problem

g12 = −〈c1c∗2〉loc = − 1
Zloc

∫
D[c∗, c]c1c

∗
2 exp

(
− Sloc[c

∗, c]
)
. (25)

With this choice, the lattice action transforms to

S[c∗, c, f ∗, f ] =
∑
i

Sisite +
∑
ωkαβ

f ∗ωkα[g−1ω (∆ω − tk)−1 g−1ω ]αβfωkβ. (26)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Sisite[c
∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑
αβ

f ∗ωiα g
−1
ω αβcωiβ + c∗ωiα g

−1
ω αβfωiβ. (27)

Since gω is local, the sum over all states labeled by k could be replaced by the equivalent
summation over all sites by a change of basis in the second term. The crucial point is that
the coupling to the auxiliary fermions is purely local and Ssite decomposes into a sum of local
terms. The lattice fermions can therefore be integrated out from Ssite for each site i separately.
This completes the change of variables∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) = Zloc exp

(
−
∑
ω αβ

f ∗ωiα g
−1
ω αβfωiβ − Vi[f

∗
i , fi]

)
. (28)

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].
The choice of matrices (24) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (28) and equating the resulting expressions
by order. Formally, this can be done to all orders, and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [f ∗, f ] =
1

4
γ1234f

∗
1 f
∗
2 f4f3, (29)

where the combined index 1 ≡ {ωα} comprises frequency, spin, and orbital degrees of freedom.
γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity
problem. It is given by

γ1234 = g−111′g
−1
22′ [χ1′2′3′4′ − χ0

1′2′3′4′ ] g
−1
3′3g

−1
4′4, (30)

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c∗3c∗4〉loc = 1
Zloc

∫
D[c∗, c]c1c2c

∗
3c
∗
4 exp

(
− Sloc[c

∗, c]
)
. (31)

The disconnected part reads

χ0
1234 = g14g23 − g13g24. (32)
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Fig. 5: Diagrams contributing to the dual self-energy Σ̃.

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [20]. After integrating out the lattice fermions, the dual action depends on the new
variables only and reads

S̃[f ∗, f ] = −
∑
ωkαβ

f ∗ωkα[G̃0
ω(k)]−1αβfωkβ +

∑
i

Vi[f
∗
i , fi]. (33)

and the bare dual Green function is found to be

G̃0
ω(k) =

[
g−1ω +∆ω − tk

]−1 − gω, (34)

which involves the local Green function gω of the impurity model.
Up to now, Eqs. (33), (34) are merely a reformulation of the original problem. In practice,
approximate solutions are constructed by treating the dual problem perturbatively. Several di-
agrams that contribute to the dual self-energy are shown in Fig. 5. These are constructed from
the impurity vertices and dual Green functions as lines. The first diagram is purely local, while
higher orders contain nonlocal contributions, e.g., the second diagram in Fig. 5. In practice, ap-
proximations to the self-energy are constructed in terms of skeleton diagrams. The lines shown
in Fig. 5 are therefore understood to be fully dressed propagators. The use of skeleton diagrams
is necessary to ensure that the resulting theory is conserving in the Baym-Kadanoff sense [13],
i.e., that it fulfills the basic conservation laws for energy, momentum, spin, and particle number.
The most useful property of such a dual perturbation theory is good convergence both in the
weak-coupling limit, when the local vertex is small, and in the strong-coupling limit, when the
dual Green function is small [21].
Finally, we can understand the general dual-fermion scheme (Fig. 6) as a two-step process for
k-dependent self-energy. First, we need to find an optimal hybridization function ∆ω, which
defines an effective impurity model. Using a numerically exact Monte-Carlo impurity solver,
we can obtain the local Green function gω which, together with the hopping parameters, defines
the non-local dual Green function G̃0

ω(k) and the interaction vertex γΩω,ω′ , which can be used in
renormalized dual perturbation theory [16].
The hybridization function ∆, which so far has not been specified, allows us to optimize the
starting point of the perturbation theory and should be chosen in an optimal way. The condition
that the first diagram (Fig. 5), as well as all local diagrams with higher order correlation func-
tions in the expansion of the dual self-energy, must be equal to zero at all frequencies fixes the
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Fig. 6: General view on dual-fermiom approach: effective impurity model defined by hybridiza-
tion function ∆ω. It can be exactly solved within CT-QMC, resulting in single-particle Green
function gω and full connected vertex γΩω,ω′ with two fermonic (ω) and one bosonic (Ω) Matsub-
ara frequencies. Based on this local information, one can perform an efficient lattice perturba-
tion expansion for the dual Green function G̃0

ω(k).

hybridization. This eliminates the leading-order diagrammatic correction to the self-energy and
establishes a connection to DMFT, which can be seen as follows: since the γ vertex is local,
this condition amounts to demanding that the local part of the dual Green function be zero:∑

k

G̃ω(k) = 0. (35)

The simplest nontrivial approximation is obtained by taking the leading-order correction, the
first diagram in Fig. 5, evaluated with the bare dual propagator (34). Using the expression for
the DMFT Green function [22]:

GDMFT
ω (k) =

[
g−1ω +∆ω − tk

]−1
, (36)

it immediately follows that (35) evaluated with the bare dual Green function is exactly equiva-
lent to the DMFT self-consistency condition for ∆ω :

1

Nk

∑
k

GDMFT
ω (k) = gω. (37)

In the limit of infinitely large lattice connectivity, the DMFT scheme becomes exact with local
self-energy [23]. The DMFT approximation for real lattice models appears to be one of the
most successful many-body schemes for realistic multi-orbital systems [10]. Since it involves
the exact solution of the many-body multi-orbital impurity model Eq. (25), all local quantum
fluctuations of different orbitals, spins, and charges (Fig. (7)) are included in this scheme.
In the DMFT approach, one can study paramagnetic correlated phases of complex crystals
with strong spin and orbital fluctuations above transition temperatures of the spin- and orbital-
ordered states [24]. Hence, DMFT appears as the zero-order approximation in this approach,
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Fig. 7: Schematic representations of initial lattice model (left) and the local DMFT approach
with orbital and spin fluctuations.

and corrections to DMFT are included perturbatively. A formal relation to DMFT can be es-
tablished using the Feynman variational functional approach. In this context, DMFT appears as
the optimal approximation to a Gaussian ensemble of dual fermions [25].

When diagrammatic corrections are taken into account and the first diagram is evaluated with
the dressed propagator G̃, the condition (35) will in general be violated. It can be reinforced
by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite
partial series of all local diagrams starting from the first term in Fig. 5. These contributions
are effectively absorbed into the impurity problem. Note that such an expansion is not around
DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections
that are included into the dual Green function. To this end, the local impurity vertex γ has to be
calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (23) that for a theory that is con-
serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].
This allows the construction of general conserving approximations within the dual fermion ap-
proach. Numerically, the self-energy is obtained in terms of skeleton diagrams by performing
a self-consistent renormalization as described below. Once an approximate dual self-energy is
found, the result may be transformed back to a physical result in terms of lattice fermions using
exact relations.

The action (33) allows for a Feynman-type diagrammatic expansion in powers of the dual po-
tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].
Extension of these rules to include generic n-particle interaction vertices is straightforward.
Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-
tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As
the simplest example we can write schematically the first self-energy correction of the diagram
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in Fig. 5, which contains a single closed loop

Σ̃
(1)
12 = −T

∑
34

γ1324G̃
loc
43 , (38)

where G̃loc = (1/Nk)
∑

k G̃(k) denotes the local part of the dual Green function. The second-
order contribution represented in Fig. 5 contains two equivalent lines and one closed loop and
hence is k-dependent

Σ̃
(2)
12 (k) = −1

2

(
T

Nk

)2∑
k1k2

∑
345678

γ1345G̃57(k1)G̃83(k2)G̃46(k + k2 − k1)γ6728 (39)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform
back to reciprocal space using the fast Fourier transform. After calculating the best possible
series for the self-energy Σ̃ in the dual space, one can calculate the renormalized Green function
matrix for original fermions using the following simple transformation [19]

Gω(k) =

[(
gω + gωΣ̃ω(k)gω

)−1
+∆ω − tk

]−1
, (40)

which is a useful generalization of the DMFT Green function (see Eq. (36)) to include non-
local correlation effects. One can see that the dual self-energy plays the role of of an effective
T-matrix for the exactly solvable local problem.
The progress of the DMFT approach is strongly related to developments of efficient numerical
solvers for an effective quantum impurity model.

4 Multiorbital quantum impurity solvers

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution
of the underlying Anderson impurity model remains a formidable quantum many-body problem
that requires accurate solvers. Recently, a new class of solvers has emerged, the continuous-
time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly
come in two different flavors: The weak- and strong-coupling approach.
The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo
algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main
previous attempts: first, work by Nikolay Prokof’ev et al. [29], who devised a continuous-time
scheme to sample the infinite series of Feynman diagrams for bosons, and second, work by Na-
talie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo algo-
rithm using the Hubbard-Stratonovich decomposition. The power of the new CT-QMC scheme
is that it represents just the integration of the complex path integral without any transformation
to effective non-interacting models and can be used for any complicated electron-electron ver-
tex. We introduce the algorithm in the path integral formulation for the single-orbital Anderson
impurity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multior-
bital case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided
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into a Gaussian part S0 and an interaction part SU as follows

S0 =
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ)[(∂τ − µ+ Uα−σ(τ))δ(τ − τ ′) +∆(τ − τ ′)]cσ(τ ′) , (41)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)][c∗↓(τ)c↓(τ)− α↓(τ)] . (42)

The parameters α are introduced to control the sign problem. A formal series expansion for the
partition function is obtained by expanding the exponential in the interaction term,

Z =
∫
D[c∗, c]e−S0[c∗,c]

∞∑
k=0

(−1)k
k!

Uk
∫ β
0
dτ1 . . .

∫ β
0
dτk [c∗↑(τ1)c↑(τ1)− α↑(τ1)]

[c∗↓(τ1)c↓(τ1)− α↓(τ1)] . . . [c∗↑(τk)c↑(τk)− α↑(τk)][c∗↓(τk)c↓(τk)− α↓(τk)] .
(43)

Using the definition of the average over the noninteracting action

〈...〉0 =
1

Z0

∫
D[c∗, c]... exp(−S0), (44)

the partition function can be expressed in the following form

Z = Z0

∞∑
k=0

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk sgn(Ωk) |Ωk| , (45)

where the integrand is given by

Ωk = (−1)kUk〈[c∗↑(τ1)c↑(τ1)− α↑(τ1)][c∗↓(τ1)c↓(τ1)− α↓(τ1)] . . .
. . . [c∗↑(τk)c↑(τk)− α↑(τk)][c∗↓(τk)c↓(τk)− α↓(τk)]〉0 . (46)

Note that here the range of time integration has been changed such that time ordering is explicit:
τ1 < . . . < τk−1 < τk. For a given set of times, all k! permutations of this sequence contribute
to Eq. (43). These can be brought into the standard sequence by permuting quadruples of
Grassmann numbers, and hence without gaining an additional sign. Since all terms are subject
to time-ordering, their contribution to the integral is identical, so that the factor 1/k! in Eq. (43)
cancels. A configuration can be fully characterized by specifying a perturbation order k and a
set of k times: Ck = {τ1, . . . , τk}.
The Monte Carlo algorithm performs importance sampling over this configuration space. The
weight of a configuration is thereby taken to be equal to the modulus of the integrand, Eq. (46).
Since S0 is Gaussian, the average over the noninteracting system can be evaluated using Wick’s
theorem. Hence, the weight of a configuration is essentially given by a fermionic determinant
of a matrix containing the bare Green functions

Ωk = (−1)kUk
∏
σ

det ĝσ, (47)
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Fig. 8: The four contributions to the partition function for k = 2. The interaction vertices are
depicted by squares. Bare Green functions are shown as lines.

where the local Green function in the α fields is equal to

(ĝσ)ij = gσ0 (τi − τj)− ασ(τi)δij . (48)

Note that determinants for different spin orientations factorize since the Green function is diag-
onal in spin-space.
The hybridization expansion (CT-HYB) or strong-coupling algorithm was initially introduced
by Philipp Werner et al. [28] and has been generalized to multiorbital systems with general
interactions [31, 32]. Here, the algorithm is discussed in the segment representation, which
exploits the possibility of a very fast computation of the trace for a density-density type of
interaction. The action is regrouped into the atomic part

Sat =

∫ β

0

dτ
∑
σ

c∗σ(τ)[∂τ − µ]cσ(τ) + U

∫ β

0

dτc∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ) (49)

and the part of the action S∆ which contains the hybridization term:

S∆ =

∫ β

0

dτ ′
∫ β

0

dτ
∑
σ

c∗σ(τ)∆(τ − τ ′)cσ(τ ′) . (50)

Here, the sign is taken out by reversing the original order of c and c∗ to avoid an alternating sign
in the expansion. To simplify the notation, consider first the spinless fermion model, which is
obtained by disregarding the spin sums and interaction in Eqs. (49), (50). The series expansion
for the partition function is generated by expanding in the hybridization term:

Z =
∫
D[c∗, c]e−Sat

∑
k

1
k!

∫ β
0
dτ ′1
∫ β
0
dτ1 . . .

∫ β
0
dτ ′k
∫ β
0
dτk ×

×c(τk)c∗(τ ′k) . . . c(τ1)c∗(τ ′1)∆(τ1 − τ ′1) . . . ∆(τk − τ ′k). (51)

The important observation now is that, at any order, the diagrams can be collected into a
determinant of hybridization functions. The partition function then takes the form

Z = Zat

∑
k

∫ β
0
dτ ′1
∫ β
τ ′1
dτ1 . . .

∫ β
τk−1

dτ ′k
∫ ◦τ ′k
τ ′k

dτk ×

×〈c(τk)c∗(τ ′k) . . . c(τ1)c∗(τ ′1)〉at det ∆̂(k), (52)

where the average is over the states of the atomic problem described by Sat. Here det ∆̂(k)

denotes the determinant of the matrix of hybridizations ∆̂ij = ∆(τi − τ ′j). The diagrams con-
tributing to the partition function for k = 3 are shown in Fig. 9. A diagram is depicted by a
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Fig. 9: Diagrammatic representation of the six contributions to the partition function for spin-
less fermions at k = 3. An electron is inserted at the start of a segment (marked by an open
circle) and removed at the segment endpoint. The hybridization function lines∆(τi−τ ′j) (shown
in red) are connected to the segments in all possible ways. The sign of each diagram is given
on the left. Reproduced from Ref. [28].

Fig. 10: Example one band CT-HYB in a segment picture: The blue dots illustrate an annihi-
lation operator, the red ones a creation operator and the black line represent the hybridization
function ∆(τi − τ ′j). The green region represents the time intervals at which two electrons are
present on the impurity.

collection of segments, where a segment is symbolic for the time interval where the impurity
is occupied. The collection of diagrams obtained by connecting the hybridization lines in all
possible ways corresponds to the determinant. Collecting the diagrams into a determinant is
essential to alleviate or completely suppress the sign problem. Note that the imaginary time
interval in Eq. (52) is viewed as a circle denoted by ◦τ ′k. The trajectories in the path integral are
subject to antiperiodic boundary conditions, which is accommodated by an additional sign if a
segment winds around the circle.
For the single-orbital Anderson impurity model with Hubbard interaction, the segment picture
still holds and gives a very intuitive picture of the imaginary time dynamics. A configuration is
visualized by two separate timelines, one for each spin. The additional sum over spins,

∑
σ1...σk

,
which enters in the first line of Eq. (52), generates contributions such as the one shown in Fig.
10. The only difference to the spinless fermion model is that when the impurity is doubly
occupied the energy U has to be paid and the trace is eµ(l↑+l↓)−Uld , where lσ is the time spent on
the impurity for an electron with spin σ and ld is the time the impurity is doubly occupied.
In Fig. 11, we shows comparison of the CT-INT and CT-HYB for the strong-coupling case
U ≥ W of a single band model. The perfect agreement of these two complementary CT-QMC
schemes supports the important statement about the possibility of a numerically exact solution
of the quantum impurity problem.
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Fig. 11: Comparisson of the weak coupling (CT-INT) and strong coupling (CT-HYB) CT-QMC
impurity solvers for one-band semicircular model with U ≥ W . In the insert, the density of
states obtained with maximum entropy scheme is shown.

5 LDA+DMFT scheme for real materials

In order to investigate real correlated systems with the local DMFT scheme, we need to have
an efficient scheme of partitioning the space and orbital degrees of freedom. For example, in
the high-temperature superconducting oxide YBa2Cu3O7, the strongly correlated electrons are
in the Cu 3d orbitals, and moreover there is only one per non-equivalent copper dx2−y2 band
that crosses the Fermi level with strong many-body fluctuations, i.e., just a few of the electronic
states need to be included in the DMFT calculations. Therefore the simplest realistic correlated
scheme would be a DFT+DMFT approach [33, 34] with partitioning of the orbital space into
normal band electrons |K〉 described by the DFT Bloch basis and correlated local orbitals |L〉
described by some optimal Wannier basis (see Fig. 12 for an illustration).
The treatment of correlated electron systems requires the calculation of Green functions and
hybridization functions in terms of local orbitals. This is readily achieved when using a basis
set that is localized in real space, such as linear (or N-th order) muffin-tin orbitals (NMTO) [35]
or Gaussian basis sets [37]. However, many implementations of density-functional theory use
a delocalized plane wave basis set. This has the advantages that the basis set is simple and
universal and that its convergence is controlled in principle by a single parameter, the energy
cutoff. The projector augmented-wave method (PAW) [38], being representative of plane-wave-
based methods, can be used as a simple example of the general projection scheme from the
Bloch to the local basis: 〈K|L〉 (Fig. (12).
Following the general projection scheme of Ref. [36,37], the desired quantity for the implemen-
tation of a DFT+DMFT method is a projection PC =

∑
L |L〉 〈L| of the full DFT Kohn-Sham

Green function GKS(ω) on a set of localized orbitals {|L〉}

GC(ω) = PCGKS(ω)PC. (53)
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|L>
|K>

Fig. 12: Schematic representation of the projection scheme from the Bloch basis to a local
Wannier correlated subset.

The subspace C = span({|L〉}) is usually called the correlated subspace. It is the subspace of
orbitals in which many-body fluctuations play a major role and where the DMFT corrections
to the DFT will be considered. In plane-wave-based calculations, GKS(ω) in Matsubara space
is available in terms of an almost complete set of Bloch states |K〉 that are eigenstates of the
Kohn-Sham Hamiltonian HKS |K〉 = εK |K〉

GKS(ω) =
∑
K

|K〉 〈K|
iω + µ− εK

. (54)

Inserting equation (54) into equation (53) shows that one needs to evaluate projections of the
type 〈L|K〉 in order to access the matrix elements GCLL′(ω) of the local Green function. In
most cases the correlated orbitals are d or f orbitals, which are localized inside the PAW aug-
mentation spheres to a good approximation. For |L〉 within these spheres and given the PAW
decomposition [38] of a Bloch state |K〉 one obtains

〈L|K〉 =
∑
i

〈L|φi〉〈p̃i|K̃〉. (55)

The index i of the augmentation functions |φi〉 includes site s, angular momentum l and m as
well as an index ν labeling the radial function: i = (s, l,m, ν), and |p̃i〉 are the projectors of the
PAW scheme.
In the described projection-scheme the |L〉 〈L| matrix is not properly normalized for two rea-
sons: (1) the Bloch basis is incomplete since only a limited number of Bloch bands is included
and (2) the PAW augmentation functions are in general not orthonormal. The simplest way is to
orthonormalize the projection matrices by the following Wannier-type construction: by defini-
tion, the localized states |L〉 are labeled by site and angular momentum indices: L = (s, l,m).
We split the site index s = R + T such that R labels the position within the unit cell and T is
the Bravais lattice vector of the unit cell in which s is located. This allows us to construct the
Bloch transform of the localized states,

|Lk〉 =
∑
T

eikT |LT〉 , (56)
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where k is from the first Brillouin zone and |LT〉 ≡ |L〉 = |s, l,m〉. The sum in equation
(56) runs over the Bravais lattice. Labeling the Bloch states |K〉 = |k, n〉 by their crystal
momentum, k, and band index, n, we normalize our projection matrices PCLn(k) = 〈Lk|k, n〉
using the overlap operator

OLL′(k) =
∑
n

PCLn(k)P∗CL′n(k) (57)

in
P̄CLn(k) =

∑
L′

O
−1/2
LL′ (k)P CL′n(k). (58)

These orthonormalized projection matrices are calculated once at the beginning of any calcula-
tion and can then be used to obtain the local Green function of the correlated orbitals from the
full Bloch Green function GB

nn′

GCLL′(ω) =
∑
k,nn′

P̄CLn(k)GB
nn′(k, ω)P̄∗CL′n′(k).

Similarly the hybridization function, ∆(ω), is available. It is related to the local Green function
by

G−1(ω) = iω − εd −∆(ω), (59)

where εd is the static crystal field. Equation (59) is a matrix equation with G, ∆, and εd being
(dim C) × (dim C) matrices, in general. To separate the hybridization from the static DFT
crystal field, we numerically evaluate the limit ω →∞, where ω −G−1(ω)→ εd.
In a DFT+DMFT calculation the projection matrices P̄CLn(k) are used for up- and downfold-
ing quantities like the Green function and the self-energy in the course of the iterative DMFT
procedure in exactly the same way as shown for the local Green function above. For example,
the self energy obtained by an impurity solver for the effective impurity model ΣCLL′(ω) can be
upfolded to the Bloch basis as follows:

ΣB
nn′(k, ω) =

∑
LL′

P
∗C
Ln(k) ΣCLL′(ω) P

C
L′n′(k).

Since the self energy in DMFT is a purely local quantity, the index k on ΣB
nn′(k, ω) reflects

the momentum dependence brought about by the projection matrices. The presented projection
scheme allows for the inclusion of both correlated and uncorrelated states in the procedure.
Therefore, information about the interplay of correlated orbitals with their uncorrelated ligands
can be obtained.
Figure 13 shows that the DFT+DMFT calculation commences with the solution of the Kohn-
Sham equations by DFT. In a second step the projection onto the correlated subset is computed.
The Kohn-Sham Green function is then computed and used as an initial guess for the mean-field
G of the DMFT cycle, which consists of the usual steps detailed before. In usual applications the
DFT+DMFT loop will stop after DMFT self-consistency is obtained. It has, however, recently
become possible to continue the cycle supplying the DFT code with an altered charge den-
sity that includes correlation effects. In such a unified approach changes in the charge density
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Fig. 13: Illustration of the DFT+DMFT procedure. As a first step, the Kohn-Sham (KS) equa-
tions, determining the Kohn-Sham potential and thus the Hamiltonian, are solved. Secondly, the
KS Green function and from it the starting value for the bath Green function G is constructed
and passed on to the DMFT loop, which consists of the usual steps described before. A potential
self-consistency over the charge density is also indicated [37].

induced by correlations can be studied [37, 40]. It allows furthermore for the accurate calcu-
lation of total energies, which allow the determination of crystal structures and other coupled
electronic and structural effects.
As example, we show a realistic DFT+DMFT calculation of the SrVO3 spectral function in the
Fig.14, where one can see the renormalisation of the valence correlated V t2g states as well as
broadening of the Bloch O 2p states [39].

6 Problem of double counting

We will finally discuss the problem of double-counting corrections in the LDA+DMFT scheme
[41]. We use the standard definitions of the parameters U and J

U = F 0 and J =
F 2 + F 4

14
. (60)

Over the years different methods to fix µDC have been devised. Two main approaches are the
around mean-field (AMF) approximation and the fully localized or atomic limit (FLL) [7]. Both
methods use analytic arguments to devise a double counting correction. The AMF is based on
the conjecture that DFT corresponds to a mean-field solution of the many-body problem. The
resulting double counting potential can be written as

µAMF
DC = U(Nimp − n̄)− J(Nσ

imp − n̄), (61)

whereNimp is the total occupancy of the impurity,Nσ
imp the occupancy per spin (Nσ

imp = Nimp/2

for the paramagnetic case), and n̄ = 1
2(2l+1)

∑
m,σ nmσ is the average occupancy. The AMF
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Fig. 14: Momentum resolved impurity spectral function of SrVO3 obtained by DFT+DMFT.
The LDA band structure of the V t2g and O 2p Bloch states is shown for comparison.

functional is known to produce unsatisfactory results for strongly correlated systems, which
led to the development of another method, the so-called FLL. The FLL functional takes the
converse approach to the AMF and begins with the atomic limit. It has been shown that this
new potential can also be written as a correction to the AMF solution [7], Eq. (61),

µFLL
DC = U

(
Nimp −

1

2

)
− J

(
Nσ

imp −
1

2

)
= µAMF

DC + (U − J)

(
n̄− 1

2

)
.

This addition to the AMF potential has the effect of a shift of the centroid of the level depending
on its occupation. An empty level is raised in energy by 1

2
(U − J) and the converse happens

to a fully occupied level. The form of the functional is based on the property of the exact
density-functional that the one electron potential should jump discontinuously at integer elec-
tron number [7], a property which is not fulfilled in LDA or GGA. Ultimately the FLL leads to a
stronger trend towards integer occupancies and localization. The general problem with analytic
expressions like the ones presented above is that their scope is limited to certain classes of sys-
tems that fulfill the assumptions made in the derivation process. As an additional complication,
both approaches can be used employing the average orbital occupancies obtained from DFT or
in a self-consistent manner allowing the occupancies to be determined within the DFT+DMFT
loop.
The obvious problems with analytical formulae make conceptually different approaches worth
exploring. It would certainly be an improvement if the double counting could be found self-
consistently along with the chemical potential in the DMFT self-consistency loop. One possible
ansatz using the impurity self-energy Σimp

mm′ is to constraint the high energy tails in the real part
of the self-energy to sum up to zero

Re[Tr(Σimp
mm′(iωN))] = 0. (62)

Here, ωN is the highest Matsubara frequency included in the calculation. Physically this amounts
to the requirement that the shift in the centroid of the impurity orbitals contains no static com-
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ponent. Since the self-energy is a quantity computed self-consistently via the quantum Monte
Carlo in our case, one has to ensure that a reasonably high number of Matsubara frequencies
is included in the calculation and additionally that the Monte Carlo data is well converged.
Double-counting corrections based on the self-energy have been applied successfully to metal-
lic systems [42].
Another possible approach is to constrain the total charge in the impurity based on the Friedel
sum rule [12]. The Friedel sum rule gives a zero-temperature relationship between the extra
states induced below the Fermi level by a scattering center (an impurity) and the phase shift
at the chemical potential. For the Anderson model the extra states induced are given by the
occupation number of the impurity states, and the scattering potential is the hybridization that
affects the conduction electrons. The simplest version requires the charges in the self-consistent
bath and the impurity to be equal

Tr Gimp
mm′(β)

!
= Tr Gmm′(β). (63)

The value of the imaginary time Green function at τ = β gives the orbital occupancy, thus the
trace over them amounts to the total occupancy of the impurity. Both versions of the method
give very similar results and work well in metallic systems, since in a metal the total particle
number of the system Ntot and of the impurity Nimp are both very sensitive to small variations
in µ and µDC. Also the likeness to the Friedel sum rule, which applies to metals, indicates that
such a constraint will work for metals only. As NiO has a quite large gap, the charge is almost
invariant with respect to the chemical and the double-counting potential in the gap. Over a
region of several electron volts

δNtot

δµ
≈ 0.

We will see below the consequences for this specific double-counting prescription and for
double-countings in general that arise from the presence of the insulating gap.
Now that we have introduced the double-counting in the context of DFT+DMFT and discussed
ways to fix the underlying parameter, we can elucidate our test case: NiO. The double-counting
potential has been treated here as an adjustable parameter and has been varied between 55 eV

and 60 eV. The most prominent effects of the double counting on the spectral properties are
the shift of the oxygen 2p bands with respect to the nickel 3d bands, as well as the variation
in gap size. The µDC controls the filling of the Ni 3d orbitals and since the total number of
particles in the system is fixed at Ntot = 14, the chemical potential µ of the full system must
be varied together with µDC. The filling of the Ni 3d orbitals can be varied from Nimp ≈ 8.1

at µDC = 55 eV to Nimp ≈ 8.3 at µDC = 60 eV. The double counting potential µDC has
profound impact on the spectrum Am(ω) = − 1

π
Gm(ω) shown in Fig. 15 and the k-resolved

spectral function

Am(k, ω) = − 1

π
Im
(
ω + µ− εm(k)−Σimp

m (k, ω)
)−1

shown along the line Γ−X in the Brillouin zone in Fig. 16. All spectral functions were obtained
by the maximum entropy method from imaginary-time Green functions. With increasing µDC,
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(a) µDC = 55.0eV , µ = 3.0eV
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(b) µDC = 57.0eV , µ = 1.5eV
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(c) µDC = 59.0eV , µ = 0.5eV
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(d) µDC = 60.0eV , µ = 0.0eV

Fig. 15: LDA+DMFT spectral functions at β = 5eV−1 for different values of the double count-
ing correction µDC, illustrating its impact on the spectrum [41].

the system evolves from a large gap Mott insulator at µDC = 55 eV (Fig. 15 (a)), with a
gap of about 4 eV opening between the Ni 3d states and almost no oxygen at the valence
band edge, towards an almost closed-gap at µDC = 60 eV (Fig. 15 (d)). Plainly speaking,
the double-counting correction allows for a tuning of the spectral properties from a large-gap
Mott insulator in the region µDC ≤ 55 eV to a metal at µDC > 60 eV. The regime of the
charge transfer insulator, the expected physical state of NiO, lies somewhere in between at
µDC ∼ 59 eV (Fig. 15 (c)). In this state the oxygen states make up about half the spectral
weight at the valence band edge, as observed in experiments [43, 44]. The gap, however, is
much smaller than 4 eV, thus if the only criterion of the quality of the calculation would be the
gap, the double-counting of choice would be around µDC = 55 eV, missing the physics of the
system entirely.

Let us now turn to the k-resolved spectral functions shown in Fig. 16 and compare them with
ARPES data [45]. We have superimposed the ARPES data on top of our calculated spectral
functions; the data were aligned at the valence band edge to facilitate comparison. The up-
permost band in Figs. 16 (a) and (b) at 2eV above the Fermi level is a Ni eg band, while the
other bands can be identified with the ones obtained by ARPES. The two lowest lying bands
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(a) µDC = 55 eV

(b) µDC = 59 eV

Fig. 16: k-resolved spectral functions A(k, ω) along the line Γ − X in the Brillouin zone for
different values of the double counting µDC. On the right the spectra integrated along the shown
crystal momentum direction are shown [41] .

correspond to oxygen 2p states, the bands above are formed by Ni 3d states. The characteristic
features seen in ARPES, like the broadening of the oxygen bands around the midpoint of the
Γ − X line, are clearly present. The quantitative features, especially the relative band ener-
gies can strongly differ, depending on the double counting chosen. The bands in Fig. 16 (a)
(µDC = 55 eV) show a clear separation between the oxygen and the nickel part at the Γ -point
as well as the X-point. At the increased value µDC = 59 eV, Fig. 16 (b), the oxygen bands
are shifted towards the Fermi level, coming to overlap with the Ni 3d bands at the Γ -point as
in the ARPES data. A detailed comparison of the calculated band structures with experiments
shows that the bands calculated with µDC = 59 eV agree very well with the experimental data.
These calculations reproduce the flat bands at −4 eV, and another at about −2 eV becomes
more prominently visible at µDC = 59 eV, while it is very faint at µDC = 55 eV. The dispersive
bands in the region −4 eV to −8 eV also agree very well with experiment. Calculations with
other values of the double counting can strongly differ from the experimental data, as shown by
the example of µDC = 55 eV.
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Fig. 17: Surface created by different combinations of the chemical potential µ and the double
counting potential µDC. The particle number has been color coded: the green plateau corre-
sponds to a particle number very close to the desired value of 14, values below are encoded in
blue, values above in red. In addition the dotted line indicates the location of the N vs µ curve
for µDC = 59 eV that is shown on the right. The line is a guide to the eye only [41].

The dimension of the double-counting problem becomes apparent when the parameter space of
the overall chemical potential µ and the double counting potential µDC versus the total particle
number in the system N is examined. The result is shown in Fig. 17 on the left with the particle
number color coded. The picture shows that in principle any combination of µ and µDC that
yields a point in the green plateau, corresponding to the desired particle number N ≈ 14 a
priori describes the system equivalently well.

7 Conclusions

We have learnt how to treat electronic correlations in correlated materials within the local
DMFT scheme. This knowledge can be used in realistic LDA+DMFT calculations for strongly
correlated transition-metals and rare-earth systems, where spin, orbital, and charge fluctuations
in the d- or f -shell play a crucial role in photoemission spectra and in magnetic and optical
excitations. The numerically exact solution of the quantum impurity problem gives us an effec-
tive local exchange-correlation functional for given correlated materials in a specific external
field. The combination of DMFT with first-principles approaches is a very useful tool for the
investigation of correlated electronic materials.
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1 Introduction

The electronic structure problem in real materials involves two sources of complexity: First, on
a single-particle level, a large Hilbert space can be required to describe how electronic wave
functions adjust to a certain arrangement of nuclei. Second, electrons interact, and the dimen-
sion of the Fock space to describe a many-electron system grows exponentially with system
size. There are two kinds of electronic structure approaches that circumvent either one of these
problems.
So-called first-principles methods – most prominently density functional theory (DFT) – map
the interacting-electron problem onto an auxiliary single-particle system but treat the full com-
plexity of the single-particle wave functions. Thereby, DFT and related approaches provide ma-
terial specific and atomistic descriptions of various extended systems (particularly sp-electron
metals). These approaches fail, however, for strongly correlated materials such as transition-
metal oxides or Kondo systems, where the electronic ground state requires a superposition of
multiple Slater determinants and where excitations are governed by dynamic self-energy effects.
The description of strongly correlated electron systems relies on model Hamiltonians, which
operate on many-body Fock spaces constructed out of a reduced set of single-particle basis
states. In this way, several correlation phenomena such as the Kondo effect, metal-insulator
transitions, magnetism or unconventional superconductivity can be addressed but at the price
that relations of models and materials are sometimes ambiguous due to a priori unknown model
parameters.
Obviously, first-principles and model Hamiltonian approaches have complementary merits and
shortcomings, so that their combination presents a promising route towards realistic, i.e., atom-
istic and material specific, descriptions of strongly correlated electron systems. The combi-
nation of density functional theory with dynamical mean field theory, termed LDA+DMFT,
is one very successful example of such hybrid approaches and is introduced in the lecture of
Alexander Lichtenstein. Generally, approaches which are based on combining DFT and model
Hamiltonian approaches to correlated systems are referred to as DFT++ [1].
In this lecture, we will discuss how the realm of first-principles theories can be brought into
model Hamiltonian approaches to strongly correlated electron systems. We will see in section
2 that a possible strategy to do so works as follows: A correlated subspace C, i.e., a subset of
single-particle states where electron correlations take place, is identified. Then, it will turn out
that projectors from the full space of Kohn-Sham eigenstates onto the subspace C provide a gen-
eral way for linking DFT and model Hamiltonian approaches. Within the correlated subspace,
the DFT band structure is augmented with interaction terms to generate the correlation effects
missed in DFT. These interactions affect only a subset of orbitals and often only local interac-
tions are considered, while clearly electrons in all orbitals and also at distant sites interact with
each other. The question of how to determine meaningful interaction parameters entering the
many-body models will be addressed in section 3. DFT includes already some (partly unknown
portion of) interaction effects in a static mean field manner, which have to be accounted for.
This leads to so-called double-counting corrections which are discussed in section 4. The inclu-
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Fig. 1: Electronic structure of three example systems. (a) SrVO3, (b) NiO, and (c) Fe impurities
in Au. The electronic density of states (DOS) and band structures as obtained from DFT are
shown. For Fe in Au the band structure of the host is shown. The systems illustrate different
levels of complexity on the single-particle level. While for SrVO3 the block of three t2g-bands
around the Fermi level turns out to control the low energy physics, NiO is experimentally known
to be a charge transfer insulator and a description of elementary electronic excitations requires
to consider both Ni-3d and O-2p states. For Fe impurities in Au, there is a continuum of sp-like
host states together with impurity 3d-states at the Fermi level. Crystal momentum is no more
a good quantum number of single-particle states in the the impurity system, which makes its
description already involved on the single-particle level.

sion of interactions in the correlated subspace can lead to a redistribution of charges between
different orbitals of the system, which would in turn modify the mean field interaction terms
contained in DFT and thereby included in the single-particle part of the DFT++ models. Re-
sulting issues of charge self-consistency between the DFT and the many-body parts will finally
be considered in section 4.

2 Correlated subspaces and projectors

We start our discussion with SrVO3, NiO, and magnetic Fe impurities in Au, which are exam-
ples of, respectively, correlated metals, charge transfer insulators and Kondo systems. Band
structures and density of states as derived from DFT calculations are summarized in Fig. 1.
SrVO3 has a block of three bands, the so-called t2g bands, in the vicinity of the Fermi level.
These bands have mainly V 3d character and it turns out that the low energy electronic structure
can be understood in terms of these bands. In other words, a many-body Hamiltonian for the
description of correlation effects in SrVO3 could be obtained from these t2g bands alone.
NiO is a so-called charge transfer insulator [2]. In contrast to Mott-Hubbard insulators, where
the Hubbard U opens a charge gap within the transition-metal d bands, in charge-transfer sys-
tems the gap typically opens between ligand p bands and the upper Hubbard bands derived from
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the transition-metal d states. Thus, the so-called charge transfer energy |εp− εd| determines the
size of the gap. Quite often, ligand p bands and transition-metal d states mix through hybridiza-
tion and it is thus the interplay of transition-metal d states and oxygen 2p states that defines
the fundamental electronic excitations. Paramagnetic DFT fails to reproduce this behavior; it
predicts NiO to be metallic with Ni-eg bands close to the Fermi level, EF = 0, and O 2p-states
more than 3eV below EF . It reveals, nevertheless, hybridization between Ni and O-derived
bands. A description of the electronic excitations of NiO should involve the intermixed O 2p

and Ni 3d-bands, while we expect that electronic correlation effects result mostly from the par-
tially filled transition-metal 3d states. A natural many-body model would thus involve 8 bands,
i.e., 3 carrying mainly O 2p-weight and 5 bands derived from the Ni 3d states. We would then
end up with a correlated subspace of dimension 5 embedded into larger 8 dimensional space of
single-particle Bloch states.
Finally, Fe in Au is an impurity problem, and there are no well defined bands since the crystal
momentum k is not a good quantum number of the single-particle states any more. In practice,
impurity problems are often modeled using supercells containing the transition-metal impurity
atom and on the order of hundred atoms to mimic the host. Assuming that electron correlations
mainly take place in the impurity d-orbitals one still has a correlated subspace of dimension 5
but embedded into single-particle Hilbert space spanned by a few hundred supercell bands. We
will below see that coupling between the correlated and uncorrelated parts of the single-particle
Hilbert space can be elegantly formulated based on projection operators. The discussion follows
mainly Refs. [3–8].
The first step of any DFT++ approach is to identify a correlated subspace {|m〉}, where the
Kohn-Sham Hamiltonian HK is augmented by interactions HU and a double-counting correc-
tion HDC . One thus arrives at a Hamiltonian

H =
∑
k

εkc
†
kck︸ ︷︷ ︸

HK

−µDC
∑
m

d†mdm︸ ︷︷ ︸
HDC

+
1

2

∑
m...m′′′

Um...m′′′d
†
md
†
m′dm′′dm′′′︸ ︷︷ ︸

HU

, (1)

where the Kohn-Sham energies εk and the Kohn-Sham eigenstates |k〉 obtained from DFT de-
fine the non-interacting starting point. To make calculations feasible one often assumes local
interactions that couple only the correlated orbitals at the same site. In the general form of
Eq. (1), H could be a multiband Hubbard or a multiorbital Anderson Impurity Model (AIM).

2.1 Quantum impurity problems

We start with the discussion of an impurity problem, as for instance realized by ad-atoms on
surfaces or by magnetic dopants in bulk metals. We will show that projections 〈k|m〉 of the
Kohn-Sham states onto the states of the correlated subspace are sufficient to connect the DFT
real material simulations with the multi-orbital AIM. In general, states |k〉 and |m〉 have a
finite overlap 〈k|m〉 6= 0. i.e., they are non-orthogonal. If one constructs an orthonormalized
basis of single-particle states which includes the states |m〉 and an orthogonal set {|k̃〉} with
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corresponding Fermi operators ck̃ one could rewrite the Hamiltonian in the form

HAIM =
∑
k̃

εk̃c
†
k̃
ck̃+
∑
k̃,m

(Vk̃mc
†
k̃
dm+h.c.)+

∑
m

(εm−µDC)d†mdm+
1

2

∑
m...m′

Um...m′′′d
†
md
†
m′dm′′dm′′′ .

(2)
Equivalently, the problem can be characterized through the corresponding action

SAIM(c∗, c, d∗, d) =

∫ β

0

dτ
∑
k̃

c∗
k̃
(τ)∂τck̃(τ) +

∑
m

d∗m(τ)∂τdm(τ) +HAIM(c∗, c, d∗, d)(τ), (3)

where the Fermi operators are replaced by Grassmann numbers, which leads to the partition
function Z via the imaginary time path integral

Z =

∫
D[c∗, c, d∗, d]e−SAIM(c∗,c,d∗,d). (4)

This integral is Gaussian in the Grassmann numbers c∗
k̃

and ck̃, i.e., the bath parts can be inte-
grated out and we arrive at an effective action

Seff(d∗, d) = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
m,m′

d∗m(τ)(G−1
0 (τ − τ ′))dm(τ ′) +

∫ β

0

dτ HU(d∗, d)(τ), (5)

which specifies all local electronic properties of the AIM. The bath enters indirectly through
the non-interacting Green function G0 of the correlated orbitals. G0 can be easily obtained from
our first-principles calculations: As the Kohn-Sham eigenvalues and eigenstates define the non-
interacting starting point of our DFT++ impurity treatment, the Kohn-Sham Green function

GKS(iωn) =
∑
k

|k〉〈k|
iωn + µ− εk

(6)

plays the role of the non-interacting Green function and the matrix elements entering Eq. (5)
read

G0(iωn)mm′ = 〈m|GKS(iωn)|m′〉 =
∑
k

〈m|k〉〈k|m′〉
iωn + µ− εk

. (7)

The single-particle part of the AIM is thus fully defined, once the DFT Kohn-Sham problem of
the system of interest is solved and the projections 〈k|m〉 of the Kohn-Sham eigenstates onto
the basis states of the correlated subspace are known.
Defining the projector PC =

∑
m |m〉〈m| onto the correlated subspace C, G0(iωn) from Eq. (7)

can be represented in a compact matrix notation

G0(iωn) = PCGKS(iωn)PC. (8)

In this way, the single-particle terms entering the DFT++ quantum impurity model for a com-
plex system like a magnetic impurity in a metal or metal-organic molecules on metal surfaces
are defined from first-principles. Once the interaction (see section 3) and double-counting terms
(see section 4) are also specified, the impurity model, Eq. (5), can be solved, e.g., by quantum
Monte Carlo methods as explained in the lecture by Fakher Assaad.
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Fig. 2: DFT+DMFT self-consistency cycle. The algorithm starts with a DFT calculation, which
yields the Kohn-Sham Hamiltonian and Kohn-Sham eigenstates |k〉 ≡ |ψkν〉. Then, the KS
Green function and from it the starting value for the bath Green function G0 are constructed and
passed on to the DMFT loop. The DMFT loop involves upfolding of the self-energy, Eq. (15),
and downfolding of the full Green function to the correlated subspace, Eq. (17). Both can be
accomplished using projectors. A potential self-consistency over the charge density n(r) is also
indicated. From Ref. [8].

2.2 Projector formalism in LDA+DMFT

Dynamical mean field theory maps correlated lattice models such as the Hubbard model onto
Anderson impurity models with a self-consistency condition, as explained in the lecture by
Antoine Georges. In DMFT, the auxiliary impurity problems involve the correlated orbitals
with local interaction, coupled to a self-consistent energy-dependent bath. In the effective action
formulation, this takes again the form of Eq. (5), where only the meaning of G0 changes. It is
no longer the bare (i.e. non-interacting) local Green function of the DFT++ Hamiltonian (1),
but rather the dynamical mean-field, which is determined self-consistently and which encodes
the coupling of the embedded atom to the effective bath. In other words, G0 is the analogue of
the Weiss field in the mean field theory of classical magnets. Due to the self-consistency cycle
of DMFT, G0 depends on many-body effects in the material under consideration.
The central quantity in the DMFT formalism is the local Green function Gloc

R (iωn), which con-
tains simply those matrix elements of the full Green functionG(iωn) which belong to correlated
orbitals from the same site R. We can thus use the projection operators PCR =

∑
m |Rm〉〈Rm|

to correlated orbitals |Rm〉 at site R to write the local Green function

Gloc
R (iωn) = PCRG(iωn)PCR. (9)

As before, we interpret the Green functions as operators acting on the space of single-particle
states.
By definition of the self-energy Σ(iωn), the full Green function of the lattice problem is given
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by
G(iωn)−1 = GKS(iωn)−1 −Σ(iωn). (10)

Since the interaction terms of the DFT++ Hamiltonian are restricted to the correlated subspace,
the self-energy can be non-zero only within C. In the DMFT approximation, Σ(iωn) is local
and obtained from the auxiliary impurity problem according to

Σ(iωn) = G−1
0 (iωn)−G−1

imp(iωn), (11)

where is Gimp(iωn) is the Green function of the auxiliary impurity problem defined through
Seff . From the DMFT self-consistency condition

Gimp(iωn) = Gloc
R (iωn), (12)

we obtain a prescription on how to construct the bath Green function:

G−1
0 (iωn) = Σ(iωn) + (Gloc

R )−1(iωn). (13)

Eqs. (11) and (13) define the DMFT self-consistency cycle in a basis-independent way as il-
lustrated in Fig. 2. For actual computations, a basis {|Bkα〉} (often referred to as Bloch basis)
has to be chosen to represent the Green functions explicitly as matrices. There are two natural
choices: one could either use the Kohn-Sham eigenstates or any basis set (e.g. plane waves,
projector augmented plane waves, or full potential linearized augmented plane waves) which is
implemented in the DFT-code used.
To translate the equations defining the self-consistency cycle (Eqs. (9–13)) to this basis set
dependent notation, we need the matrix-representations of the Kohn-Sham Hamiltonian

HKS(k)αα′ =
∑
k

〈Bkα|k〉εk〈k|Bkα〉 (14)

and of the self-energy operator

Σαα′(k, iωn) = 〈Bkα|Σ(iωn)|Bkα′〉 = 〈Bkα|m〉Σmm′(iωn)〈m′|Bkα′〉. (15)

These lead directly to the full Green function

Gαα′(k, iωn) = {iωn + µ−HKS(k)−Σ(k, iωn)}−1
αα′ (16)

in the Bloch basis. Eq. (15) obviously upfolds the self-energy, which is obtained from the
solution of the impurity problem in the localized basis of C, to the full space of Bloch basis
functions. Although Σ(iωn) is purely local when expressed in the set of correlated orbitals, it
acquires in general momentum dependence when expressed in an arbitrary basis set.
The bath Green function is provided to the impurity solver in the localized basis and thus re-
quires (cf. Eq. (13)) the local Green function in the localized basis

Gloc
R (iωn)mm′ =

∑
k,α,α′

〈Rm|Bkα〉Gαα′(k, iωn)〈Bkα′|Rm′〉. (17)
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That is indeed all we need to implement the DFT+DMFT cycle as depicted in Fig. 2. The
projections 〈Rm|Bkα〉 facilitate both the upfolding of the self-energy to the Bloch basis and
downfolding of the full Green function to the local Green function on the correlated subspace.
To summarize, DFT+DMFT requires decisions on the following two issues [4]:

1. The local orbitals |Rm〉 spanning the correlated subspace C have to be chosen. Different
definitions of C can lead to different results and the quality of the DMFT approximation
will in general depend on the choice of C. One might want to define C such that the
DMFT approximation is best justified, which is intuitively associated with well-localized
orbitals.

2. To keep the DFT+DMFT computationally tractable, the basis of Bloch states {|Bkα〉}
should be chosen in such a way that the number of states that have non-zero overlap with
the correlated subspace 〈Bkα|PCR|Bkα〉 > 0 remains sufficiently small. Taking {|Bkα〉}
to be the Kohn-Sham eigenstates is often a good choice in this respect while simple plane
waves typically lead to too large Bloch spaces.

There are indeed several possibilities for the construction of local orbitals including different
flavors of Wannier functions such as maximally localized Wannier functions or so-called N th
order Muffin Tin Orbitals (NMTO). A very practical way to construct a basis for C is to use
entities that are already existing in most of the common band-structure codes, namely, the de-
composition of local atomic-like orbitals |R̃m〉 in terms of Bloch basis functions [5]. Indeed,
if the set of Bloch states (e.g. the Kohn-Sham eigenstates generated by the DFT code) were
complete, we could simply take the set {|R̃m〉} as basis of the correlated subspace C.
However, independently of the particular Bloch basis set which is chosen, one has to restrict
practical DFT+DMFT calculations always to a finite space of NB Bloch states. Those states
span a finite subspaceW of the total Hilbert space. The local atomic-like states |R̃m〉 will, in
general, have a decomposition involving all Bloch bands. Projections of {|R̃m〉} ontoW can
thus lead to a non-orthonormal set of localized states. The obvious way out is to reorthonormal-
ize, which is easiest done in the following way:
We consider the Bloch transform of the local atomic-like orbitals, |k̃m〉 = 1√

N

∑
R e

ikR|R̃m〉,
where N is the number of atoms in the crystal. The projections of |k̃m〉 ontoW reads

|˜̃km〉 =
∑
α∈W

|Bkα〉〈Bkα|k̃m〉. (18)

The {|˜̃km〉} are not true Wannier functions as they are not orthonormal, i.e., their overlap matrix

Omm′(k) = 〈˜̃km|˜̃km′〉 is not the unit matrix. We arrive however at an orthonomal basis set of
the correlated subspace by orthonormalizing according to

|km〉 =
∑
m′

O
−1/2
mm′ (k)|˜̃km′〉. (19)
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Eqs. (18) and (19) indeed define a proper Wannier construction. We call the resulting Wannier
functions ”projector guided Wannier functions” (PWF). PWFs often serve as starting point of
an MLWF localization procedure. The extent to which PWFs differ form MLWFs is system-
specific. For rather localized states, like in transition-metal oxides, the differences are indeed
small [6], while they are larger in materials with highly extended electronic states like pz elec-
trons in graphene.
More severe than differences between PWFs and MLWFs are differences associated with dif-
ferent choices of the Bloch space W . This shall be illustrated with the example of SrVO3,
which is a metal with one electron in the t2g bands and empty eg bands (see Fig. 1). SrVO3 is
a good test-case for DFT+DMFT calculations because excitation spectra and thermodynamic
properties hint at correlation effects taking place: First, direct comparison of the photoemis-
sion spectra with the one-particle band-structures, e.g. from DFT-LDA, yields poor agreement.
Moreover, the linear coefficient in the temperature-dependent specific heat is twice larger than
estimated from DFT-LDA, which suggests correlation induced mass enhancement [4].
For an DFT+DMFT description of SrVO3, one could make two rather different choices ofW:
First, we could focus on a very limited set of low-energy Bloch bands, such as the three t2g bands
in the vicinity of the Fermi level (cf. Fig. 1) and generateW just from the three corresponding
Bloch functions. In this case, we would have W = C. Since now the Bloch bands span a
narrow energy window, the Wannier functions defining C will be rather spatially extended: As
Fig. 3b shows, they are centered on vanadium atoms but also have sizable weight on neighboring
oxygen atoms, which reflects the hybrid character of the low energy t2g-type states. This first
choice ofW = C is of course appealing since it involves a minimal number of bands but comes
at the expense that the investigation of the indirect effects of correlations on bands other than
the t2g ones are out of scope.
Alternatively, we could define W from a larger energy window of Bloch bands including all
bands associated with the O 2p and all V 3d states. Then, the indirect impact of electron
correlations on largely O 2p-derived bands can also be addressed. Having an enlarged Bloch
spaceW means also that the basis orbitals |Rm〉 of the correlated subspace can involve Bloch
states from a correspondingly wider energy range (cf. Eq. (19)) and will be more spatially
localized. As Fig. 3c shows, they are now indeed much closer to vanadium atomic-like orbitals.
A comparison of k-resolved spectral functions as obtained from DFT+DMFT simulations of
SrVO3 with a Bloch space made up by the t2g bands only and involving additionally the oxygen
2p states is given in Fig. 3. In both cases, we find a narrowing of the t2g-like quasi-particle
states close to the Fermi level with renormalization factors Z ≈ 0.6, which is in line with
experimentally found band narrowing [6]. Also, independently of the choice of W , we see
spectral weight being transferred from the t2g bands to lower and upper Hubbard bands. The
major effect of different choices ofW concerns, as expected, the oxygen 2p derived states. For
the larger Bloch space, hybridization with the correlated subspace leads to lifetime broadening
of the oxygen 2p bands. While for SrVO3 both models yield a reasonable description of the
low energy physics, there are many materials for which the inclusion of bands beyond the
correlated subspace is absolutely required. For example, in charge-transfer insulators like NiO
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Fig. 3: (a) SrVO3 structure with Sr large (blue), V (red), and O small (yellow). (b,c) Perspective
view of Maximally Localized Wannier functions of the t2g states as obtained from the three t2g-
like bands around the Fermi level (b) and from a 14 band calculation, i.e., involving three
2p-like states from three oxygen ions and five 3d-like states from the vanadium ion. From Ref.
[4]. Momentum resolved spectral functions as calculated within DFT+DMFT using models
involving three Bloch bands only (d) and a Bloch space involving also the oxygen derived states
(e). The DFT bands are indicated as white lines. From Ref. [6].

(see section 4), the inclusion of oxygen 2p states in the DFT+DMFT procedure is necessary to
describe the fundamental electronic excitations.
Using the projector formalism outlined so far, we can in principle fix all terms entering the
DFT++ Hamiltonian, Eq. (1), apart from the double-counting shifts and the interaction matrices.
We will discuss these terms in the following two sections.

3 Interaction terms: Hubbard U and beyond

Correlation effects are generated by the interaction terms in the DFT++ Hamiltonian, Eq. (1).
What are these interaction terms? Naively, one might guess that they could be obtained as
matrix elements of the bare Coulomb interaction

Um...m′′′
?
= 〈Rm|〈Rm′| e2

r̂− r̂′
|Rm′′〉|Rm′′′〉.

Indeed, that is not the case, since the DFT++ Hamiltonian restricts interactions to the correlated
subspace C and also assumes that interactions are local. The Gedankenexperiment depicted in
Fig. (4) illustrates the problem.
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(a) full model

U

energy gain: U-V

V

(b) effective model

U*

energy gain: U*

Fig. 4: Interaction energies in models with non-local (a) and purely on-site interactions (b).
Wavy lines illustrate Coulomb interactions. (a) An electron in the extended Hubbard model
hopping from a doubly occupied site to an empty one, gains an energy U − V . (b) The same
situation in the model with purely local interactions leads to an energy gain of U∗. From
Ref. [9].

In a model with on-site repulsion U and nearest neighbor interaction V, an electron hopping
from a doubly occupied site to a neighboring empty site gains interaction energy U − V, while
in a model with purely local Hubbard repulsion U∗ the corresponding energy gain is U∗. A
similar argument applies for electrons moving from a correlated orbital of an atom, e.g., the
3d-orbital of a transition-metal atom like Fe or Ni, to an uncorrelated 4p-orbital at the same
site. Here, one would have to account for neglecting the repulsion Upd between p and d electron
when determining some Hubbard interaction which is restricted to the space of d-orbitals. Thus
far, our discussion involved only two electrons. Obviously in a real solid, all surrounding elec-
trons rearrange in response to the Coulomb potential generated by a charge moving through the
material and Coulomb interactions will be screened. The DFT++ model Hamiltonian involves
explicitly a limited set of Coulomb processes and associated screening effects. It thus accounts
for some amount of electronic screening but many screening channels are indeed neglected.
The Coulomb matrix elements entering the DFT++ model should therefore be derived from an
appropriately partially screened interaction.

One approach to this problem is the so-called constrained local-density approximation (cLDA)
[10]: The Hubbard interaction U , e.g. between 3d-electrons at the same site, contributes to the
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Fig. 5: Screened interaction in the random phase approximation (a). (From Ref. [12]) The
constrained random phase approximation (cRPA) excludes bubbles which are entirely within
the correlated subspace C as illustrated here with the example of SrVO3. If we choose C to
be the t2g block around EF , the bubbles (dashed) involving t2g to t2g transitions are excluded
(b). Frequency dependent effective interactions in SrVO3 (c) (from Ref. [13]) and graphene (d)
(from Ref. [14]) as obtained from cRPA.

total energy a term of the form E = 1
2
Un3d(n3d − 1). The second derivative of E with respect

to the occupancy thus yields the Hubbard interaction

U =
∂2E

∂n2
3d

. (20)

This approach is within the DFT reasoning and has been implemented in several DFT codes.

3.1 The constrained random phase approximation

More recently, a method implementing the idea of partial screening in a diagrammatic language
– the so-called constrained random phase approximation (cRPA) – has been proposed [11] and is
widely used to date. Let us assume that we have a solid with a well-defined correlated subspace
of flat bands near the Fermi level, e.g. transition-metal 3d bands, with the remainder including,
for instance, 4s or 4p bands. For simplicity, we assume that there is no hybridization between
3d and 4sp states, i.e., we can span our Bloch space by Kohn-Sham eigenstates |ψd〉 and |ψr〉
referring to 3d-states and the rest, respectively.



Projectors and Interactions 5.13

The idea is now to construct a partially screened interaction, which accounts for all screening
processes except for those involving 3d-to-3d-transitions since the latter processes will be con-
tained in our DFT++ Hamiltonian and should not be counted twice. We can implement this
idea within the random phase approximation if we include all bubble diagrams except for those
involving 3d-to-3d-transitions in the expansion of the polarization function (cf. Fig. 5). The
sum of bubble diagrams leads to the polarization operator

P̂ (iΩm) = − 1

β

∑
iωn

Ĝ(iωn + iΩm)Ĝ(iωn). (21)

The screened interaction W in RPA is given by

Ŵ = v̂ + v̂P̂ v̂ + v̂P̂ v̂P̂ v̂ + · · · =
[
1− v̂P̂

]−1

v̂. (22)

Taking G to be the Kohn-Sham Green function, the evaluation of the Matsubara sum, (21),
leads to a sum over transitions between occupied and empty states which reads in position
space representation as

P (r, r′; iΩm) =
occ∑
i

empty∑
j

ψi(r)ψ
∗
i (r
′)ψj(r

′)ψ∗j (r)

{
1

iΩn + εi − εj
− 1

iΩn + εj − εi

}
. (23)

We split P̂ into P̂ = P̂d + P̂r, where P̂d includes only 3d to 3d transitions (i.e, restricting the
sums in Eq. (23) to i, j ∈ C), and Pr be the rest of the polarization. The screened interaction in
RPA can then be expressed as

Ŵ =
[
1− v̂P̂r − v̂P̂d

]−1

v̂

=
[
(1− v̂P̂r){1− (1− v̂P̂r)−1v̂P̂d}

]−1

v̂

=
[
1− (1− v̂P̂r)−1v̂P̂d

]−1

(1− v̂P̂r)−1v̂

=
[
1− ŴrP̂d

]−1

Ŵr, (24)

where
Ŵr(iΩn) = (1− v̂P̂r(iΩn))−1v̂ (25)

is the partially screened interaction we were searching for [11]. It describes the interaction
between the electrons of the correlated subspace and accounts for screening by the rest of the
system in RPA. The matrix elements of Ŵr can therefore be used obtain the interaction terms
entering the DFT++ model from first principles

Um...m′′′(iΩn) = 〈Rm|〈Rm′|Ŵr(iΩn)|Rm′′〉|Rm′′′〉. (26)

From Eq. (25) we see that, the frequency dependence in the polarization function leads to a
frequency dependent, i.e. retarded, interaction which in general carries a real and an imaginary
part. This effective DFT++ theory will thus not take a Hamiltonian form and the interaction
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Ŵr(iΩn) is, in general non-local. We analyze two example cases, SrVO3 and graphene, to
illustrate this point.
For SrVO3, cRPA yields in the static limit a value of U = 3.5 eV [13], which is indeed close to
the value of U ≈ 4 eV used in many DFT+DMFT calculations which include only the t2g bands
in the Bloch space and the correlated subspace (cf. Refs. [4–6]). With this value, DFT+DMFT
yields quasi-particle weights and the location of the Hubbard bands in reasonable agreement
with experiments [4]. The interpretation of the static limit of the cRPA interaction as the in-
teraction to include in the DFT++ Hamiltonian thus seems to be a reasonable approximation
and that is indeed what is often done in practice. It should, however, be noted that this ap-
proximation neglects several physical processes that affect electronic excitation spectra in real
materials. Plasmons, manifesting for instance as poles/resonances in the screened interaction,
i.e., dynamic plasmon effects associated with the uncorrelated states, will not enter the DFT++
model if the static limit of the RPA interaction is chosen. For Ni, it has been shown that these
high-energy plasmons can affect the low-energy spectra by spectral weight transfer to higher-
energy plasmon satellites and a concomitant reduction of the quasi particle weight [13]. It has
been suggested that this spectral weight transfer can be accounted for through a renormalization
of the hopping and hybridization parameters [15].

3.2 Non-local Coulomb interactions

So far, we considered only local interaction terms. One reasoning behind this is that in transition-
metals like Fe or Ni, the uncorrelated sp-electron bands provide efficient screening such that
the non-local terms are small [16]. This is not necessarily always the case, as can be seen from
the the partially screened interaction Ŵr of the pz-electrons in graphene and graphite in Fig. 5.
We see that graphene hosts both sizable on-site repulsion U00 = 9.3 eV ≈ 3.3 t and nearest
neighbor interaction U01 = 5.5 eV ≈ 2 t, which exceed the nearest neighbor hopping t and are
both on the order of the electronic band width D = 6 t [14]. This coexistence of local- and non-
local interaction terms is typical for effective models of low dimensional materials and has also
been found for two-dimensional superstructures of ad-atoms on semiconductor surfaces [17].
We will therefore discuss the example of graphene a bit closer.
Quantum Monte Carlo simulations of the Hubbard model on the honeycomb lattice have in-
dicated many-body instabilities from a Dirac material towards gapped phases for interaction
strengths U & 3.5 t. At large interactions U > 4.5 t the formation of an antiferromagnetic
insulator appears well established, while there is controversy about intermediate interaction
strengths 3.5 t < U < 4.5 t, where Ref. [18] argues for the presence of a spin-liquid phase.
More recent calculations question this formation of a spin-liquid but find an antiferromagnetic
insulator for U > 3.9 t [19]. Thus, taking the cRPA local Coulomb interaction U00 ≈ 3.3 t

and neglecting all other terms would put graphene close to an instability towards an insulating
phase driven by local correlations. This appears surprising, since graphene is indeed one of the
best known electric conductors and electrons in graphene are generally assumed to be rather
delocalized.
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So, what is wrong, here? Obviously, the non-local interaction terms have been neglected or
equivalently have been only included on a Hartree level.1 From the illustration of Fig. 4, it is
however clear that non-local terms could indeed weaken the effective local interactions. If we
are interested in thermodynamic instabilities (e.g. transitions between a Dirac material and an
antiferromagnetic insulator), the following variational approach provides a connection between
models with strictly local and non-local interactions [9]:
The starting point is the extended Hubbard model

H = −
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ +
1

2

∑
i6=j

σ,σ′

Vijniσnjσ′ , (27)

where tij are the hopping matrix elements and U and Vij are the local and nonlocal Coulomb
matrix elements, respectively. The goal is to map the Hamiltonian (27) onto the effective model

H∗ = −
∑
i,j,σ

tijc
†
iσcjσ + U∗

∑
i

ni↑ni↓. (28)

The effective on-site interaction U∗ shall be chosen such that the canonical density operator
ρ∗ = 1/Z∗e−βH

∗ of the auxiliary system, where Z∗ = Tr
{
e−βH

∗} is the partition function,
approximates the exact density operator ρ derived fromH as close as possible. This requirement
leads to the Peierls-Feynman-Bogoliubov variational principle [20–22] for the functional

Φ̃[ρ∗] = Φ∗ + 〈H −H∗〉∗, (29)

where Φ∗ = − 1
β

lnZ∗ is the free energy of the auxiliary system. 〈. . . 〉∗ denotes thermodynamic
expectation values with respect to the auxiliary system: 〈H −H∗〉∗ = Tr ρ∗(H −H∗). In the
case of ρ∗ = ρ the functional Φ̃[ρ∗] becomes minimal and coincides with the free energy. The
optimal U∗ is thus obtained for minimal Φ̃[ρ∗] = Φ̃[U∗]:

∂U∗Φ̃[U∗] = 0. (30)

By evaluating Eq. (30) one finds

U∗ = U +
1

2

∑
i6=j

σ,σ′

Vij
∂U∗〈niσnjσ′〉∗∑
l ∂U∗〈nl↑nl↓〉∗

. (31)

This rule quite closely resembles the Gedankenexperiment depicted in Fig. 4: Increasing the on-
site term U∗ reduces the double occupancy 〈ni↑ni↓〉∗ and pushes away electrons approaching
an already occupied site i = 0 to neighboring sites. In the case of purely local Coulomb
interactions, there is a Coulomb energy gain of U∗ upon suppressing the double occupancy
(Fig. 4b). However, when there are nonlocal Coulomb interactions with thesurrounding lattice
sites j, the displaced electrons raise the energy of the system by terms proportional to V0j . This

1Neglecting the non-local interactions or inclusion on a Hartree level are equivalent in the model of Eq. (27)
if translation invariance is assumed due to cancellation of Hartree terms with the positive charge background
stemming from the nuclei.
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process is depicted in Fig. 4a for the simple case of two electrons on one site. In this case, it
is obvious that the Coulomb energy gain due to the electron displacement in the full and the
auxiliary model become energetically equivalent for U∗ = U − V . In general, this energy gain
depends both on the sites to which the charge density is displaced due to the local Coulomb
interaction and on how strong the nonlocal Coulomb terms are.

For a translationally invariant system, the local part of the interaction U is reduced according to
U∗ = U − V̄ , where

V̄ = −
∑
j 6=0

σ′

V0j
∂U∗〈n0↑njσ′〉∗

∂U∗〈n0↑n0↓〉∗
. (32)

The conservation of the total electron number N leads to the sum rules
∑

jσ〈n0↑njσ〉∗ = const.
and ∂U∗〈n0↑n0↓〉∗ = −

∑
j 6=0,σ ∂U∗〈n0↑njσ〉∗. Thus, V̄ is a weighted average of the nonlocal

Coulomb interactions. Under the assumption that an increasing U∗ displaces electrons only to
next neighbors, we find ∂U∗〈n0↑n0↓〉∗ = −Nn∂U∗

∑
σ〈n0↑n1σ′〉∗, where Nn is the coordination

number. Equation (31) then yields

U∗ = U − V01, (33)

which is exactly the situation depicted in Fig. 4.

It is reasonable that V̄ is positive (repulsive) in most situations that correspond to real materials.
Then, the nonlocal Coulomb interaction reduces the effective on-site interaction and therefore
stabilizes the Fermi sea against transitions e.g. to a Mott insulator. This is indeed what hap-
pens also in graphene where an evalution of Eq. (32) using correlation functions ∂U∗〈n0↑njσ′〉∗

obtained by means of lattice QMC calculations yields U∗ ≈ 1.6t [9]. The effective local in-
teraction is thus reduced due to the non-local Coulomb terms by more than a factor of two and
the Dirac electron phase in graphene is correspondingly stabilized against transitions into an
antiferromagnetic insulating phase. The example of graphene thus shows that treatments of
non-local interactions beyond the Hartree approximation can be very important to assess phase
transitions in strongly correlated electron systems.

The approach discussed here is variantional and comes with the simplicity that the auxiliary
system (which we solve numerically) involves only local interactions and can thus be treated
e.g. by standard DMFT. It is also possible to account for non-local interactions diagrammati-
cally, as for instance in the GW+DMFT approach [23]. In GW+DMFT non-local interactions
and related electronic correlation effects are included on an RPA level. Regarding the effect
of non-local interactions on boundaries between metallic and Mott insulating phases in low
dimensional correlated materials, GW+DMFT also predicts that non-local interactions can sta-
bilize the metallic phase [17]. The pictures emerging from GW+DMFT and the above explained
variational approach are thus consistent.
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4 Double-counting and charge self-consistency

The central idea of the DFT++ Hamiltonian, Eq. (1), is to introduce interaction terms Um...m′′′
within the correlated subspace to account for dynamic correlation effects. However, the Kohn-
Sham energies from DFT already include interaction effects through the Hartree and exchange-
correlation terms. Without correction, some interaction contributions would thus be counted
twice in DFT++. Thus, some double-counting correction HDC has to be included. One often
assumes a form like

HDC = µDC
∑
m

d†mdm. (34)

The major problem is that widely used exchange-correlation functionals such as LDA or GGA
are non-linear, do not have a diagrammatic representation, and most-importantly do not allow
one to judge which portion of exchange- and correlation entering the Kohn-Sham eigenvalues
is associated with the interactions added in DFT++ within the correlated subspace. Double-
counting problems are typical for electronic structure methods where semilocal approximate
DFT functionals are augmented with additional interaction terms and also occur in approaches
like LDA+U. There is no universal solution to this problem, and the following discussion of
practical ways to deal with double-counting will be quite empirical.
Several schemes to fix the double-counting terms have been put forward. All of them are based
on some assumption either on how exchange and correlation effects within the correlated sub-
space are included in a functional like LDA or on some quantity which is assumed to be cor-
rectly obtained already from the DFT and which should not change when adding correlations
within DFT++.
Since the double-counting correction is intrinsically an impurity quantity and not a global quan-
tity (like the chemical potential µ) it appears natural to use intrinsic quantities of the impurity
like the impurity self-energy or the impurity Green function to fix it. One physically intuitive as-
sumption is to require that the electronic charge computed from the local noninteracting Green
function and the one computed from the interacting impurity Green function are identical [5]

Tr Gimp
mm′(β)

!
= Tr G0,loc

mm′(β). (35)

Alternatively one can also use the Weiss field Gmm′ instead of the local noninteracting Green
function in the above equation. Both versions of the method give very similar results and work
very well in metallic systems [5], since in a metal the total particle number of the system N and
of the impurity nimp are both very sensitive to small variations in µ and µdc.
One possible ansatz using the impurity self-energy Σimp

mm′ is to constraint the high energy tails
in the real part of the self-energy to sum up to zero

Re Tr (Σimp
mm′(iωN))

!
= 0. (36)

Here, ωN is the highest Matsubara frequency included in the computation. Physically this
amounts to the requirement that the shift in the centroid of the impurity orbitals contains no
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static component, i.e., that static mean field components of the self-energy are correctly pro-
vided by LDA. This criterion is sometimes used in insulating materials [24]. In metals it is
otherwise reasonable to assume that the exchange correlation potential yields a good approxi-
mation of the self-energy at the Fermi level and thus to require that Re Tr (Σimp

mm′(i2π/β))
!

= 0.
The criteria (35) and (36) define the double-counting correction implicitly. There are also two
widely used schemes on how to fix the double-counting explicitly from occupation numbers
termed “around mean field” (AMF) [25] and “fully localized limit” (FLL) [26]. AMF bases on
the idea that exchange and correlation effects are included in LDA but only in a spherically and
thus orbitally averaged mean field manner. The resulting double-counting potential is

µAMF
dc =

∑
m′

Umm′n
0 +

∑
m′,m′ 6=m

(Umm′ − Jmm′)n0, (37)

where n0 = 1
2(2l+1)

∑
m,σ nmσ is the average occupancy. FLL is based on essentially the op-

posite idea. It assumes that total energies for fully localized atomic systems are rather well
represented in functionals like LDA, i.e., that LDA (or LSDA) total energies are reliable if or-
bital occupation numbers nmσ are either 1 or 0. While the LDA total energies are assumed
to be appropriate in this fully localized case, for non-integer occupations LDA is known to
be problematic since it does not correctly reproduce the derivative discontinuity of the exact
density functional: it is known that the Kohn-Sham energies (which are derivatives of the total
energy with respect to orbital occupations) in LDA do not jump discontinuously as they should
for the exact density functional. One can combine the observation of good total energies at
integer occupancy but lacking derivative discontinuity into the following prescription for the
double-counting potential:

µFLLdc = U(Nimp − 1/2) + J(Nσ
imp − 1/2), (38)

withNσ
imp =

∑
m nmσ being the total occupancy of the spin σ-component andNimp =

∑
σN

σ
imp

being the total occupancy.
Indeed, different prescriptions for the double-counting can lead to different predictions re-
garding material properties like excitation spectra, as can be seen for the example system of
NiO. The double-counting potential µdc has profound impact on the density of states Ni(ω) =

− 1
π
Im Gi(ω) shown in Fig. 6. In the LDA+DMFT study of Ref. [24], the double-counting

potential has been treated as an adjustable parameter and has been varied between 21 eV and
26 eV.2 The most prominent effects of the double-counting on the spectral properties are the
shift of the oxygen p bands with respect to the nickel d bands, as well as the variation in gap
size. Plainly speaking, the double-counting correction allows for a tuning of the spectral prop-
erties from a large gap Mott-Hubbard insulator to a metal. The regime of the charge trans-
fer insulator, the expected physical state of NiO, lies somewhere in between. The calculated
LDA+DMFT(QMC) spectral functions shown in Fig. 6 reveal basically the two different phys-
ical situations of a Mott-Hubbard, Fig. 6a, and a charge-transfer insulator, Fig. 6b, mentioned

2These values already contain the intrinsic shift due to the energy of the particle-hole symmetry in the Hirsch-
Fye QMC method that amounts to 34 eV with our values of U and J .
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Fig. 6: (a,b) Spectral functions of NiO obtained with LDA+DMFT (QMC) at inverse temper-
ature β = 5eV−1 for different values of the double-counting µdc. (c) Number of particles N
per unit cell (color coded) as function of the chemical potential µ and the double-counting
potential µdc as obtained with LDA+DMFT (QMC). Ni-d and O-p states are included in the
calculation, which yields N = 14 electrons per unit cell. The green plateau corresponds to
a particle number very close to the desired value of N = 14. Values below are encoded in
blue, values above in red. Additionally the results produced by different prescriptions to fix
the double-counting are indicated. For the AMF and FLL functionals SC or F in parentheses
indicates, that the occupancies from the DMFT or the formal occupancies have been used, re-
spectively. INS refers to the double correction of µDC = 25 eV, where best agreement of ARPES
spectra and LDA+DMFT simulations is achieved. From Ref. [24].

above, which are realized depending on the double-counting correction µDC . The characteris-
tic feature of a charge-transfer system, the strongly hybridized ligand p and transition-metal d
character of the low-energy charge excitations, is only present in the spectrum in Fig. 6b. The
spectrum in Fig. 6a is missing this feature almost completely and shows Mott-Hubbard behav-
ior. This difference underscores the importance of the double-counting correction. A detailed
comparison of calculated bandstructures with experiments shows that the choice of µdc = 25 eV

yields best agreement of LDA+DMFT and the experimental data [24].

The pronounced impact of the double-counting correction can be further seen form the plot of
the total number of electrons per unit cell on the chemical potential µ and the double-counting
correction µDC in Fig. 6c. µDC directly affects the pd-charge transfer energy and controls
thereby the gap of the system which can be inferred from the N = 14 plateau region. Where
would the above explained prescriptions for fixing the double-counting correction lead to? Both
the AMF and the self-energy criterion, Eq. (36), would lead to µDC ≈ 21 eV and thus predict
NiO to be basically a Mott-Hubbard but not a charge transfer system. I.e., these criteria are
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not in agreement with experiments. FLL yields µDC ≈ 24 eV, which comes closer to the
experimental situation of a charge transfer insulator. Finally, criteria trying to fix the occupa-
tion of the correlated subspace to some value provided by LDA or the bath Green function,
cf. Eq. (35), drives the system towards a metallic state at double-counting µDC = 26.5 eV in-
dicated by the arrow pointing out of Fig. 6c. Here, FLL appears to describe the system best,
which turns out to be often the case for insulators. On the other hand, metals are often well
described by double-counting corrections based on traces of the Green function as in Eq. (35).
So, the choice of an appropriate double-counting is rather empirical. It is sometimes beneficial
to treat the double-counting correction as adjustable parameter and to study the dependence of
LDA+DMFT prediction on the choice of the double-counting correction.
A promising way to circumvent double-counting issues are fully diagrammatic approaches like
GW+DMFT [23]. These are currently being under development and first GW+DMFT studies
of example materials like SrVO3 [27–29] have been reported. GW+DMFT comes, however, at
the expense of considerably higher computational demands than DFT+DMFT.
The DFT++ Hamiltonian in the form of Eq. (1) implicitly includes interactions between elec-
trons in the correlated subspace and the rest of the system through the Hartree as well as the
exchange correlation potential from DFT. As soon as the many-body part of DFT++ redis-
tributes electrons between correlated and uncorrelated orbitals or also between different sites
there will be associated Hartree (as well as possible exchange or correlation) energies and the
DFT++ Hamiltonian should be correspondingly updated. In general, it is obviously problematic
to obtain the update of the DFT++ Hamiltonian simply from a double-counting correction ap-
plied to the correlated subspace only. This can be better achieved by including self-consistency
over the charge-density in the DFT++ approach.
To this end, one calculates the electron density of the DFT++ system,

n(r) =
1

β

∑
k,α,α′,n

〈r|Bkα〉Gαα′(k, iωn)〈Bkα′|r〉 , (39)

which includes corrections due to dynamic self-energy effects within the correlated subspace.
With this density n(r) one can recalculate the DFT potential and solve the resulting Kohn-Sham
Hamiltonian, which then reenters the non-interacting part of the DFT++ Hamiltonian, Eq. (1).
In this way, a charge self-consistent DFT++ scheme is obtained, see Fig. 2, which includes
interactions between electrons of the correlated subspace and the rest in a fully self-consistent
static mean-field manner. Several implementations of charge self-consistent of DFT+DMFT
have been reported, e.g. Refs. [30–32], based on projector formalisms similar to Sec. 2.
It is intuitively clear that the Hartree terms occurring within DFT++ charge self-consistency
counteract large charge redistributions. In other words, ambiguities stemming for instance
from the unknown double-counting potential can be expected to be less severe in charge self-
consistent DFT++ calculations as compared to one-shot calculations. This has been explic-
itly demonstrated, e.g., for the Matsubara self-energies in the iron pnictide superconductor
LaFeAsO, where the discrepancy between FLL and AMF approaches is significantly reduced
in the fully charge self-consistent scheme [30].
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5 Conclusions

The combination of first-principles and model Hamiltonian approaches termed DFT++ presents
a promising route towards realistic and material specific descriptions of strongly correlated
electron systems. The number of adjustable parameters normally present in models of strongly
correlated materials like transition-metal compounds or impurities on surfaces can be indeed
largely reduced by deriving them from ab-initio calculations. Thereby, realistic studies of ever
more complex correlated electron systems are coming into reach. At the same time, the model
Hamiltonian level involved in DFT++ offers the chance to study how material properties de-
pend, e.g., on the strength of Coulomb interactions by deliberately treating them as adjustable
parameters. With the projector formalism, DFT++ can in principle be applied to arbitrarily com-
plex systems. Many developments in this direction are being pursued throughout the last few
years. Naturally, this lecture covered only a very limited amount of these activities, as readers
familiar with the subject of DFT++ will have noticed and as becomes clear from a deeper look
into the literature referenced here. As has already become clear in the discussions of double-
counting issues or frequency dependent and non-local interactions a lot of method development
at the interface of first-principles and model based approaches remains still to be done. This
includes both the further development of, e.g., DFT+DMFT to a point where it can be as widely
and routinely applied as LDA+U, developments in the combination of diagrammatic ab-initio
approaches with model based approaches such as GW+DMFT, descriptions of non-local corre-
lation effects or also the coupling of correlated electrons and bosonic modes such as plasmons,
phonons or magnons.
The DFT++ model Hamiltonians discussed in this lecture have put an emphasis on correla-
tion effects due to local Coulomb interactions, which are indeed essential for various magnetic
phenomena or Mott metal insulator transitions. Other many-body phenomena can rely on dif-
ferent kinds of interactions. Wigner crystallization of electrons, exciton binding, or plasmon
modes are often controlled by non-local Coulomb interaction terms, and appropriate models
for such phenomena will naturally have to include different interaction terms. In other words:
any DFT++ modeling requires an idea on which interactions form the basis of the many-body
problem to be described. It can of course be very challenging to identify the essential interac-
tions responsible for an unknown phenomenon or to determine whether some observed effect is
a many-body phenomenon or not.
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1 Introduction

All we know about a physical system stems either from its effects on other physical systems
or from its response to external forces [1–3]. Making sense out of this information is a very
difficult task. First of all, what do we actually mean by physical system? Typically we are
interested in crystals. A sample of a crystal is an object with unique characteristics, a specific
number of atoms or defects, a certain surface, a given weight. What we are interested in,
however, are its general properties, i.e., those common to all possible samples. This idealized
crystal is the one we have in mind [4, 5] with the word system or material. How do we unravel
the mechanisms behind its properties? The first step is constructing the Hamiltonian. The latter
should be abstract enough to indeed describe the ideal crystal only, but it should retain enough
details to actually distinguish it from other systems, i.e., it should be material-specific. At a first
glance, constructing such a material-specific Hamiltonian appears straightforward. All of solid-
state physics stems from the Coulomb interaction, attractive between nuclei and electrons and
repulsive between electrons; we can therefore, in principle, just choose a complete one-electron
basis and, in the Born-Oppenheimer approximation, write down in second quantization the
electronic Hamiltonian for a given ideal crystal Ĥe. To make progress, we then have to solve the
eigenvalue problem ĤeΨ = EΨ . Here trouble starts, since the Schrödinger equation defined by
Ĥe cannot, in general, be solved exactly, and even if we knew the exact solution, with Ne →∞
electrons, it would be very hard to make sense out of it. For the ground state, a very powerful
tool to attack such a many-body problem is density-functional theory (DFT), which shifts the
focus from finding the ground-state wavefunction to finding the ground-state electronic density.
Remarkably, this can be achieved via the solution of a reference auxiliary one-electron problem,
a much simpler task than solving the original problem. Although DFT is an exact ground-state
theory, in practice only approximated forms of the DFT universal functional are known, the
most popular of which is perhaps the local-density approximation (LDA). DFT, in the LDA
or its simple extensions, is very successful in describing and even predicting the properties
of various classes of materials, to the extent that it can be considered the standard model of
solid-state physics [5–7]. For strongly correlated systems, those on which we focus in this
lecture, the LDA and its simple extension fail even qualitatively, however. Thus, if we want to
understand correlated materials we have to revisit the first step, the Hamiltonian. We can change
the perspective; if the full many-body problem cannot be solved, the best approach is perhaps to
reduce the number of degrees of freedom to the essential by integrating out high-energy ones in
the spirit of the Wilson renormalization group. Hence, we have to construct low-energy minimal
material-specific models. Systematically downfolding the high-energy states of the full many-
body problem, although desirable in theory, is basically impossible in practice [8]. It turns
out, however, that we can exploit the successes of DFT to build ab-initio Wannier functions
spanning the low-energy bands [9, 10]; via these Wannier functions, we can construct effective
many-body models, minimal and materials-specific, suited to describe the low-energy part of
the spectrum. But we are still not at the end of the story; with few exceptions, even these
minimal models cannot be solved exactly, and finding powerful and flexible solution techniques
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Fig. 1: A silverweed: Schematic view of color patterns as seen by the human eye (left) and as
might be seen by the eyes of a bee (right, false colors).

is therefore crucial. Typically this involves making a series of approximations, which, together
with the model, have at the end to be put to a test. To this end a big step forward was the
development, started 25 years ago, of the dynamical mean-field theory (DMFT) [11–15] and
shortly after of the LDA+DMFT method [16, 17], which combines density-functional theory
and dynamical mean-field theory. The LDA+DMFT technique quickly proved very successful.
Through this method, we have learned that details do matter; for example we understood that a
crystal-field splitting much smaller than the band-width can play an important role in the metal-
insulator transition of correlated transition-metal oxides [10]. The LDA+DMFT approach was
key in identifying the nature of important phenomena such as, e.g., the origin of orbital ordering
in paradigmatic correlated transition-metal systems [18]. Various of the striking LDA+DMFT
success stories are told in the lecture notes in this book. Thanks to its successes, LDA+DMFT
is nowadays the method of choice for strongly-correlated materials.

A central issue remains to be discussed at this point. Once we have built a material specific
model and solved it within a given set of approximations, e.g., using the LDA+DMFT approach,
how do we actually test our theory against experiments? To make this connection we have to
calculate the quantity actually measured, the response of the system to external perturbations.
This is a challenge on its own. Methods or approximations that work well for the ground state
can, e.g., perform badly for the excitation spectrum, the knowledge of which is crucial for ob-
taining response functions – examples are the Hartree-Fock or static mean-field approximation
or the LDA itself. Furthermore, experiments let us see a system only through a distorting glass,
and our task is to reconstruct the original image. Perhaps some part of the energy spectrum is
invisible to us, because the transition probability from the ground state to certain excited states
is forbidden by symmetry. If the response of a system to a given perturbation is zero in a certain
energy window, e.g., filtered away, we have no chance of seeing what is there. Our eyes filter
the ultraviolet, and thus we cannot see the beautiful color patterns that attract insects to flowers
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such as silverweeds, for us monochromatic (Fig. 1). Response theory therefore plays a crucial
role in our comprehension of Nature. Typically, the external force used in experiments is small
with respect to the internal ones in a crystal, so that the system is weakly perturbed. Thus,
the dominant term is the linear response function. If we are able to disentangle it, the linear-
response function returns us information on the ground state and the excitation spectrum, their
symmetry properties, the strength of correlations. In this lecture, I will present the basics of
linear response theory [1–3] together with some representative examples for strongly correlated
materials, using for the latter LDA+DMFT as theoretical approach.
To set the stage, let us introduce the basics of the LDA+DMFT method, different aspects of
which will be used in the whole lecture. Let us start with the electronic Hamiltonian. In the
Born-Oppenheimer approximation, the non-relativistic electronic Hamiltonian for an ideal crys-
tal Ĥe can then be written as the sum of a one-electron part Ĥ0 and an interaction part ĤU

Ĥe = Ĥ0 + ĤU . (1)

In a complete basis of Wannier functions ψinσ(r), the one-electron term is given by

Ĥ0 = −
∑

σ

∑

ii′

∑

nn′

ti,i
′

n,n′c
†
inσci′n′σ,

where c†inσ (cinσ) creates (destroys) an electron with spin σ in orbital n at site i. The on-site
(i = i′) terms yield the crystal-field matrix while the i 6= i′ contributions are the hopping
integrals. This part of the Hamiltonian describes the attraction between electrons and nuclei,
the latter forming an ideal lattice. The electron-electron repulsion ĤU is instead given by

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U iji′j′

np n′p′c
†
inσc

†
jpσ′cj′p′σ′ci′n′σ.

Although the Hamiltonian (1) is very general, for a given system, the material-specific hopping
and crystal-field parameters can be obtained ab-initio using, e.g., Wannier functions constructed
from first principles via density-functional theory [19, 20]. Then

ti,i
′

n,n′ = −
∫
drψinσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′n′σ(r),

where vR(r) is the self-consistent one-electron LDA reference potential. The bare Coulomb
integrals can be expressed in terms of Wannier functions as well

U iji′j′

np n′p′ =

∫
dr1

∫
dr2 ψinσ(r1)ψjpσ′(r2)

1

|r1 − r2|
ψj′p′σ′(r2)ψi′n′σ(r1).

Here we have to be careful, however. The LDA includes in vR(r) also Coulomb effects, via
the long-range Hartree term and the exchange-correlation contribution; if we use LDA Wannier
functions as one-electron basis, to avoid double counting we have to subtract from ĤU the
effects already included in the LDA. This means that we have to replace

ĤU → ∆ĤU = ĤU − ĤDC,
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where ĤDC is the double-counting correction. Unfortunately we do not know which correlation
effects are exactly included in the LDA, and therefore the exact expression of ĤDC is also
unknown.1 The remarkable successes of the LDA suggest, however, that in many materials the
LDA is overall a good approximation, and therefore, in those systems at least, the term∆ĤU can
be neglected. What about strongly correlated materials? Even in correlated systems, most likely
the LDA works rather well for the delocalized electrons or in describing the average or the long-
range Coulomb effects. Thus one can think of separating the electrons into uncorrelated and
correlated; only for the latter we do take the correction ∆ĤU into account explicitly, assuming
furthermore that∆ĤU is local or almost local [19]. Typically, correlated electrons are those that
partially retain their atomic character, e.g., those that originate from localized d and f shells;
for convenience in this lecture we assume that in a given system they stem from a single atomic
shell l (e.g., d for transition-metal oxides or f for heavy-fermion systems) and label their states
with the atomic quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

np,n′p′ ∼
{
U l
mαmβm′αm

′
β

iji′j′ = iiii npn′p′ ∈ l
0 iji′j′ 6= iiii npn′p′ /∈ l

and ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given by the static mean-
field contribution of Ĥ l

U . There is a drawback in this procedure, however. By splitting elec-
trons into correlated and uncorrelated we implicitly assume that the main effect of the latter
is the renormalization or screening of parameters for the former, in particular of the Coulomb
interaction. The calculation of screening effects remains, unfortunately, a challenge to date.
Approximate schemes are the constrained LDA and the constrained random-phase approxima-
tion (RPA) methods [6]. Nevertheless, we have now identified the general class of models for
strongly-correlated systems, namely the generalized Hubbard model

Ĥe = ĤLDA + Ĥ l
U − Ĥ l

DC. (2)

It is often convenient to integrate out or downfold empty and occupied states and work directly
with a set of Wannier functions spanning the correlated bands only. The LDA term in Ĥe is then
given by

ĤLDA = −
∑

ii′

∑

σ

∑

mαm′α

ti,i
′

mα,m′α
c†imασci′m′ασ =

∑

k

∑

σ

∑

mαm′α

[
HLDA
k

]
mα,m′α

c†kmασckm′ασ,

where the right-hand side is rewritten using as a one-electron basis Bloch functions ψkmασ
constructed from the Wannier functions ψimασ. The local screened Coulomb interaction is
instead given by

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′βc
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

1A more detailed discussion of the double-counting correction can be found in the lectures of Tim Wehling and
Alexander Lichtenstein.
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More details on building realistic models can be found, e.g., in the lecture notes of previous
schools [5–7], in particular in the chapters listed in Refs. [19–22]. The simplest version of
Hamiltonian (2) is the one-band Hubbard model

ĤHubbard = −
∑

ii′

∑

σ

ti,i
′

1,1c
†
iσci′σ

︸ ︷︷ ︸
Ĥ0

+ εd
∑

iσ

niσ + U
∑

i

ni↑ni↓

︸ ︷︷ ︸
ĤU

, (3)

where εd is the crystal-field level, ti,i
′

1,1 is the hopping integral between electrons at site i and i′,
U the on-site Coulomb repulsion, and niσ = c†iσciσ. Since in this model only the correlated or-
bital (mα = 1) appears, the double-counting correction amounts to a mere shift of the chemical
potential, and therefore does not have to be included explicitly. The one-band Hubbard model
describes, at least in first approximation, the low-energy states of high-temperature supercon-
ducting cuprates (HTSCs), characterized by a partially filled Cu d x2−y2-like band at the Fermi
level. In these systems the most relevant hopping integrals are the one between nearest neigh-
bors, t, and the one between next-nearest neighbors, t′; the ratio t′/t ranges from 0.1 to 0.4 [9].
At half-filling, the one-band Hubbard model describes the physics of the Mott metal-insulator
transition. In the atomic limit (U/t→∞), it is a collection of decoupled one-electron atoms

ĤHubbard ∼ ĤU = εd
∑

iσ

niσ + U
∑

i

ni↑ni↓. (4)

In the non-interacting limit (U/t→ 0) it describes instead a metallic half-filled band

ĤHubbard ∼ Ĥ0 = −
∑

ii′

∑

σ

ti,i
′

1,1c
†
iσci′σ =

∑

σ

∑

k

εknkσ. (5)

In this lecture we will use the half-filled Hubbard model (3) for most examples. In particular,
we will discuss its magnetic linear-response function; the microscopic mechanisms leading to
magnetism in the Hubbard model – and in correlated systems in general – are discussed in detail
in my lecture of last year’s school [22], which is complementary to the present one.
Although apparently simple, even Hamiltonian (3) cannot be solved exactly except than in
special cases. The state-of-the art method for solving Hubbard-like models is, as discussed,
dynamical mean-field theory. The latter maps the correlated lattice problem described by the
Hubbard model onto a correlated single-impurity problem [14,15], i.e., onto an effective model
describing a correlated site ic coupled via hybridization to a bath of non-correlated electrons.
This effective single impurity model has to be solved self-consistently in the spirit of mean-field
theories. The DMFT self-consistency loop is shown in Fig. 2. The impurity Green function
G(ω), in general a matrix in spin-orbital space, is obtained by solving the quantum-impurity
problem for a given bath. Next, the Dyson equation yields the self-energy

Σ(ω) = G−1(ω)−G−1(ω),

where G(ω) is the bath Green-function matrix; the self-energy matrix Σ(ω) is then used to
calculate the local Green-function matrix

Gic,ic(ω) =
1

Nk

∑

k

[
ω −HLDA

k −Σ(ω)
]−1

ic,ic
,
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⌃ic 0 . . .
0 ⌃ic . . .
...

...
. . .

1
CA

Fig. 2: The LDA+DMFT self-consistency loop. The LDA Hamiltonian HLDA
k is built in the ba-

sis of Bloch states obtained from localized Wannier functions. The set {ic} labels the equivalent
correlated sites inside the unit cell. The local Green-function matrix is at first calculated using
an initial guess for the self-energy matrix. The bath Green-function matrix is then obtained
via the Dyson equation and used to build an effective quantum-impurity model. The latter is
solved via a quantum-impurity solver, here quantum Monte Carlo (QMC), yielding the impurity
Green-function matrix. Through the Dyson equation the self-energy is then obtained, and the
procedure is repeated till self-consistency is reached.

where Nk is the number of k points. Self-consistency is reached when the impurity Green
function G(ω) equals the actual local Green function Gic,ic(ω) of the system. The main ap-
proximation adopted is that the self-energy is local; the self-energy becomes indeed local in the
infinite-coordination-number limit [11,12]. The combination of DMFT with density-functional
theory, just described above in short, defines the LDA+DMFT approach [17]. In this lecture we
will not further discuss this technique, except for the specific aspects related to the calculation
of linear-response functions. These include the local-vertex approximation, used to obtain from
DMFT calculations the q-dependent linear-response function χ(q;ω) and the quantum-impurity
model and its solution; the latter yields the local impurity Green-function matrix and the local
linear response function χ(ω). A more detailed description of the DMFT and LDA+DMFT
methods and their development can be found in the lecture notes of Dieter Vollhardt, Gabriel
Kotliar, Antoine Georges, and Alexander Lichtenstein.
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2 Linear response theory

2.1 The linear susceptibility χ(r, r′; t, t′)

Let us consider a system described by the Hamiltonian Ĥ and a space- and time-dependent
perturbation h(r, t), for example a magnetic field. How does the system react to the external
perturbation? If the perturbation is weak and we can calculate the change in the Hamiltonian to
linear order, the response of the system can be given in terms of retarded correlation functions
calculated at equilibrium, even if the perturbation has brought the sample out of equilibrium.
The linear correction to the Hamiltonian can be expressed as

Ĥ → Ĥ +
∫
dr Ĥ1(r; t) + . . .

Ĥ1(r; t) = −∑ν Ôν(r; t)hν(r; t),
(6)

where Ô(r; t) is an operator that describes the system property affected by the perturbation;
often this operator is a vector, thus we indicate with ν = x, y, z its components along the
Cartesian axes. If the perturbation is an external magnetic field, Ô(r; t) could be the magnetic
moment density, M̂ (r; t). It is convenient to express Ô(r; t) in the Heisenberg representation

Ôν(r; t) = ei(Ĥ−µN̂)tÔν(r)e−i(Ĥ−µN̂)t,

where µ is the chemical potential and N̂ the electron number operator. The perturbation h(r; t)

can display very different forms, depending on the experiment. It could have been, e.g., initially
switched on adiabatically at t = −∞; this can be expressed mathematically by multiplying
the perturbation by the prefactor eεt, where here ε is an infinitesimally small positive number,
h(r; t) → eεth(r; t), and taking later the limit ε → 0. The perturbation could also be a sharp
impulse at t = t0 and therefore have the form h(r; t) = h(r)δ(t − t0), or have been switched
on or off suddenly at a certain time t = t0.
Whatever its form, let us consider the effect of the time-dependent perturbation h(r; t) on a
specific system property, described by the operator P̂ (r; t), also expressed in the Heisenberg
representation; in general P̂ (r; t) can be a different operator than Ô(r; t), but in many common
cases it is proportional to it. To linear order in the perturbation, at a given temperature the
expectation value of P̂ (r; t) is modified as follows

〈P̂ν(r; t)〉 = 〈P̂ν(r)〉0 + 〈δP̂ν(r; t)〉0,

〈δP̂ν(r; t)〉0 = −i
∫
dr′
∫ t

−∞
dt′
〈[
∆P̂ν(r; t), ∆Ĥ1(r′; t′)

]〉
0
.

Here 〈P̂ν(r)〉0 is the (equilibrium) thermal average in the absence of the perturbation. For a
given operator Â, the latter is defined as

〈Â〉0 =
1

Z
Tr
[
e−β(Ĥ−µN̂)Â

]
,
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where β = 1/kBT , and Z is the partition function

Z = Tr e−β(Ĥ−µN̂).

The difference

∆Â(r; t) = Â(r; t)− 〈Â(r)〉0,

measures the deviation with respect to the thermal average in the absence of perturbation; in
most common cases 〈Â(r)〉0 = 0. Let us consider as an example the case in which the per-
turbation is a magnetic field and P̂ν(r; t) the ν-component of the magnetic density operator
M̂ν(r; t); for a paramagnetic system the equilibrium expectation value 〈M̂ν(r)〉0 is zero and
∆M̂ν(r; t) = M̂ν(r; t). Finally, for a given operator Â(r), the expectation value 〈∆Â2(r)〉0
yields the mean-square fluctuation of the quantity Â(r).
By replacing the operator ∆Ĥ1(r′; t′) in the commutator with its expression obtained from
Eq. (6), we can express the linear correction to 〈P̂ν(r; t)〉0 as

〈δP̂ν(r; t)〉0 = i
∑

ν′

∫
dr′
∫ t

−∞
dt′
〈[
∆P̂ν(r; t), ∆Ôν′(r

′; t′)
]〉

0
hν′(r

′; t′).

The linear response function or linear susceptibility is then given by

χP̂νÔν′ (r, r
′; t, t′) ≡ lim

hν′→0

∂〈P̂ν(r; t)〉
∂hν′(r′; t′)

.

The equation

χP̂νÔν′ (r, r
′; t, t′) = i

〈[
∆P̂ν(r; t), ∆Ôν′(r

′; t′)
]〉

0
Θ(t− t′), (7)

is known as the Kubo formula. In order to respect causality, a perturbation can only modify the
system after it has been switched on. Thus, if the perturbation is switched on at time t′, the
linear response function can only have finite value for t > t′, and it has to vanish for t < t′;
in other words, the response function is retarded. This cause-and-effect principle is included in
Eq. (7) through the Heaviside step function Θ(t− t′), defined as

Θ(t− t′) =

{
1 if t− t′ > 0

0 if t− t′ < 0.

It is worth pointing out that the Kubo formula Eq. (7) yields the response function in terms of
the correlation function

SP̂νÔν′ (r, r
′; t, t′) = 〈∆P̂ν(r; t)∆Ôν′(r

′; t′)〉0. (8)

The latter expresses the joint probability of having a finite ∆P̂ν at position r and time t if there
was a finite ∆Ôν′ at position r′ and time t′. This relation between linear response function and
correlation function will turn out to be very important, as we will see in Sec. 2.5.
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2.2 The Fourier transform χ(q;ω)

Let us consider the case in which the Hamiltonian Ĥ of the system is time-independent and thus
also invariant under time translations. Then the linear response function depends only on time
differences, t− t′, and we can rewrite it as follows

χP̂νÔν′ (r, r
′; t, t′) = χP̂νÔν′ (r, r

′; t− t′).

Thus the linear correction to the expectation value of P̂ν(r; t) becomes

〈δP̂ν(r; t)〉0 = i
∑

ν′

∫
dr′
∫ +∞

−∞
dt′ χP̂νÔν′ (r, r

′; t− t′)hν′(r′; t′). (9)

Many perturbations are periodic in time after they have been switched on. It is therefore con-
venient to Fourier transform Eq. (9) with respect to time (see Appendix for definitions and
conventions on Fourier transforms adopted in this lecture), obtaining

〈δP̂ν(r;ω)〉0 =
∑

ν′

∫
dr′χP̂νÔν′ (r, r

′;ω)hν′(r
′;ω),

where h(r′;ω) is the Fourier transform of the perturbation and χP̂νÔν′ (r, r
′;ω) the Fourier

transform of the susceptibility. The latter is given by

χP̂νÔν′ (r, r
′;ω) =

∫ ∞

−∞
dt χP̂νÔν′ (r, r

′; t)eiωt =

∫ ∞

0

dt χP̂νÔν′ (r, r
′; t)eiωt.

It is also convenient to Fourier transform Eq. (9) with respect to r; for a system with full spatial
translational invariance symmetry, i.e., for which the momentum is conserved,

χP̂νÔν′ (r, r
′;ω) = χP̂νÔν′ (r − r

′;ω),

and thus we have

〈δP̂ν(q;ω)〉0 =
∑

ν′

∫
dq′

(2π)3
χP̂νÔν′ (q,−q

′;ω)hν′(q
′;ω) (10)

=
∑

ν′

χP̂νÔν′ (q;ω)hν′(q;ω),

where

χP̂νÔν′ (q,−q
′;ω) =

∫
dr eiq·r

∫
dr′ e−iq

′·r′ χP̂νÔν′ (r, r
′;ω)

=

∫
dr′
[∫

dr eiq·(r−r
′) χP̂νÔν′ (r − r

′;ω)

]
e−i(q

′−q)·r′

= (2π)3χP̂νÔν′ (q;ω) δ(q − q′),

χP̂νÔν′ (q;ω) =

∫
dr′′ eiq·r

′′
χP̂νÔν′ (r

′′;ω).
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An ideal crystal has only lattice translational invariance, however. How does relation (10)
change in this case? It turns out that it is still valid, but we have to express χP̂νÔν′ (q,−q

′;ω)

differently. Let us see how. For simplicity, we consider a lattice of Bravais type (one atom per
unit cell); we define as Ti the lattice vector which identifies site i. Let us assume that ∆P̂ν(r)

is the one-body operator Φ†(r)∆P̂ν Φ(r), where Φ†(r) is the fermionic field creation operator.
The term ∆P̂ν(r) can then be expressed as follows

∆P̂ν(r) =
∑

ii′

∑

αα′

ψiα′(r)ψi′α(r)︸ ︷︷ ︸
ρi,i

′
α′α(r)

c†iα′ [∆P̂ν ]αα′ ci′α︸ ︷︷ ︸
∆P̂i,i

′
ν,αα′

=
∑

ii′

∑

αα′

ρi,i
′

α′α(r)∆P̂ i,i′ν,αα′ ,

where {ψiα(r)} is a complete set of orthonormal one-electron wavefunctions and α a collective
index for its quantum numbers (for example α = mασ). If we now choose for {ψiα(r)} a set
of localized Wannier functions, to first approximation the overlap of two ψiα(r) centered at
different sites is small and can be neglected; this means that ρi,i

′

αα′(r) is only sizeable for i = i′,
and therefore

∆P̂ν(r) ∼
∑

i

∑

αα′

ρi,iα′α(r)∆P̂ iν,αα′ ,

i.e., ∆P̂ν(r) is approximatively a weighted sum of the site operators ∆P̂ iν,αα′ . A similar ap-
proximation holds for ∆Ôν(r),

∆Ôν(r) ∼
∑

i

∑

γ′γ

ρi,iγ′γ(r)∆Ôiν,γγ′ .

Let us introduce the tensorial components of the linear-response function for the site operators

χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(t− t′) = i
〈[
∆P̂ iν,αα′(t− t′), ∆Ôi

′

ν′,γγ′(0)
]〉

0
Θ(t− t′).

The Fourier transform of χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(t− t′) in time is given by χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(ω); furthermore

χαα
′γγ′

P̂ν Ôν′
(q,−q′;ω) =

∑

ii′

eiq·Ti−iq
′·Ti′χαα

′γγ′

P̂ i
ν
Ôi
′
ν′

(ω) =
∑

i′

ei(q−q
′)·Ti′

︸ ︷︷ ︸
Ns

∑
G δq′,q+G

∑

i

eiq·Ti χαα
′γγ′

P̂ i
ν
Ô0
ν′

(ω)

︸ ︷︷ ︸
χαα

′γγ′

P̂ν Ôν′
(q;ω)

,

whereNs is the number of lattice sites. In terms of these components, the term χP̂νÔν′ (q,−q
′;ω)

in Eq. (10) is given by

χP̂νÔν′ (q,−q
′;ω) = Ns

∑

αα′γγ′

∑

G

ρα′α(q)ργ′γ(−q′) δq′,q+G χαα
′γγ′

P̂ν Ôν′
(q;ω).

where ρα′α(q) =
∫
dr eiq·rρi0,i0α′α (r). Long-range order instabilities are typically at qC vectors

that correspond to deformations commensurate with the lattice. To study them, one can, e.g.,
perturb the system at q′ = qC , or possibly use experimental techniques that have access to the
q-dependent response function.
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Let us now consider as an example the case in which the perturbation is a magnetic field oriented
along z and the operators ∆P̂ν(r) and ∆Ôν(r) are both equal to M̂z(r) = Φ†(r)σ̂zΦ(r), the
magnetic density at position r; the operator σ̂z is the z Pauli matrix. Let us derive the magnetic
response for a strongly correlated system with a partially filled l shell; for simplicity, we focus
on the l electrons and choose as a basis the set of Wannier functions ψimασ(r) spanning the
corresponding l bands. Then M̂z(r) can be expressed as follows

M̂z(r) ∼ −gµB
∑

i

∑

mαm′α

ρmαm′α(r)
1

2

∑

σσ′

c†imασ [∆M̂z]σσ′ cim′ασ′ ,

where [∆M̂z]σσ′ = 〈σ|σ̂z|σ′〉. If our low-energy model includes only a single orbital we can
drop the indices {mα}; in this case we obtain the simple expression

M̂z(r) ∼ −gµBρ(r)
∑

i

Ŝiz. (11)

The Fourier transform of M̂z(r) is then given by M̂z(q) ∼ −gµBρ(q)Ŝz(q) with

Ŝz(q; 0) =
1

2

∑

k

∑

σ

c†kσ〈σ|σ̂z|σ〉ck+qσ.

Finally, to linear order the change in 〈M̂z(q;ω)〉0 can be expressed as

〈δM̂z(q;ω)〉0 ∼ (gµB)2|ρ(q)|2
∑

ii′

e−iq·(Ti−Ti′ )
∑

σσ′

σσ′χσσσ
′σ′

ŜizŜ
i′
z

(ω) hz(q;ω)

= (gµB)2|ρ(q)|2χŜzŜz(q;ω)hz(q;ω),

where σ = 1 for spin up and σ = −1 for spin down and

χŜzŜz(q;ω) = i

∫
dt eiωt

〈[
Ŝz(q; t), Ŝz(−q; 0)

]〉
0
Θ(t).

Later in the lecture we will discuss the case of the one-band Hubbard model; we will focus
on the response function for site operators, χŜizŜi′z (ω) and its Fourier transform χŜzŜz(q;ω) and
do not further discuss the prefactor ρ(q). For multi-orbital systems with well-defined localized
spins but quenching of the angular momentum, e.g., 3d transition-metal oxides that are Mott
insulators [22], the magnetization density can still be expressed via Eq. (11). We have, however,
to replace ρ(r) with the normalized spin density at the atomic site, ρs(r), originating from the
unpaired electrons in the l shell. Thus

M̂z(r) ∼ −gµBρs(r)
∑

i

Ŝiz.

Then we have

〈δM̂z(q;ω)〉0 ∼ (gµB)2|ρs(q)|2
∑

ii′

e−iq·(Ti−Ti′ )
∑

σσ′

σσ′χσσσ
′σ′

ŜizŜ
i′
z

(ω)hz(q;ω)

= (gµB)2|ρs(q)|2χŜzŜz(q;ω)hz(q;ω).

The Fourier transform of the spin density ρs(q) is the so-called atomic form factor and can be
probed via, e.g., neutron scattering experiments.
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2.3 Analytic properties of χ(q;ω)

The Fourier transform of χP̂νÔν′ (r; t) to momentum space can be written as

χP̂νÔν′ (q; t) = i
〈[
∆P̂ν(q; t), ∆Ôν′(−q; 0)

]〉
0
Θ(t).

Let us assume that {ΨNn } is the full set of eigenvectors of the Hamiltonian Ĥ for N electrons
and that the corresponding eigenenergies are {EN

n }. Let us also define the matrix elements

P nm
ν (q) = 〈ΨNn |∆P̂ν(q; 0)|ΨNm 〉,

Omn
ν′ (q) = 〈ΨNm |∆Ôν′(q; 0)|ΨNn 〉.

We can then rewrite χP̂νÔν′ (q; t) as follows

χP̂νÔν′ (q;ω) =
i

Z

∫ ∞

0

dt eiωt Tr
{
e−β(Ĥ−µN̂)

[
∆P̂ν(q; t), ∆Ôν′(−q; 0)

]}

=
i

Z

∑

nm

∫ ∞

0

dt e−β(ENn −µN)ei(ω+ENn −ENm)t P nm
ν (q)Omn

ν′ (−q)

− i

Z

∑

nm

∫ ∞

0

dt e−β(ENn −µN)ei(ω+ENm−ENn )t Onm
ν′ (−q)Pmn

ν (q)

=
i

Z

∑

nm

Fnm

∫ ∞

0

dt ei(ω−E
N
m+ENn )t P̂ nm

ν (q)Ômn
ν′ (−q),

where Fnm = e−β(ENn −µN) − e−β(ENm−µN). The time integral can be obtained from the formula

I(x) =

∫ ∞

0

eixt dt =
i

x+ iδ
,

where δ is a positive infinitesimal; we thus arrive to the final expression

χP̂νÔν′ (q;ω) =
1

Z

∑

nm

e−β(ENn −µN) − e−β(ENm−µN)

EN
m − EN

n − ω − iδ
P nm
ν (q)Omn

ν′ (−q). (12)

This equation shows that the complex function χP̂νÔν′ (q; z), obtained from χP̂νÔν′ (q;ω) replac-
ing ω with the complex variable z, thanks to the positive infinitesimal δ, is analytic in the upper
half and has poles in the lower half of the complex plane. The fact that the response function is
analytic is a direct consequence of causality; the fact that it is analytic in the upper instead than
in the lower half of the complex plane is a consequence of our conventions on the signs of the
exponents in the Fourier transform.
Up to now we did not make any assumption on the properties of the operators Ôν and P̂ν ; if,
however, they are Hermitian, one can show, starting from Eq. (12), that

χP̂νÔν′ (q;ω) =
[
χP̂νÔν′ (−q;−ω)

]∗
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Re z

Im z

Fig. 3: The semicircular contour C in the upper complex plane.

Therefore if we split the response function into a real and an imaginary part,

χP̂νÔν′ (q;ω) = Re
[
χP̂νÔν′ (q;ω)

]
+ i Im

[
χP̂νÔν′ (q;ω)

]
,

the two components should satisfy the relations

Re
[
χP̂νÔν′ (q;ω)

]
= Re

[
χP̂νÔν′ (−q;−ω)

]
,

Im
[
χP̂νÔν′ (q;ω)

]
= −Im

[
χP̂νÔν′ (−q;−ω)

]
.

Thus the real part of the linear response function is even and the imaginary part is odd in ω.

2.4 Kramers-Kronig relations and sum rules

The Kramers-Kronig relations are valid for any retarded response function χ(q;ω). They follow
from the fact that the complex function χ(q; z) is analytic in the upper half of the complex
plane, a property that we have just proved, and vanishes in the limit |z| → ∞. Let us consider
the integral on the real axis

IR =

∫ +∞

−∞

χ(q;ω′)

ω′ − ω + i δ
dω′,

where δ is an infinitesimally small positive number. The integrand is a complex analytic func-
tion in the upper part of the complex plane, and therefore, because of the Cauchy integral
theorem, the integral on any closed contour C in that half-plane has to vanish

IC =

∮

C

χ(q; z)

z − ω + i δ
dz = 0.
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Let us take as contour C the semicircle shown in Fig. 3. If χ(q; z) vanishes as 1/|z| or faster for
|z| → ∞, from IC = 0 it also follows that IR = 0. To ensure that indeed this condition is met,
we subtract from the real part2 of the susceptibility its infinite frequency limit Re [χ(q;∞)].
Next, we rewrite IR by using the Sokhotski-Plemelj formula

1

ω + i δ
= P 1

ω
− iπδ(ω)

where P is the Cauchy principal value
∫ ∞

−∞
P 1

ω
dω =

∫ −ε

−∞

1

ω
dω +

∫ ∞

ε

1

ω
dω,

and δ(ω) the Dirac delta function. Thus we obtain the Cauchy relation

IR = P
∫ +∞

−∞

χ(q;ω′)− Re[χ(q;∞)]

ω′ − ω dω′ − iπ {χ(q;ω)− Re[χ(q;∞)]}

As a consequence the real and imaginary part of the susceptibility are the Hilbert transform of
each other, hence they satisfy the so-called Kramers-Kronig relations

Re [χ(q;ω)]− Re [χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im [χ(q;ω′)]

ω′ − ω dω′,

Im [χ(q;ω)] = − 1

π
P
∫ +∞

−∞

Re [χ(q;ω′)]− Re [χ(q;∞)]

ω′ − ω dω′.

The first Kramers-Kronig relation yields the sum rule

Re [χ(q;ω = 0)]− Re [χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im [χ(q;ω′)]

ω′
dω′. (13)

In the q = 0 limit, Eq. (13) is known as thermodynamic sum rule and

χνν′(0; 0) = lim
hν′→0

∂〈Pν〉
∂hν′

,

is the response to a static and uniform perturbation, hν′ = hν′(0; 0).

Finally, if Ôν′ ∝ ˆ
P †ν and thus the product P nm

ν (q)Omn
ν′ (−q) is real, by using (12) for the left-

hand side and the invariant properties of the trace under cyclic permutations for the right-hand
side, one can show that

2

π

∫ ∞

0

ω Im
[
χP̂νÔν′ (q;ω)

]
dω =

〈[
[P̂ν , Ĥ], Ôν′

]〉
0
,

a relation known as Thomas-Reich-Kuhn or f-sum rule.

2For Hermitian operators the real part of the function χ(q;ω) is even in ω; thus, the infinite frequency limit of
χ(q;ω) could, in principle, be a constant.
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2.5 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem is a relation between the correlation function S(q;ω), which
essentially describes fluctuations at equilibrium, and the linear response function χ(q;ω), which
describes dissipative effects or relaxation phenomena as well. To derive it, let us start from the
spatial Fourier transform of the correlation function

SP̂νÔν′ (q; t) =
〈
∆P̂ν(q; t)∆Ôν′(−q)

〉
0
.

This equation, together with the definition of the susceptibility, yields the relation

χP̂νÔν′ (q; t) = i[SP̂νÔν′ (q; t)− SÔν′ P̂ν (−q;−t)]Θ(t). (14)

Let us now take the time Fourier transform of the correlation function and express it in term of
a full set of eigenvectors of the Hamiltonian, as we have previously done for the susceptibility

SP̂νÔν′ (q;ω) =

∫ ∞

−∞
dt eiωt〈∆P̂ν(q; t)∆Ôν′(−q; 0)〉0

=
1

Z

∑

nm

∫ ∞

−∞
dt ei(ω+ENn −ENm)te−β(ENn −µN)P nm

ν (q)Omn
ν′ (−q)

=
2π

Z

∑

nm

e−β(ENn −µN)P nm
ν (q)Omn

ν′ (−q) δ(ω − EN
m + EN

n ).

If we exchange first the order of the operators and later the indices n and m in the sum, we find

SÔν′ P̂ν (q;ω) =
2π

Z

∑

nm

e−β(ENm−µN)P nm
ν (−q)Omn

ν′ (q)δ(ω − EN
n + EN

m).

The correlation function therefore satisfies the principle of detailed balance

SÔν′ P̂ν (−q;−ω) = e−βωSP̂νÔν′ (q;ω).

The relation above can be understood as follows. If ω > 0, the correlation function SP̂νÔν′ (q;ω)

describes the probability Pn→m ∝ n(En)[1 − n(Em)] that the system is excited from an initial
state with energyEn to a final state with higher energyEm = En+ω. Instead, SP̂νÔν′ (−q;−ω),
describes the probability Pm→n ∝ n(Em)[1− n(En)] that the system goes from the initial state
with energy Em to a final state with lower energy En = Em−ω. The probability Pm→n is lower
than Pn→m by the factor e−βω.
We are now ready to Fourier transform Eq. (14). To do this, first we replace the step function
with its Fourier representation

Θ(t) = i

∫ ∞

−∞

dω′′

2π
e−iω

′′t 1

ω′′ + iδ
,

and do the same with the correlation function,

SP̂νÔν′ (q; t) =

∫
dω′

2π
e−iω

′tSP̂νÔν′ (q;ω′);
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next we Fourier transform in t the left- and right-hand side of Eq. (14), obtaining

χP̂νÔν′ (q;ω) = −
∫ ∞

−∞

dω′

2π

SP̂νÔν′ (q;ω′)− SÔν′ P̂ν (−q;−ω′)
ω − ω′ + iδ

.

Finally, via the principle of detailed balance we arrive at the expression

χP̂νÔν′ (q;ω) = −
∫ ∞

−∞

dω′

2π
SP̂νÔν′ (q;ω′)

1− e−βω′

ω − ω′ + iδ
.

Thus, if SP̂νÔν′ (q;ω′) is real, as happens when Ôν′ ∝ P̂ †ν , the following relation holds

SP̂νÔν′ (q;ω) = 2(1 + nB)Im[χP̂νÔν′ (q;ω)], nB(ω) =
1

eβω − 1
.

This is the fluctuation-dissipation theorem. The left-hand side yields the spectrum of sponta-
neous fluctuations and the right-hand side the energy dissipation. When kBT is large, it follows
from the first Kramers-Kronig relation, Eq. (13), and the fluctuation-dissipation theorem that

Re[χP̂νÔν′ (q;ω = 0)]− Re[χP̂νÔν′ (q;∞)] ∼ 1

kBT
SP̂νÔν′ (q; t = 0).

2.6 Single-particle Green function
2.6.1 Definitions

In the non-interacting limit or within certain approximations, the susceptibility can be written
in terms of single-particle Green functions. It is therefore important to introduce the latter and
their properties. Let us first define the Green function or propagator

Gαα′(t, t
′) = −i

〈
T cα(t)c†α′(t

′)
〉

0
,

where T is the time-ordering operator, which orders the operators in decreasing time from left
to right. The indices α and α′ are flavors, and c†α(cα) is a fermionic creation (annihilation)
operator. When the Hamiltonian is time-independent,

Gαα′(t, t
′) = Gαα′(t− t′).

It is useful to express the Green function using a full set of eigenvectors {ΨNn } of the Hamilto-
nian, as we have done for the susceptibility and the correlation function. We obtain

Gαα′(t) = − i

Z

∑

Nnm

e−β(ENn −µN)





ei(E
N
n −E

N+1
m +µ)t〈ΨNn |cα|ΨN+1

m 〉〈ΨN+1
m |c†α′ |ΨNn 〉 t > 0

−ei(−ENn +EN−1
m +µ)t〈ΨNn |c†α′ |ΨN−1

m 〉〈ΨN−1
m |cα|ΨNn 〉 t < 0

Let us define Cnm
α = 〈ΨNn |cα|ΨN+1

m 〉 and Cnm
α′ = 〈ΨN+1

m |c†α′|ΨNn 〉. If, for negative times, we
replace N with N + 1 and exchange m and n, we obtain

Gαα′(t) = − i

Z

∑

Nnm

e−β(ENn −µN) Cnm
α′ C

nm
α ei(E

N
n −E

N+1
m +µ)t

[
Θ(t)− e−β(EN+1

m −ENn −µ) Θ(−t)
]
.
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The Fourier transform with respect to time yields

Gαα′(ω) =
1

Z

∑

Nnm

e−β(ENn −µN)Cnm
α′ C

nm
α

×
{

1

ω − EN+1
m + EN

n + µ+ iδ
+

e−β(EN+1
m −ENn −µ)

ω − EN+1
m + EN

n + µ− iδ

}
.

Let us define the function

Aαα′(ω) =
2π

Z

∑

Nnm

e−β(ENn −µN)Cnm
α′ C

nm
α [1 + e−βω]δ(ω − EN+1

m + EN
n + µ).

In terms of Aαβ(ω), the Green function takes the simpler form

Gαα′(ω) =

∫ +∞

−∞

dω′

2π

[
1− n(ω′)

ω − ω′ + iδ
+

n(ω′)

ω − ω′ − iδ

]
Aαα′(ω

′).

This expression is known as Lehmann representation, and Aαβ(ω) is called spectral function. It
is often useful to introduce the retarded and advanced Green functionsGR

αα′(t, t
′) andGA

αα′(t, t
′).

The first is given by

GR
αα′(t, t

′) = −iΘ(t− t′)
〈[
cα(t), c†α′(t

′)
]〉

0
,

and the latter by

GA
αα′(t, t

′) = iΘ(t′ − t)
〈[
cα(t), c†α′(t

′)
]〉

0
.

If we Fourier transform them in time we have

GR
αα′(ω) =

∫ +∞

−∞
dω′

1

2π

[
1

ω − ω′ + iδ

]
Aαα′(ω

′),

GA
αα′(ω) =

∫ +∞

−∞
dω′

1

2π

[
1

ω − ω′ − iδ

]
Aαα′(ω

′),

and therefore

Aαα′(ω) = i
[
GR
αα′(ω)−GA

αα′(ω)
]
.

2.6.2 Temperature Green function

To build a consistent many-body perturbation theory at finite temperature it is convenient to
introduce an imaginary time variable, τ . The imaginary-time Green function, given by

Gαα′(τ ) = −〈T cα(τ1)c†α′(τ2)〉0 = − 1

Z
Tr
[
e−β(Ĥ−µN̂)T cα(τ1)c†α′(τ2)

]
,

is known as the temperature or Matsubara Green function. In this expression, T is again the
time-ordering operator; the imaginary time fermionic operators o(τ) = c(τ), c†(τ) are given by

o(τ) = eτ(Ĥ−µN̂)o e−τ(Ĥ−µN̂).
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The vector τ is defined as τ = (τ1, τ2). Writing explicitly the action of T , we obtain

Gαα′(τ ) = −Θ(τ1 − τ2)〈cα(τ1)c†α′(τ2)〉+Θ(τ2 − τ1)〈c†α′(τ2)cα(τ1)〉.

If the Hamiltonian is time-independent,

Gαα′(τ ) = Gαα′(τ1 − τ2).

The imaginary-time Green function is well defined only in the interval −β < τ1 − τ2 = τ < β.
This can be seen by writing it explicitly in a basis of eigenvectors of the Hamiltonian, {ΨNn }

Gαα′(τ) =
1

Z

∑

Nnm

〈ΨNn |cα|ΨN+1
m 〉〈ΨN+1

m |c†α′ |ΨNn 〉e−β(ENn −µN)





−e(ENn −E
N+1
m +µ)τ τ > 0

e−(ENn −E
N+1
m +µ)(−β−τ) τ < 0

For imaginary times outside the interval −β < τ < β, the high energy states would give
divergent contributions. Either from the expression above or from the definition of Gαα(τ) and
the invariance of the trace under cyclic permutation of operators, one can show that Gαα′(τ) has
the following symmetry property

Gαα′(τ) = −Gαα′(τ + β) for − β < τ < 0.

Finally, if nα is the number of electrons for flavor α, one can show that

Gαα(τ → 0+) = −1 + nα, Gαα(τ → β−) = −nα.

For negative times, we have

Gαα(τ → 0−) = nα, Gαα(τ → −β−) = 1− nα.

Thus, Gαα(τ) is discontinuous at τ = 0 because of time ordering. It is at this point convenient
to introduce a generalized imaginary-time Green function G̃αα′(τ ) defined for any τ ,

G̃αα′(τ1 ± n1β, τ2 ± n2β) ≡ (−1)n1+n2Gαα′(τ1, τ2),

where n1 and n2 are integers. The Green function G̃αα′(τ1, τ2) = G̃αα′(τ1− τ2) is, by construc-
tion, antiperiodic with period β in both τ1 and τ2 and in the time difference τ = τ1 − τ2. From
now on we will work with G̃αα′(τ), and therefore for simplicity we rename it Gαα′(τ). Thanks
to its periodicity, Gαα′(τ) can be written as the Fourier series

Gαα′(τ) =
1

β

+∞∑

n=−∞

e−iνnτGαα′(iνn),

where the frequency νn is given by 2π multiplied by an integer multiple of the inverse period,
1/2β. For fermionic Green functions only the odd Matsubara frequencies, νn = π(2n + 1)/β,
for which e±iνnβ = −1, yield finite Fourier coefficients, given by

Gαα′(iνn) =
1

2

∫ β

−β
dτeiνnτGαα′(τ) =

1

2
(1− e−iνnβ)

∫ β

0

dτeiνnτGαα′(τ) =

∫ β

0

dτeiνnτGαα′(τ).
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gr(τ ;x) gr(νn;x) =
∫ β

0
eiνnτgr(τ ;x)dτ

g0(τ ;x) = e−xτ [iνn − x]−1 [nσ(x)− 1]−1

g1(τ ;x) = τe−xτ βnσ(x) [iνn − x]−1 [nσ(x)− 1]−1 − [iνn − x]−2 [nσ(x)− 1]−1

gr(τ ;x) = τ re−xτ βrnσ(x)g0(iνn;x)− r [iνn − x]−1 gr−1(iνn;x)

Table 1: Some of the most common Matsubara Fourier transforms (fermionic case). The
function nσ(x) is the Fermi-Dirac distribution function nσ(x) = 1/(1 + exβ); the parameter x
is a real number. For fermionic Matsubara frequencies eiνnβ = −1.

It is interesting to point out the relation between the imaginary-time Green function and the
actual retarded and advanced Green functions. One can show that they correspond to different
analytic continuations to the real axis

GR
αα′(ω) = Gαα′(iνn)|iνn→ω+iδ

GA
αα′(ω) = Gαα′(iνn)|iνn→ω−iδ.

The odd or fermionic Matsubara frequencies iνn are also the poles of the Fermi-Dirac distribu-
tion function. The even or bosonic Matsubara frequencies, iωm = π(2m)/β, are, correspond-
ingly, the poles of the Bose-Einstein distribution function.

2.6.3 One-band Hubbard model: Non-interacting limit

Let us now consider as a representative case the one-band Hubbard model. In the non-interacting
limit the Hubbard Hamiltonian is given by Eq. (5), which we rewrite here for convenience

Ĥ0 =
∑

σ

∑

k

εknkσ.

For high-temperature superconducting cuprates, the dispersion εk describing the Cu d x2 − y2

band crossing the Fermi level is

εk = −2t(cos kxa+ cos kya) + 4t′ cos kxa cos kya+ . . . , (15)

where a is the lattice constant, t the nearest neighbor hopping integral and t′ the next-nearest
neighbor hopping integral [9].
The imaginary-time Green function for the Hamiltonian Ĥ0 can be calculated analytically

Gkσ(τ) = −
〈
T
[
ckσ(τ)c†kσ(0)

]〉
0

= −Θ(τ)
1

Z
Tr
[
e−β(Ĥ0−µN̂)ckσ(τ)c†kσ(0)

]
+Θ(−τ)

1

Z
Tr
[
e−β(Ĥ0−µN̂)c†kσ(0)ckσ(τ)

]

= − [Θ(τ) (1− nσ(εk))−Θ(−τ)nσ(εk)] e−(εk−µ)τ , (16)
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Fig. 4: The function Gkσ(τ) defined in Eq. (16) for a state well below the Fermi level (red) and
at the Fermi level (blue) and β = 2 eV−1. The green line shows the atomic Green function G(τ)
from Eq. (19) calculated for U = 6 eV.

where nσ(εk) is the Fermi-Dirac distribution function

nσ(εk) =
1

1 + eβ(εk−µ)
.

The Matsubara Fourier transform of Gkσ(τ) is simple to obtain since
∫ β

0

e(iνn−x)τdτ =
1

iνn − x
[
e(iνn−x)β − 1

]
= − 1

iνn − x
[
e−xβ + 1

]
=

1

iνn − x
1

nσ(x)− 1
.

This result, together with other useful Matsubara Fourier transforms, can be found in Tab. 1.
Thus

Gkσ(iνn) =
1

iνn − εk + µ
.

It is often necessary to perform sums of Green functions or of product of Green functions over
the Matsubara frequencies. To see how these can be calculated, let us consider the integral

IC =
1

2πi

∮

C
Fkσ(z)nσ(z)ezτdz, (17)

where 0 < τ < β and nσ(z) is the Fermi function, which has poles for z = iνn. We assume
that Fkσ(z) is a complex function, analytic everywhere except at some poles {zp}, which differ
from the Fermionic Matsubara frequencies; for example, Fkσ(z) could be the Green function
Gkσ(z). We define the contour C (see Fig. 5) as a circle in the full complex plane, centered at
the origin and including the poles of the integrand. The integral IC is zero because the integrand
vanishes exponentially for |z| → ∞. Using Cauchy’s integral theorem we then have

1

β

∑

n

eiνnτFkσ(iνn) =
∑

zp

Res [Fkσ(zp)]nσ(zp)e
zpτ , (18)
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Re z

Im z

Fig. 5: The contour C used to perform the integral IC defined by Eq. (17). The blue circles
represent poles of the Fermi function, i.e., Matsubara frequencies, and the green circles are
representative poles of the function Fkσ(z). Since the integral vanishes for |z| → ∞, the sum
of the contributions from all the poles must add up to zero for an infinitely large contour C.

where we used the fact that Res [nσ(iνn)] = − 1
β

. Let us now apply this result in some typical
cases. If Fkσ(z) = Gkσ(z), remembering thatGαα(0−) = nα andGαα(0+) = nα−1, we obtain

1

β

∑

n

e−iνn0−Gkσ(iνn) = Gkσ(0−) = nσ(εk),

1

β

∑

n

e−iνn0+Gkσ(iνn) = Gkσ(0+) = nσ(εk)− 1.

In a similar way we can show that

1

β

∑

n

eiνn0+Gkσ(iνn)Gkσ(iνn) =
dnσ(εk)

dεk
= βnσ(εk) [−1 + nσ(εk)] ,

1

β

∑

n

eiνn0+Gkσ(iνn)Gk+qσ(iνn + iωm) =
n(εk+q)− n(εk)

iωm + εk+q − εk
,

where in the last relation ωm = 2mπ/β is a bosonic Matsubara frequency. In Tab. 2 we dis-
play some of the inverse Fourier transforms involving one-particle Green functions for a non-
interacting system.
It is important to point out that, using Matsubara frequencies, the Lehmann representation takes
the simple form

Gkσ(iνn) =

∫ +∞

−∞
Akσ(ω′)

1

iνn − ω′
dω′,

where the spectral function satisfies the relation

1

2π

∫ +∞

−∞
Akσ(ω′)dω′ = 1.
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gα(νn;x, y) gα(τ ;x, y) = 1
β

∑
n e
−iνnτgα(νn;x, y)

ga(νn;x, y) = [iνn − x]−1 [nσ(x)− 1]e−xτ

gb(νn;x, y) = [iνn − x]−2 nσ(x)(τ − βnσ(x))e−x(τ−β)

gc(νn;x, y) = [iνn − x]−1 [iνn − y]−1 −
[
e−x(τ−β)nσ(x)− e−y(τ−β)nσ(y)

]
[x− y]−1

gd(νn;x, y) = [iνn − x]−1 [iνn + x]−1 [ga(τ ;x, y)− ga(τ ;−x, y)]/2x

Table 2: Some of the most common Matsubara Fourier transforms (fermionic case), obtained
from Eq. (18). The function nσ(x) is the Fermi-Dirac distribution function nσ(x) = 1/(1+exβ).
The parameters x and y are real numbers. For τ we consider the interval (0, β).

Furthermore the normalized spectral function, Ãkσ(ε) = Akσ(ε)/2π = − 1
π
Im [Gkσ(ε)] is re-

lated to the density of states as follows

ρσ(ε) =
1

Nk

∑

k

Ãkσ(ε).

These relations between Ãkσ(ε) and the density of states or the Green function are also valid
for the interacting Hubbard model. In the non-interacting case

Ãkσ(ε) = δ(ω − εk).

2.6.4 One-band Hubbard model: Atomic limit

Let us consider now the half-filled one-band Hubbard model in the atomic (t = 0) limit. Since
the lattice sites are decoupled, we can focus on a single site and rewrite the Coulomb interaction
in terms of the spin operator Ŝz = 1

2
[n↑ − n↓] and the electron number operator N̂ = n↑ + n↓.

We obtain

ĤU = εd
∑

σ

nσ + U

(
N̂2

4
− Ŝ2

z

)
.

This Hamiltonian describes an idealized single-level atom. This system has four states, |0〉,
c†↑|0〉, c†↓|0〉, c†↑c†↓|0〉, with expectation values of the operator ĤU − µN̂ equal to 0,−U/2, −U/2
and 0 respectively. We can calculate the imaginary-time Green function for such a system ana-
lytically; it is sufficient to perform the calculation in the interval (0, β), since we can reconstruct
the Green function in the interval (−β, 0) by using the antiperiodic properties. For 0 < τ < β

Gσ(τ) = −1

2

1

1 + eβU/2
[
eτU/2 + e(β−τ)U/2

]
. (19)



6.24 Eva Pavarini

The Matsubara Fourier coefficients can be obtained via the integrals in Tab. 1. We find

Gσ(iνn) =
1

2

[
1

iνn + U/2
+

1

iνn − U/2

]
. (20)

Thus the atomic Green function, as the non-interacting Green function, is the sum of functions
with first order poles; the corresponding retarded Green function on the real axis can be obtained
by analytic continuation replacing iνn with ω + iδ, with δ > 0. To obtain Gσ(τ) from Gσ(iνn)

one can use the Matsubara sums in Tab. 2.

2.7 Two-particle Green function
2.7.1 Generalized imaginary time Green function

The temperature Green function can also be defined for quadratic operators; this generaliza-
tion is relevant for calculating the elements of the linear-response tensor. Let us consider the
operators ∆P̂αα′(τ1, τ2) and ∆Ôγγ′(τ1, τ2), with

∆P̂αα′(τ1, τ2) = c†α′(τ2)cα(τ1)− 〈T c†α′(τ2)cα(τ1)〉,
∆Ôγγ′(τ3, τ4) = c†γ′(τ4)cγ(τ3)− 〈T c†γ′(τ4)cγ(τ3)〉.

where α, α′ and γ, γ′ are, as usual, flavors. We define the temperature Green function for these
operators as the two-particle Green function

χαα
′

γγ′ (τ ) = 〈T ∆P̂αα′(τ1, τ2)∆Ôγγ′(τ3, τ4)〉, (21)

where τ = (τ1, τ2, τ3, τ4). From the invariance of the trace under cyclic permutation of operators
one can show that, for a time-independent Hamiltonian,

χαα
′

γγ′ (τ ) = χαα
′

γγ′ (τ14, τ24, τ34, 0),

where τji = τj − τi. In analogy with what we have seen in the single-particle case, the two-
particle Green function at negative times (−β < τj4 < 0) can be obtained from the two-particle
Green function at positive times (0 < τj4 < β). For example, if −β < τ14 < 0

χαα
′

γγ′ (τ14 + β, τ24, τ34, 0) = −χαα′γγ′ (τ14, τ24, τ34, 0),

and similar relations hold for −β < τ24 < 0 or −β < τ34 < 0. This can be shown using,
once more, the invariance of the trace under cyclic permutation of the operators. As for the
one-particle Green function, we can extend the two-particle Green function to any time interval
by defining it periodic in each τj4 with period β.
It is often convenient to express χαα′γγ′ (τ ) as a function of the three independent variables τ12,
τ23 and τ34. We then rewrite it as follows

χαα
′

γγ′ (τ ) = T Tr
e−β(Ĥ−µN̂)

Z

[
eτ14(Ĥ−µN̂)cαe

−τ12(Ĥ−µN̂)c†α′e
−τ23(Ĥ−µN̂)cγe

−τ34(Ĥ−µN̂)c†γ′
]
,

with τ14 = τ12 + τ23 + τ34, and χαα′γγ′ (τ ) = χαα
′

γγ′ (τ12, τ34; τ23). From this expression and the sym-
metry properties discussed above, it follows that the two-particle Green function is antiperiodic
with period β in τ12 and τ34 and periodic with period β in τ23 (see Fig. 6 as example).
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Fig. 6: The function χ(τ12, 0
+; τ23) = −Gαα(τ12 + τ23 + 0+)Gαα(−τ23) for a non-interacting

system with n ∼ 0.8 electrons; β = 30 eV−1. It is antiperiodic in τ12 and periodic in τ23.

2.7.2 The Fourier transform χαα
′

γγ′ (ν) and its symmetry properties

The Fourier transform of the imaginary-time two-particle Green function is given by

χαα
′

γγ′ (ν) =
1

16

∫∫∫∫
dτ eiν·τχαα

′

γγ′ (τ ), (22)

where the frequency vector is ν = (ν1, ν2, ν3, ν4), and the imaginary times are chosen in the
interval (−β, β). From the fact that χαα′γγ′ (τ ) = χαα

′

γγ′ (τ14, τ24, τ34, 0) we obtain ν4 = −ν1−ν2−ν3

(energy conservation), and thus only three frequencies are actually independent. Let us define
ν = (νn,−νn − ωm, νn′ + ωm,−νn′) where ωm is a bosonic frequency. Then

χαα
′

γγ′ (ν) = χαα
′γγ′

n,n′ (iωm) =
β

8

∫∫∫
dτ ei[−ωmτ23+νnτ12+νn′τ34] χαα

′

γγ′ (τ ),

where τ = (τ14, τ24, τ34) and all integrals go from −β to β. By using the antiperiodicity of
the two-particle Green function in imaginary times we can further simplify this expression,
obtaining

χαα
′γγ′

n,n′ (iωm) = β

∫ β

0

dτ14

∫ β

0

dτ24

∫ β

0

dτ34 e
i[−ωmτ23+νnτ12+νn′τ34] χαα

′

γγ′ (τ14, τ24, τ34, 0).

Let us now analyze the symmetry properties of χαα
′γγ′

n,n′ (iωm). For simplicity, we consider here
only the case in which the one-electron basis can be chosen such that χαα′γγ′ (τ14, τ24, τ34, 0) is
real; indeed, this is the case for most strongly-correlated 3d transition metal-oxides, since their
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Hamiltonian has typically time-reversal and even inversion symmetry and the spin-orbit inter-
action can be neglected. The complex conjugate is then given by

[
χαα

′γγ′

n,n′ (iωm)
]∗

= χαα
′γγ′

−n−1,−n′−1(−iωm),

where ν−n−1 = −νn, and ν−n′−1 = −νn′ . Furthermore, if in the integral (22) we replace
χαα

′

γγ′ (τ ) with its complex conjugate and then exchange τ1 ↔ −τ4 and τ2 ↔ −τ3, we find

χαα
′γγ′

n,n′ (iωm) = χγ
′γα′α
n′,n (iωm),

and hence, if α = γ′, α′ = γ, νn = ν ′n is a reflection axis for the absolute value

∣∣∣χαα′α′αn,n′ (iωm)
∣∣∣ =

∣∣∣χαα′α′αn′,n (iωm)
∣∣∣ .

An additional reflection axis can be found by first shifting the frequency νn = νl − ωm

χαα
′γγ′

l,n′ (iωm) =
1

16

∫∫∫∫
dτ ei(−ωmτ13+νlτ12+νn′τ34)χαα

′

γγ′ (τ ).

Since χαα′γγ′ (τ ) is invariant under particle exchange, if we exchange in the integrand τ1 ↔ τ3 and
τ2 ↔ τ4, we have

χαα
′γγ′

l,n′ (iωm) = χγγ
′αα′

n′,l (−iωm),

so that, if α = γ and α′ = γ′, νn+m = −νn′ is a mirror line for the absolute value

∣∣∣χαα′αα′n+m,n′(iωm)
∣∣∣ =

∣∣∣χαα′αα′−n′−1,−n−m−1(iωm)
∣∣∣ .

2.7.3 Non-interacting case: Wick’s theorem

For a non-interacting system Wick’s theorem holds. It states that high-order Green functions can
be factorized into products of lower-order Green function. For the two-particle Green function
Wick’s factorization yields

χαα
′

γγ′ (τ ) = −〈T cα(τ1)c†γ′(τ4)〉〈T cγ(τ3)c†α′(τ2)〉 = −Gαγ′(τ14)Gγα′(−τ23). (23)

If the two-particle Green function is written in this form, its periodicty properties can be directly
derived from those of the one-particle Green function. For example, using as independent
variables τ12, τ23, and τ34, since τ14 = τ12 + τ23 + τ34, one can verify that the susceptibility
is periodic in the time associated with the bosonic frequency, τ23. As the single-particle Green
function, the two-particle Green function has discontinuities associated with the jump coming
from the time ordering operator. In Fig. 6 we see such jumps, e.g., along the line τ12 = −τ23

(for which τ14 = 0+) and τ12 = −τ23 ± β (for which τ14 = β+ or τ14 = β−).
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Fig. 7: Top: Real (left) and imaginary (right) part of χααααn,n′ (0) for a non-interacting system,
calculated for an energy level ε well above the Fermi level and β = 30 eV−1. Bottom: Real
(left) and imaginary (right) part of the mean-field contribution. To better show the symmetries
the center is shifted by (1/2, 1/2). In all the plots the colors range from blue (minimum negative
value) through green and yellow to red (maximum positive value).

3 The dynamical susceptibility

3.1 The magnetic susceptibility

For a system made of well defined localized spins, as we have seen, the magnetic linear response
function is proportional to the site susceptibility

χi,i
′

zz (τ ) = χi,i
′

zz (τ) = 〈T M̂ i
z(τ)M̂ i′

z (0)〉0 − 〈M̂ i
z〉0〈M̂ i′

z 〉0,

where M̂ i
z = −gµBŜiz is the magnetization for lattice site i. Its Fourier transform is

χzz(q; iωm) =
∑

ii′

eiq·(Ti−Ti′ )
∫
dτ eiωmτχi,i

′

zz (τ)

= 〈M̂z(q;ωm)M̂z(−q; 0)〉0 − 〈M̂z(q)〉0〈M̂z(−q)〉0, (24)

where ωm is a bosonic Matsubara frequency. In actual calculations it is, however, often nec-
essary to work with the full two-particle Green function tensor. Let us consider explicitly
the case of the one-band Hubbard model; the tensor elements χαα′γγ′ (τ ) that are relevant for the
magnetic susceptibility are those for which α = k1σ, α′ = k2σ, γ = k3σ

′, and γ′ = k4σ
′. Each
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Fig. 8: Left: Absolute value of χσσn,n′(0) (top) and χσσn,n′(iω10) (bottom) for a non-interacting
system for an energy level ε well above the Fermi level and β = 30 eV−1. Right: Absolute value
of the corresponding mean-field contribution. The white lines show symmetry axes. To better
show the symmetries the center is shifted by (1/2, 1/2). The colors range from blue (minimum
value, here zero) through green and yellow to red (maximum positive value).

flavor has a momentum ki associated, but, as we have seen for the frequencies, only three of the
four ki vectors are independent (momentum conservation). Let us set α = kσ, α′ = k + qσ,
γ = k′ + qσ′ and γ′ = k′σ′ and write the tensor as a 2Nk × 2Nk matrix whose elements are
defined as

[χ(q; τ )]kσ,k′σ′ = χαα
′

γγ′ (τ ) = 〈T ckσ(τ1)c†k+qσ(τ2)ck′+qσ′(τ3)c†k′σ′(τ4)〉0 (25)

− 〈T ckσ(τ1)c†k+qσ(τ2)〉0〈T ck′+qσ′(τ3)c†k′σ′(τ4)〉0.

The magnetic susceptibility is then given by

χzz(q; τ ) = (gµB)2 1

4

∑

σσ′

σσ′ χqσσ
′
(τ ), (26)

where σ = 1 or −1 for up and down, respectively, and

χqσσ
′
(τ ) =

1

β

1

N2
k

∑

kk′

[χ(q; τ )]kσ,k′σ′ . (27)
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After we Fourier transform with respect to imaginary time and sum over the fermionic Matsub-
ara frequencies, we obtain the actual magnetic response function

χzz(q; iωm) = (gµB)2 1

4

∑

σσ′

σσ′
1

β2

∑

nn′

χqσσ
′

n,n′ (iωm), (28)

where

χqσσ
′

n,n′ (iωm) = χqσσ
′
(ν) =

β

8

∫∫∫
dτ eiν·τχqσσ

′
(τ ).

3.1.1 One-band Hubbard model: Non interacting limit

In the non-interacting limit we can use Wick’s theorem. It follows that the elements of the two-
particle Green function tensor vanish if k 6= k′, and that, in the paramagnetic case, Eq. (26)
becomes

χzz(q; τ ) = −(gµB)2 1

4

1

β

1

Nk

∑

k

∑

σ

Gkσ(τ14)Gk+qσ(−τ23).

For the frequency-dependent magnetic susceptibility Eq. (28) we have instead

χzz(q; iωm) = (gµB)2 1

4

1

β2

∑

nn′

∑

σ

χqσσn,n′(iωm),

where
∑

σ

χqσσn,n′(iωm) = −β 1

Nk

∑

k

∑

σ

Gkσ(iνn)Gk+qσ(iνn + iωm)δn,n′ . (29)

The static susceptibility is given by

χzz(q; 0) = − (gµB)2 1

4

1

Nk

∑

k

∑

σ

nσ(εk+q)− nσ(εk)

εk+q − εk
.

Finally, in the q → 0 and T → 0 limit we recover as expected the Pauli susceptibility

χzz(0; 0) =
1

4
(gµB)2 ρ(εF ),

ρ(εF ) = −
∑

σ

1

Nk

∑

k

dnσ(εk)

dεk

∣∣∣∣
T=0

.

If we consider the HTSCs dispersion relation Eq. (15) and assume t′ = 0, at half filling the
non-interacting static susceptibility exhibits a divergence at q = Γ = (0, 0, 0); this is due to
the van Hove singularity in the density of states at the Fermi level. It also diverges at, e.g.,
X = (π/a, 0, 0) because of perfect nesting, εk+X = −εk. More details about the magnetic
susceptibility of the non-interacting half-filled one-band Hubbard model with dispersion given
by Eq. (15) can be found in Ref. [22].
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3.1.2 One-band Hubbard model: Atomic limit

Let us now consider the opposite case, the atomic limit. First we use a simple approach, we
directly calculate the right-hand side of Eq. (24) by summing up the contributions of the atomic
states, |0〉, c†↑|0〉, c†↓|0〉, c†↑c†↓|0〉; since the atoms are decoupled, only on-site terms i = i′ con-
tribute. The magnetic susceptibility, normalized to a single atom, is given by

χzz(q; 0) = (gµB)2 1

4kBT

eβU/2

1 + eβU/2
. (30)

The same expression can be obtained from the two-particle Green function tensor χαα′γγ′ (τ ),
defined in Eq. (25) for the Hubbard model. In the atomic limit it is better to work directly in
real space; since only i = i′ terms contribute, carrying out the k sums in Eq. (27) we find

χqσσ
′
(τ ) =

1

β

∑

i

χiσ iσiσ′iσ′(τ ).

As we have seen in Sec. 2.7.2, it is sufficient to calculate χiσ iσiσ′iσ′(τ ) for positive times 0 <

τj4 < β. Because of the time ordering operator we have, however, to distinguish the various
imaginary-time sectors. Let us consider first the case τj4 > τj+1 4 and label the corresponding
τ -vector as τ+. Calculating the trace we obtain

χiσ iσiσ′iσ′(τ
+) =

1

2(1 + eβU/2)

(
eτ12U/2+τ34U/2 + δσσ′e

(β−τ12)U/2−τ34U/2
)
.

For a paramagnetic system the mean-field terms Gσ(τ12)Gσ′(τ34) cancel out in the actual sus-
ceptibility; thus we dropped them in the expression above. For a single atom, the imaginary-
time magnetic susceptibility in the τ+ sector is then given by

χzz(τ
+) = (gµB)2 1

4

1

β

∑

σσ′

σσ′χiσ iσiσ′iσ′(τ ) =
(gµB)2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2.

The terms corresponding to the remaining imaginary-time sectors can be obtained in a simi-
lar way (see Appendix); summing up the various contribution to Eq. (28), i.e., to the Fourier
transform χσσ

′

n,n′(iωn) we recover the initial expression Eq. (30).
In the atomic limit, χzz(q; 0) decreases for large temperatures as 1/kBT , i.e., it has a Curie
behavior. This is very different from what we find in the U = 0 limit. The non-interacting Pauli
susceptibility χzz(0; 0) is weakly temperature-dependent; for the HTSCs dispersion relation,
at half-filling the temperature dependence of χzz(0; 0) is enhanced for t′ = 0, i.e., when the
logarithmic van-Hove singularity is at the Fermi level [22].

3.2 The generalized susceptibility

In this section, we generalize what we have seen in the previous one to the case of the multi-
band Hubbard model defined in (2); furthermore, we consider the linear response to a non-
specified external field, not necessarily a magnetic field. Let us start from the site susceptibility
in imaginary time

χP̂ i
ν
Ôi
′
ν′

(τ ) = 〈T ∆P̂ i
ν(τ1, τ2)∆Ôi′

ν′(τ3, τ4)〉0,
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where the site operators P̂ i
ν and Ôi′

ν′ are defined as

P̂ i
ν(τ1, τ2) =

∑

α

pνα c
†
iα′(τ2)ciα(τ1),

Ôi′

ν′(τ3, τ4) =
∑

γ

oν
′

γ c†i′γ′(τ4)ci′γ(τ3).

The labels α = (α, α′), γ = (γ, γ′) are, as usual, collective flavors, and for the multi-band
Hubbard model include spin (σ) and orbital (m) quantum number, plus a fractional vector iden-
tifying a correlated basis atom in the unit cell (ic). The weight factors oνα and pν′γ , in general
complex numbers, identify the type of response we calculate. The imaginary-time site suscep-
tibility is then given by

χP̂ i
ν
Ôi
′
ν′

(τ ) =
∑

αγ

vαγ χ
αi
γi′

(τ ),

where vαγ = pναo
ν′
γ , αi = (iα, iα′), and γi′ = (i′γ, i′γ′). The function χαiγi′ (τ ) is defined

in Eq. (21) and its Fourier transform in time, χαiγi′ (ν), in Eq. (22). If we perform the Fourier
transform in both time and lattice vectors we find

χ(q;ν) =
∑

αγ

vαγ
∑

ii′

ei(Ti−Ti′ )·qχαiγi′ (ν) =
∑

αγ

vαγ
1

N2
k

∑

kk′

χαk
γk′

(ν)

=
∑

αγ

vαγ [χ(q; iωm)]Lα,Lγ ,

where αk = (αk1, α
′k2) and γk′ = (γk3, γ

′k4); as in the case of the magnetic susceptibility
for the one-band Hubbard model, k1 = k, k2 = −k−q, k3 = k′+q and k4 = −k′. The terms
χαk
γk′

(ν) build a square matrix

χαk
γk′

(ν) ≡ [χ(q; iωm)]kLα,k′Lγ

whose elements are labeled for convenience by the collective indices kLα = (αkn, α′kn) and
k′Lγ = (γk′n′, γ′k′n′); by summing over k and k′ we obtain [χ(q;ωm)]Lα,Lγ . Finally, the
actual linear response function is given by the sum over the fermionic Matsubara frequencies

χP̂ν Ôν′ (q; iωm) =
∑

αγ

vαγ
1

β2

∑

nn′

[χ(q;ωm)]Lα,Lγ . (31)

In the single-orbital case (α = α′ = σ and γ = γ′ = σ′) when P̂ i
ν = M̂ i

z = Ôi
ν we have

ozα = −gµB〈σ|σ̂z|σ〉, pzα = −gµB〈σ′|σ̂z|σ′〉,

and we recover the magnetic susceptibility for the one-band Hubbard model.
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Fig. 9: Diagram contributing to the linear susceptibility for a non-interacting system. The red
lines indicates that the creator/annihilator is originally from the operator P̂ν′ and the green lines
indicate that the creator/annihilator is from the operator Ôν . The corresponding frequencies
and momenta are explicitly assigned.

3.3 The generalized susceptibility in DMFT

The linear response function is nothing more than a generalized many-particle retarded Green
function. Thus we can use, in principle, all standard many-body techniques for deriving a per-
turbation series for it. Let us consider a system described by the multi-band Hubbard model (2),
which we write here as Ĥe = Ĥ0 + ĤU , where Ĥ0 is the non-interacting part. Let us now for-
mally construct a perturbation series for χP̂ν Ôν′ (q;ωm) in the interaction ĤU . The first step is
to calculate the zero-order contribution, i.e., the linear response function for the non-interacting
term Ĥ0. Since for Ĥ0 the Wick’s theorem holds, we have

[χ0(q; iωm)]kLα,k′Lγ = −βNkGkαγ′(iνn)Gk′+qα′γ(iνn′ + iωm)δn,n′δk,k′ . (32)

The Feynman diagram corresponding to [χ0(q;ωm)]Lα,Lγ is shown in Fig. 9. Once we switch
on the interaction, many-body perturbation theory leads to the Bethe-Salpeter (BS) equation,
pictorially shown in Fig. 10. Mathematically, it can be written in a matrix form as follows

[χ(q; iωm)]Lα,Lγ =
1

N2
k

∑

kk′

[
χ0(q; iωm) +

1

N2
k

χ0(q; iωm)Γ (q; iωm)χ(q; iωm)

]

kLα,k′Lγ

,

where the external sums on k vectors are explicitly written. For systems for which dynamical
mean-field is a good approximation, however, it is more convenient to construct a diagrammatic
series starting from the DMFT linear response function rather than from the non-interacting
term. If we do so, χ0(q;ωm) in the Bethe-Salpeter equation is given by Eq. (32) with G replaced
by the DMFT Green function matrices

[χ0(q; iωm)]Lα,Lγ = −βδnn′
1

Nk

∑

k

GDMFT
αγ′ (k; iνn)GDMFT

α′γ (k + q; iνn + iωm).

There is a catch, however. How do we calculate the vertex matrix [Γ (q;ωm)]kLα,k′Lγ? In the
infinite dimension limit it has been shown that, in the BS equation, the vertex can be replaced
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Fig. 10: Diagrammatic representation of the Bethe-Salpeter equation for the linear susceptibil-
ity. The red lines indicates a creator/annihilator stemming from the operator P̂ν and the green
lines from the operator Ôν′ . The box labeled with Γ is the vertex function, the one labeled with
χ the full susceptibility, and χ0 is the pair-bubble term.

by a local quantity [15,23,24]; assuming that, in the spirit of the dynamical mean-field approx-
imation, for a real 3-dimensional system we can still do the same, the BS equation becomes

[χ(q; iωm)]Lα,Lγ = [χ0(q;ωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm)]Lα,Lγ .

By solving it formally we find
[
χ−1(q; iωm)

]
Lα,Lγ

=
[
χ−1

0 (q; iωm)− Γ (iωm)
]
Lα,Lγ

. (33)

To actually obtain χ(q; iωm) from this equation we still need the local vertex. The latter can be
calculated by means of a further approximation, i.e., assuming that (33) is also satisfied if we
replace the q-dependent susceptibilities with their local counterparts, defined as

[χ0(iωm)]Licα ,Licγ =
1

Nq

∑

q

[χ0(q; iωm)]Licα ,Licγ ,

[χ(iωm)]Licα ,Licγ =
1

Nq

∑

q

[χ(q; iωm)]Licα ,Licγ .

Since the local response function is the same for all equivalent correlated basis sites ic we
work with the matrix block of a given site; to make this explicit we renamed the corresponding
elements Lα as Licα . The local term χ(iωm) is obtained via the quantum impurity solver in the
final iteration of the DMFT self-consistency loop. By inverting the local BS equation we have
the vertex

[Γ (iωm)]Lα,Lγ =
[
χ−1

0 (iωm)
]
Lα,Lγ

−
[
χ−1(iωm)

]
Lα,Lγ

. (34)
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Replacing Γ (iωm) obtained via Eq. (34) into Eq. (33) yields the q-dependent susceptibility. It
has to be noticed that, although the two equations (33) and (34) look innocent, solving them
numerically is a delicate task because the local susceptibility is in general not diagonal in n, n′

and does not decay very fast with the frequencies. There are, however, various ways around
based on extrapolations [25] or using auxiliary polynomials [26] or other methods.

3.4 The χ0(q;ω) diagram

It is tempting to stop at the first term in the expansion, χ0(q;ω). In the non-interacting case,
χ0(q;ω) is the exact solution by construction; for small U we can expect that χ0(q;ω) is a
reasonable approximation. Can we use it as an approximated linear response function more in
general, i.e., also for intermediate or even large U? Unfortunately the answer is no. In the large
U limit χ0(q;ω) is very different from the exact susceptibility. To understand this point let us
calculate the static large U magnetic susceptibility for the half-filled one-band Hubbard model.
We consider two cases, the atomic limit and the insulating regime (small t/U limit); for the
latter we use an approximate expression for the self-energy.

3.4.1 One-band Hubbard model: Atomic limit

In the atomic limit, using the atomic Green function instead of G in Eq. (32), we obtain

χσσ
′

n,n′(0) = −βδnn′δσσ′
1

4

[
1

iνn + U/2
+

1

iνn − U/2

] [
1

iνn + U/2
+

1

iνn − U/2

]
.

By performing the Matsubara sums

χ0
zz(0) =

1

4
(gµB)2

∑

σ

1

β2

∑

n

χσσn,n(0) =
1

4
(gµB)2 βeβU/2

1 + eβU/2

[
1

1 + eβU/2
+

1

Uβ

(
1− e−βU

1 + e−βU/2

)]

If we assume thatU is finite, for very large temperatures (βU → 0) we find χ0
zz(0) ∼ β(gµB)2/8.

In realistic cases, however, the temperature is in the range 0-1000 K and U is of the order of few
eV; under these conditions the atomic spin S = 1/2 is well defined. In such a large βU limit
χ0
zz(0) ∼ (gµB)2/4U , i.e., the term χ0

zz(0) does not exhibit the Curie behavior. The approxi-
mated susceptibility χ0

zz(0) should be compared with the actual magnetic susceptibility of our
idealized atom which, as we have seen in Sec. 3.1, is given by

χzz(0) = (gµB)2 1

4

[
βeβU/2

1 + eβU/2

]
βU→∞∼ (gµBS)2

kBT
.

3.4.2 One-band Hubbard model: Mott-insulating regime

Let us now consider the half-filled Hubbard model with HTCSs dispersion; the latter is defined
in Eq. (15). For simplicity, we assume that all hopping integrals except t are zero. In the atomic
limit (t = 0) we can rewrite the atomic Green function as

G(iνn) =
1

iνn + µ−Σ(iνn)
,
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Fig. 11: Graphical solution of the equation ω + ε + Σ(ω) = 0 yielding the poles E+ and E−

of the Green function defined in Eq. (36).

where µ = U/2 and the self-energy is given by

Σ(iνn) = µ+
U2

4

1

iνn
. (35)

In the Mott insulating regime, i.e., for small but finite t/U , we can assume that the self-energy
can be still written in the form given in Eq. (35), with µ replaced by the actual chemical potential
and U2/4 by a quantity which plays the role of a dimensionless order parameter [24] for the
insulating phase rU U2/4, defined as

1

rU

4

U2
=

∫ +∞

−∞
dε

ρ(ε)

ε2
,

where ρ(ε) is the density of states per spin; the integral 4/rUU
2 diverges in the metallic phase.

The Green function can then be rewritten as

Gk(iνn) =
1

iνn −Σ(iνn)− εk
=

1

E+
k − E−k

[
E+
k

iνn − E+
k

− E−k
iνn − E−k

]
(36)

where E+
k and E−k are the two roots of the equation ω −Σ(ω)− εk = 0,

E±k =
1

2
εk ±

1

2

√
ε2
k + rU U2.

By performing the Matsubara sums, one finds

χ0
zz(q; 0) = (gµB)2 1

4

∑

σ

1

β2

∑

n

χσσn,n(0)

= (gµB)2 1

2

1

Nk

∑

k


−I++

k,q − I−−k,q︸ ︷︷ ︸
Ak,q

+ I+−
k,q + I−+

k,q︸ ︷︷ ︸
Bk,q

,




where, setting α = ± and γ = ±,

Iαγk,q =
Eα
k E

γ
k+q

(E+
k − E−k )(E+

k+q − E−k+q)

n(Eα
k )− n(Eγ

k+q)

Eα
k − Eγ

k+q

.
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In the q → 0 limit we find

Ak,0 = β

[
(E+

k )2

ε2
k + rU U2

n(E+
k )[1− n(E+

k )] +
(E−k )2

ε2
k + rU U2

n(E−k )[1− n(E−k )]

]

Bk,0 =
rU U

2

2(ε2
k + rU U2)3/2

[
n(E−k )− n(E+

k )
]
.

In the large βU limit, the Ak,0 term, proportional to the density of states at the Fermi level,
vanishes exponentially; the Bk,0 term yields the dominant contribution

χ0
zz(0; 0) ∼ (gµB)2 1

4

1

Nk

∑

k

rU U
2

[ε2
k + rU U2]3/2

∼ (gµB)2 1

4
√
rU U

[
1− 3

2

1

Nk

∑

k

ε2
k

rU U2
+ . . .

]
.

The right-hand side is equal to the atomic χ0
zz(0) minus a correction; hence the term χ0

zz(0; 0)

for a Mott insulator has basically the same defects as χ0
zz(0) for an idealized one-level atom.

What about the q-dependence of χ0
zz(q; 0)? The one-band Hubbard model has an antiferromag-

netic instability in the Mott-insulating regime due to superexchange [22, 27]. Let us therefore
calculate χ0

zz(q) at the q vector associated with antiferromagnetic order, qC = (π/a, π/a, 0).
Since at qC the band dispersion satisfies the perfect nesting condition (εk+qC = −εk) we find

Ak,qC =
1

2

rU U
2

ε2
k + rU U2

n(E+
k − εk)− n(E+

k )

εk

Bk,qC =
1

2

ε2
k

ε2
k + rU U2

n(E+
k − εk)− n(E+

k )

εk
− 1

2

1√
ε2
k + rU U2

[
n(E+

k )− n(E−k )
]
,

and therefore

χ0(qC ; 0) ∼ (gµB)2 1

4
√
rUU

[
1− 1

2

1

Nk

∑

k

ε2
k

rUU2

]
.

Thus χ0(q; 0) is larger at q = qC than at q = 0; it does not exhibit, however, Curie-Weiss
instabilities. The latter appear as soon as we take the vertex into consideration. In line with the
results above, we express χ0(q; 0) as

χ0(q; 0) ∼ (gµB)2 1

4
√
rUU

[
1− 1

2

J0√
rUU

− 1

4

Jq√
rUU

]
,

where Jq = 2J [cos qx + cos qy] with J ∝ t2/U . Next we take the exact atomic susceptibility in
the large βU limit as local term and calculate the vertex as

Γ ∼
[

1

χ0
zz(0)

− 1

χzz(0)

]
∼ 1

(gµB)2

[
4
√
rUU

(
1 +

1

2

J0√
rUU

)
− 4kBT

]
.

Therefore,

χzz(q; 0) =
1

[χ0
zz(q; 0)]−1 − Γ ∼ (gµB)2 1

4

1

kBT + Jq/4
=

(gµB)2

kB

1

4

1

T − Tq
.

Thus, including the vertex correction we recover the Curie-Weiss behavior expected for a system
with coupled localized spins; we also correctly find the antiferromagnetic instability, since qC
is the vector for which Tq is largest. In conclusion, we have seen that Γ is essential to properly
describe the magnetic response function of strongly-correlated systems.



Linear Response Functions 6.37

3.5 The local susceptibility χ(ω)

The local susceptibility can be obtained in various ways. Here we briefly recollect the essential
steps for calculating it via a quantum Monte Carlo approach. A more detailed description of
quantum Monte Carlo approaches can be found in the lecture of Fakher Assaad.

3.5.1 Hirsch-Fye QMC quantum impurity solver

For the one-band Hubbard model, the typical quantum-impurity problem used in DMFT calcu-
lations is the Anderson Hamiltonian

Ĥ =
∑

σ

εdndσ + Und↑nd↓

︸ ︷︷ ︸
Ĥloc

+
∑

σ

∑

k

εknkσ

︸ ︷︷ ︸
Ĥbth

+
∑

σ

∑

k

[
Vkc

†
kσcdσ + h.c.

]

︸ ︷︷ ︸
Ĥhyb

.

This Hamiltonian describes a correlated site, e.g., site i = 0 in the original lattice Hubbard
model, whose states are labeled with d, coupled to a non-correlated bath, whose states have for
quantum numbers the momentum k and the spin σ, via the hybridization Vk. The Anderson
model was originally introduced in the context of the single-impurity Kondo problem [28].
The Hirsch-Fye quantum Monte Carlo approach [29] is based on imaginary-time discretization.
To calculate a physical observable a crucial ingredient is the partition function

Z = Tr e−β(Ĥ−µN̂).

If all eigenvalues and eigenvectors were known, the partition function would be of course also
known. How do we calculate a physical observable without this information? If we split the
interval τ = [0, β] in time steps ∆τ = β/L we can rewrite the partition function as follows

Z = Tr
L∏

l=1

e−∆τ(Ĥ−µN̂). (37)

In the Anderson model, the interaction term is Ĥloc; we therefore rewrite the Hamiltonian Ĥ as
Ĥ = Ĥ0 + ĤU , where Ĥ0 = Ĥbth + Ĥhyb and ĤU = Ĥloc. If ∆τ is small, we can approximate
the partition function via the Trotter decomposition

Z = Tr
L∏

l=1

e−∆τ(Ĥ0−(µN̂−µdN̂d))e−∆τ(ĤU−µdN̂d) +O(∆τ 2), (38)

where N̂d = nd↑ + nd↓ is the impurity electron number operator, and µdN̂d yields a shift. The
equivalence between Eq. (37) and Eq. (38) up to first order can be verified, e.g., by performing
a first-order Taylor expansion of both expressions and comparing the results. Remarkably,
Eq. (38) can be rewritten in a simpler form using the Hubbard-Stratonovich transformation.
Taking µd = εd + U/2 we obtain, for a given ∆τ

e−∆τ [Ĥloc−µdN̂d] = e−∆τU [nd↑nd↓− 1
2

(nd↑+nd↓)] =
1

2

∑

s=±1

esλ(nd↑−nd↓)
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where s is an auxiliary Ising variable and can take two values, s = −1 or s = +1, and coshλ =

e∆τU/2. One can verify this relation by applying the left and right operator to the basis states.
The result is summarized in the table below

e−∆τU [nd↑nd↓− 1
2

(nd↑+nd↓)] 1
2

∑
s=±1 e

sλ(nd↑−nd↓)

|0〉 1 1

c†σ|0〉 e∆τU/2 coshλ

c†d↑c
†
d↓|0〉 1 1

Thus, via the auxiliary-field decoupling we replaced the two-particle term Und↑nd↓ with two
single-particle terms, much easier to handle. If we introduce one Ising spin per∆τ interval, i.e.,
L in total, {si} = s1, . . . sL, the partition function becomes

Z =
1

2L

∑

{si}

Tr
L∏

l=1

e−∆τ(Ĥ0−µN̂+µdN̂d)+λsl(nd↑−nd↓) +O(∆τ 2).

For a specific configuration of Ising spins, i.e., for a given set of values for the variables {si},
the contribution to the partition function of the auxiliary model has the form

Z{si} = Det[O↑{si}]Det[O↓{si}],

Taking the inverse of Oσ
{si} yields the Green function matrix Gσ

{si}. The latter has dimension
NL × NL where N is the total number of sites (bath plus impurity) and satisfies the Dyson
equation

Gσ
{sj} = [Aσ]−1Gσ

{si}, Aσ = 1 +
[
1−Gσ

{si}
] [
e
V{si}−V{sj} − 1

]
,

where {sj} and {si} are two different configurations and the matrix V{si} = λσsi(l)|d〉〈d| is
a potential acting only on the impurity site. Since the potential is local, the impurity Green
function Gd satisfies the Dyson equation

[Gσ
d ]{sj} = [Aσd ]−1[Gσ

d ]{si}, Aσd = 1 +
[
1− [Gσ

d ]{si}
] [
e
V{si}−V{sj} − 1

]
.

By summing over all possible configurations, we have

Z =
∑

{si}

Z{si}, Gσ
d =

∑

{si}

w{si}[G
σ
d ]{si}

where

w{si} =
Z{si}∑
{si} Z{si}

.

Thus, if w{si} were positive definite, it could be used as Boltzmann weight for importance
sampling. Unfortunately the ratio of determinants can be negative for some configurations,
giving rise to the minus-sign problem. Still, we can define |w{si}| as Boltzmann weight and
keep track of the sign of the product of determinants.
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Remarkably, the ratio of the ‘Boltzmann weights’ of two different configurations

w{sj}

w{si}
=

DetO↑{sj}DetO↓{sj}

DetO↑{si}DetO↓{si}
= R↑R↓.

can be obtained via the Dyson equation; in particular, if we flip a spin at time slice l

Rσ = 1 +
[
1−

[
[Gσ

d ]{si}
]
l,l

] [
e−2λsi(l) − 1

]
.

Thus, we do not need to calculate the determinants. If a new configuration is accepted we have,
however, to recalculate the Green function. In conclusion, the Green function can be obtained
as

Gσ
d ∼

∑
{c}〈Gσ

d〉c sign(wc)∑
{c} sign(wc)

,

where {c} are the visited configurations. The linear response function χα is obtained similarly

χα ∼
∑
{c}〈χα〉c sign(wc)∑
{c} sign(wc)

.

Since the Wick theorem holds for a given configuration, we have 〈χα〉c = 〈Gα,γ′〉c〈Gγ,α′〉c.
The Hirsch-Fye algorithm can be generalized to more complex local interactions, such as the
density-density Coulomb interaction in the multi-orbital Hubbard model, by introducing addi-
tional Ising fields s and correspondingly additional parameters λ.

3.5.2 CT-HYB QMC quantum impurity solver

In continuous-time QMC [30] the partition function is expanded in either the hybridization
(CT-HYB) or the interaction (CT-INT). Here we discuss shortly the first algorithm, in which
the expansion series is in powers of Ĥhyb. We follow the notation of Ref. [31]. Since for this
algorithm we do not need to specify the form of the local interaction, let us consider the most
general quantum-impurity Hamiltonian Ĥ = Ĥloc + Ĥbth + Ĥhyb, where

Ĥloc =
∑

αᾱ

ε̃αᾱc
†
αcᾱ +

1

2

∑

αα′

∑

ᾱᾱ′

Uαα′ᾱᾱ′c
†
αc
†
α′cᾱ′cᾱ,

Ĥbth =
∑

γ

εγb
†
γbγ,

Ĥhyb =
∑

γ

∑

α

[
Vγ,αc

†
αbγ + h.c.

]
.

This is a generalized Anderson model that describes a multi-orbital correlated impurity, e.g.,
site i = 0 in the original multi-band Hubbard model (2), coupled to a bath; it is the typical
local impurity model which we have to solve in a realistic DMFT calculation. The combined
index α = mσ labels spin and orbital degrees of freedom. For the bath we can use, without
loss of generality, the basis that diagonalizes Ĥbth, with quantum numbers γ. Finally, we define
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ε̃αᾱ = εαᾱ−∆εDC
αᾱ , where εαᾱ is the crystal-field matrix and ∆εDC

αᾱ is the double-counting
correction. We work in the interaction picture, and therefore

Ĥhyb(τ) = eτ(Ĥbth+Ĥloc)Ĥhybe−τ(Ĥbth+Ĥloc).

By expanding the partition function in powers of Ĥhyb we obtain the series

Z = Tr
[
e−β(Ĥbth+Ĥloc)T e−

∫ β
0 dτĤhyb(τ)

]
=

∞∑

m=0

(−1)m
∫ (m)

dτ Tr T
[

e−β(Ĥbth+Ĥloc)

1∏

i=m

Ĥhyb(τi)

]
,

where T is again the time-ordering operator, τ = (τ1, τ2, . . . τm) with τi+1 ≥ τi and
∫ (m)

dτ ≡
∫ β

0

dτ1 . . .

∫ β

τm−1

dτm.

In the trace, only terms containing an equal number of creation and annihilation operators in
both the bath and impurity sector, i.e., only even expansion orders m = 2n, yield a finite
contribution. Introducing the bath partition function Zbth = Tr e−βĤbth , the partition function
can be factorized as

Z

Zbth
=
∞∑

n=0

∫ (n)

dτ

∫ (n)

dτ̄
∑

αᾱ

z
(n)
α,ᾱ(τ , τ̄ ) , (39)

with z(n)
α,ᾱ(τ , τ̄ ) = t

(n)
α,ᾱ(τ , τ̄ ) d

(n)
ᾱ,α(τ , τ̄ ) . The first factor is the trace over the impurity states

t
(n)
α,ᾱ(τ , τ̄ ) = Tr T

[
e−β(Ĥloc−µN̂)

1∏

i=n

cαi(τi)c
†
ᾱi(τ̄i)

]
,

where c(†)
α (τ) = eτ(Ĥloc−µN̂)c

(†)
α e−τ(Ĥloc−µN̂) and N is the total number of electrons on the im-

purity. For expansion order m = 2n, the vector α = (α1, α2 . . . αn) gives the flavors αi
associated with the n annihilation operators on the impurity at imaginary times τi, while the
ᾱ = (ᾱ1, ᾱ2 . . . ᾱn) are associated with the n creation operators at τ̄i. The second factor is the
trace over the non-interacting bath, which is given by the determinant

d
(n)
ᾱ,α(τ , τ̄ ) = det[F

(n)
ᾱ,α(τ , τ̄ )]

of the n × n square hybridization-function matrix with matrix elements [F
(n)
ᾱ,α(τ , τ̄ )]i′,i =

Fᾱi′αi(τ̄i′ − τi) given by

Fᾱα(τ) =
∑

γ

Vγ,ᾱV̄γ,α
1 + e−βεγ

×




−e−εγτ τ > 0

e−εγ(β+τ) τ < 0.

On the fermionic Matsubara frequencies, ωn, its Fourier transform

Fᾱα(ωn) =
∑

γ

Vγ,ᾱV̄γ,α
iωn − εγ
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is related to the bath Green-function matrix G by

Fᾱα(ωn) = iωnδᾱα−ε̃ᾱα−(G)−1
ᾱα(ωn),

as can be shown by downfolding the original multiband Hubbard model, Eq. (2), to the impurity
block (say, the i = i0 site)

(G)−1(ωn) =




iωnIi0 −Hi0 V1,i0 V2,i0 . . .

V̄1,i0 iωn − ε1 0 . . .

V̄2,i0 0 iωn − ε2 . . .
...

...
... . . .



.

Here the matrix elements of Hi0 and Ii0 are given by (Hi0)αᾱ = ε̃αᾱ and (Ii0)αᾱ = δα,ᾱ, while
(Vi0,i)ᾱi = Vᾱ,i, and

(
V̄i,i0

)
iα

= V̄i,α. The partition function defined in Eq. (39) can be seen as
the sum over all configurations c = {αiτi, ᾱiτ̄i, n} in imaginary time and flavors. In a compact
form, similar to the case of the Hirsch-Fye algorithm, we have

Z =
∑

c

〈Z〉c =
∑

c

wc ∼
∑

{c}

sign(w{c}) ,

where in the last term the sum is over a sequence of configurations {c} sampled by Monte Carlo
using |wc| as the probability of configuration c.
Finally, a generic observable O can then be obtained as the Monte Carlo average

O ∼
∑
{c}〈O〉c sign(wc)∑
{c} sign(wc)

where 〈O〉c is the value of the observable for configuration c. The average expansion order
increases linearly with the inverse temperature.
The Green function matrix can, e.g., be obtained as the Monte Carlo average with

〈O〉c = 〈Gαᾱ〉c =
n∑

ij=1

∆(τ, τj−τ̄i)[M (n)]jiδαjαδᾱiᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-function matrix, updated at each
accepted move, and ∆ is given by

∆(τ, τ ′) = − 1

β





δ (τ − τ ′) τ ′ > 0

−δ (τ − (τ ′ + β)) τ ′ < 0,

where the δ-function is discretized. Alternatively, we can calculate the Green function matrix
from its Legendre coefficients [26], i.e., use the Fourier-Legendre series. The Legendre poly-
nomials {Pl(x)} form a complete orthogonal system over the interval [−1, 1] and therefore the
Green function may be expanded in terms of them as

Gαᾱ(τ) =
∞∑

l=0

√
2l + 1

β
Pl(x(τ))Gl

αᾱ, (40)
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with x(τ) = 2τ/β − 1. The first four Legendre polynomials are

l = 0 l = 1 l = 2 l = 3

Pl(x) 1 x 1
2
(3x2 − 1) 1

2
(5x3 − 3x)

The coefficients of the expansion are given by

Gl
αᾱ =

√
2l + 1

∫ β

0

dτ pl(x(τ))Gαᾱ(τ). (41)

This can be verified by replacing (40) into (41) and then using the orthogonality property of the
Legendre polynomials

∫ 1

−1

dx Pl(x)Pl′(x) dx =
2

2l + 1
δl,l′ .

We can then sample directly the Legendre coefficients; for a given configuration

〈Gl
αᾱ〉c =

n∑

i,j=1

P̃l(τj − τ̄i)[M (n)]j,iδαjαδᾱiᾱ

P̃l(τ) = −
√

2l + 1

β
×
{

Pl(x(τ)), τ > 0

−Pl(x(τ + β)), τ < 0

Since the coefficients Gl decay fast for large l, it is often convenient to work with the Legendre
rather than with the Matsubara representation, or with a mixed representation. In particular, the
Bethe-Salpeter equation can be rewritten in terms of Legendre coefficients for the susceptibility.
Let us first start from the Green function matrix

Gαγ(νn) =

∫ β

0

dτ12 e
iνnτ12 Gαγ(τ12) =

∑

l

Tn,lG
l
αγ

Tn,l =

√
2l + 1

β

∫ β

0

dτ12 e
iνnτ12 pl(x(τ12)).

We can now express the non-interacting susceptibility in terms of the transformation matrices
Tn,l and the Legendre coefficients χl,l

′

0 (ωm)

[χ0(ωm)]n,n′ =
1

16

∫∫∫∫
dτ ei[νnτ12+νn′τ34] χαα

′

γγ′ (τ )e−iωmτ23

= − 1

16

∫∫∫∫
dτ ei[νnτ12+νn′τ34] Gαγ′(τ14)Gγα′(−τ23)e−iωmτ23

=
∑

ll′

Tn,l χ
ll′

0 (ωm) T ∗n′,l.

A similar relation holds for the full susceptibility [χ(ωm)]n,n′ =
∑

ll′ Tn,l χ
ll′(ωm) T ∗n′,l.
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4 Conclusion

In this lecture, I have introduced some of the fundamental aspects of linear-response theory,
with focus on strongly correlated materials. Along the way, we have seen an important theo-
rem connecting the linear susceptibility and the correlation function, the fluctuation-dissipation
theorem; we have discussed the analytic and symmetry properties of the linear susceptibility
tensor; we have introduced the thermodynamic- and the f-sum rule. In the second part of the
lecture, we have seen how to calculate the susceptibility using dynamical mean-field theory, the
state-of-the art approach for strongly correlated materials. Within this method, the local suscep-
tibility is obtained via the quantum-impurity solver; the q-dependent susceptibility can, instead,
be calculated solving the Bethe-Salpeter equation in the local-vertex approximation. We have
seen that the vertex in the Bethe-Salpeter equation plays a crucial role. As representative exam-
ples we have used the one-band Hubbard model and when possible the generalized multi-band
Hubbard model. Finally, we have presented two impurity solvers, the Hirsch-Fye QMC and the
hybridization-expansion continuous-time QMC method.
Linear response functions are of fundamental importance when we want to compare our theory
of a given phenomenon to experiments. In addition, the linear susceptibility tensor is a key
ingredient of extensions of DMFT such as, e.g., the dual-fermion and the dual-boson approach.
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Appendix

Atomic units

In this lecture, formulas are expressed in atomic units unless specified otherwise. The unit of
mass m0 is the electron mass (m0 = me), the unit of charge is the electron charge (e0 = e), the
unit of length is the Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time t0 = 4πε0~a0/e

2.
In these units, the numerical value of the Bohr radius aB, of the electron charge e, of the electron
mass me, of 1/4πε0, and of ~ is 1. Furthermore, the speed of light is c = 1/α ∼ 137, the Bohr
magneton µB = 1/2, and the unit of energy is the Hartree (1 Ha∼ 27.211 eV).

Fourier transforms

We use the following conventions for the Fourier transforms. su For the direct and inverse
Fourier transform in frequency and time

f(ω) =

∫ ∞

−∞
dt f(t) eiωt

f(t) =

∫ ∞

−∞

dω

2π
f(ω) e−iωt.

For the direct and inverse transform in spatial/momentum coordinates

g(q) =

∫
dr g(r) eiq·r

g(r) =

∫
dq

(2π)3
g(q) e−iq·r.

For ideal lattices and k vectors in the first Brillouin Zone

1

Ns

∑

k

e−ik·T = δT ,0,

1

Ns

∑

T

eik·T =
∑

G

δk,G,

where Ns is the number of lattice sites.

Dirac delta function

The Dirac delta function is defined as

δ(x) =

∫ ∞

−∞

dω

2π
e−iωx.
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Some of the properties of the delta function:

∫
f(x)δ(x− b)dx = f(b),

δ(x) = δ(−x),

δ(ax) =
1

|a|δ(x),

δ(r) = δ(x)δ(y)δ(z).

Heisenberg representation

Real time:

Â(t) = ei(Ĥ−µN̂)tÂe−i(Ĥ−µN̂)t.

Imaginary time:

Â(τ) = e(Ĥ−µN̂)τ Âe−(Ĥ−µN̂)τ ,

[Â(τ)]† = e−(Ĥ−µN̂)τ Â†e(Ĥ−µN̂)τ = Â†(−τ)

Fermi-Dirac distribution function

The Fermi-Dirac distribution function is defined as

n(ε) =
1

1 + eβε
.

In the lecture we used the following relations

1− n(ε) =
eβε

1 + eβε
= n(−ε),

n(ε)[1− n(ε)] =
eβε

(1 + eβε)2
= − 1

β

dn(ε)

dε
,

dn(ε)

dε
= −dn(−ε)

dε
.

Futhermore

lim
T→0

βn(ε)[1− n(ε)] = δ(ε),

lim
∆→0

1

∆
[n(ε)− n(ε+∆)] = δ(ε).
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Analytic functions

Here, we shortly summarize the properties of complex functions which have been used in the
lecture. A complex function is said to be analytic on a domain D in the complex plane if it is
differentiable at every point inside D. If f(z) is analytic at all points within and on a closed
path C (traversed in anti-clockwise direction) the Cauchy integral theorem holds

∮

C
f(z)dz = 0. (42)

The points on which a function f(z) is not analytic are called singularities. There are two types
of singularities, isolated (i.e., at some specific z = z0) and extended singularities. If a function
f(z) has an isolated singularity in z = z0 and there is an integer n such that for m ≥ n the
function (z − z0)mf(z) is analytic in z0, then z0 is said to be a pole of order n of the function
f(z). Apart from poles, other types of isolated singularities are essential singularities, loga-
rithmic singularities and removable singularities. Let us consider some examples of complex
functions that we have used in this lecture. The function

f(z) =
1

z − z0

has a single pole in z0; this pole is of first order. The Fermi-Dirac distribution function

f(z) =
1

1 + eβz

has instead infinite poles, all the fermionic Matsubara frequencies z = iνn = i(2n+ 1) π/β. In
a similar way the Bose distribution function

f(z) =
1

eβz − 1

has infinite poles at the bosonic Matsubara frequencies z = iωm = i2m π/β.
If within the contour C a function f(z) is analytic except for a set of poles {zn} of order one,
the residue theorem holds

∮

C
f(z)dz = 2πi

∑

{zn}

Res[f(zn)],

Res[f(zn)] = lim
z→zn

f(z)(z − zn),

where the term Res[f(zn)] is called residue of the function f(z) at the point zn.
Extended singularities are of two types, natural boundaries and branch cuts. The latter are
curves (e.g., lines or segments) in the complex plane across which a multi-valued function is
discontinuous. Let us consider as example the function f(z) =

√
z; this function is double-

valued, for example, in z = 1 it can take both the values ±1. Let us define the principal value
of the function

√
z as the positive square root (+1), and let us rewrite z = |z|eiφ; the function√

z has then a branch cut at φ = 2π, i.e., along the line y ≥ 0.
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Spin and magnetization operators

The spin operators Ŝν are defined as

Ŝν =
1

2

∑

σσ′

c†σσνcσ′ ,

where ν = x, y, z and σ̂ν are the Pauli matrices

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
.

The magnetization operators M̂ν are defined as M̂ν = −gµBŜν .

Useful formulas

• Sokhotski-Plemelj formula

1

ω + i δ
= P 1

ω
− iπδ(ω)

• Cauchy principal value

∫ ∞

−∞
P 1

ω
dω =

∫ −ε

−∞

1

ω
dω +

∫ ∞

ε

1

ω
dω,

• Fourier representation of Θ(t) function

Θ(t) = i

∫ ∞

−∞

dω′′

2π
e−iω

′′t 1

ω′′ + iδ
,

• Integral of imaginary exponential

I(x) =

∫ ∞

0

eixtdt =
i

x+ iδ
, δ = 0+.

Atomic magnetic susceptibility

Let us consider an idealized single-level atom described by the Hamiltonian ĤU = Un↑n↓. The
eigenstates of this system, |ΨNi 〉, as well as the expectation values Ei = 〈ΨNi |ĤU − µN̂ |ΨNi 〉 at
half-filling, are given in the table below

|ΨNi 〉 N Ei = 〈ΨNi |ĤU − µN̂ |ΨNi 〉
|0〉 0 0

c†σ|0〉 1 −U/2
c†↑c
†
↓|0〉 2 0
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The magnetic susceptibility in Matsubara space is given by

[χzz]nn′ (iωm) = β
1

4
(gµB)2

∑

P

sign(P )fP

fP (iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34fP (τ14, τ24, τ34)

where P = A,B, . . . are the six possible permutations of the indices (123) and

fP (τ14, τ24, τ34) =
1

Z

∑

σσ′

σσ′Tr e−β(Ĥ−µN̂)
[
ôP1(τ14)ôP2(τ24)ôP3(τ34)c†σ′

]

=
1

Z

∑

σσ′

σσ′
∑

ijkl

e−βEi〈i|ôP1|j〉〈j|ôP2|k〉〈k|ôP3|l〉〈l|c†σ′|i〉

×
[
e∆Eijτ14+∆Ejkτ24+∆Eklτ34

]
,

where ∆Eij = Ei − Ej . For the identity permutation the operators are ôP1 = cσ, ôP2 = c†σ, and
ôP3 = cσ′ and the frequencies are ω1 = νn, ω2 = −ωm − νn, ω3 = ωm + νn′ . This expression
can be used to calculate the magnetic susceptibility of any one-band system whose eigenvalues
and eigenvectors are known, e.g., via exact diagonalization. In the case of our idealized atom

fE(τ14, τ24, τ34) =
1

(1 + eβU/2)
eβU/2 e−(τ12+τ34)U/2 =

1

(1 + eβU/2)
gE(τ14, τ24, τ34).

The frequencies and functions fP (τ14, τ24, τ34) for all permutations are given in the table below

ωP1 ωP2 ωP3 gP (τ14, τ24, τ34) sign(P )

E(123) νn −ωm − νn ωm + νn′ eβU/2 e−(τ12+τ34)U/2 +

A(231) −ωm − νn ωm + νn′ νn −eβU/2 e−(τ12+τ34)U/2 +

B(312) ωm + νn′ νn −ωm − νn −e+(τ12+τ34)U/2 +

C(213) −ωm − νn νn ωm + νn′ −eβU/2e−(τ12+τ34)U/2 −
D(132) νn ωm + νn′ −ωm − νn −e+(τ12+τ34)U/2 −
F (321) ωm + νn′ −ωm − νn νn e+(τ12+τ34)U/2 −

The missing ingredient is the integral

IP (x,−x, x;iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34ex(τ14−τ24+τ34)

= +

∫ β

0

dτ14

∫ τ14

0

dτ

∫ τ14−τ

0

dτ ′ e(iωP1+iωP2+iωP3+x)τ14−i(ωP2+ωP3 )τe−(iωP3+x)τ ′

= +
1

iωP3 + x

1

−iωP2 + x

[
1

iωP1 + x

1

n(x)
+ βδωP1+ωP2

]

+
1

iωP3 + x

1− δωP2+ωP3

i(ωP2 + ωP3)

[
1

iωP1 + x
− 1

i(ωP1 + ωP2 + ωP3) + x

]
1

n(x)

+ δωP2+ωP3

1

iωP3 + x

{[
1

(iωP1 + x)

]2
1

n(x)
− β

[
1

(iωP1 + x)

]
1− n(x)

n(x)

}
.

where x = ±U/2, depending on the permutation. The general expression of the integral
IP (∆Eij, ∆Ejk, ∆Ekl; iω1, iω2, iω3) can be found in Refs. [32, 33].
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http://www.cond-mat.de/events/correl12

[8] O. Gunnarsson, Strongly Correlated Electrons: Estimates of Model Parameters, in Ref. [7]

[9] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen and O.K. Andersen,
Phys. Rev. Lett. 87, 047003 (2001)

[10] E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges and O.K. Andersen,
Phys. Rev. Lett. 92, 176403 (2004)

[11] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

[12] E. Müller-Hartmann, Z. Phys. B 74, 507 (1989); Z. Phys. B 76, 211 (1989);
Int. J. Mod. Phys. B 3, 2169 (1989)

[13] F. Ohkawa, J. Phys. Soc. Jap. 60, 3218 (1991)

[14] A. Georges and G. Kotliar, Phys. Rev. B 89, 6479 (1992)

[15] M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)

[16] V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar
J. Phys.: Condens. Matter 9, 7359 (1997)

http://www.cond-mat.de/events/correl13
http://www.cond-mat.de/events/correl11
http://www.cond-mat.de/events/correl12


6.50 Eva Pavarini

[17] A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57 6884 (1998

[18] E. Pavarini, E. Koch and A.I. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008);
E. Pavarini and E. Koch, Phys. Rev. Lett. 104, 086402 (2010)

[19] E. Pavarini, The LDA+DMFT Approach, in Ref. [6]

[20] J. Kunes, Wannier Functions and Construction of Model Hamiltonians, in Ref. [6]

[21] E. Pavarini, Crystal-field Theory, Tight-binding Method and Jahn-Teller Effect,
in Ref. [7]

[22] E. Pavarini, Magnetism: Models and Mechanisms, in Ref. [5]
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7.2 Fakher F. Assaad

Continuous-time quantum Monte Carlo (CT-QMC) methods are a tool of choice to solve cor-
related electron problems embedded in bosonic or fermonic baths [1]. This is precisely the
problem that is encountered in dynamical mean-field theories (DMFT), where in the limit of in-
finite coordination number the environment can be replaced by a fermionic bath [2]. In DMFT,
the physics of the Hubbard model in the limit of infinite coordination number maps onto that of
the single-impurity Anderson model (SIAM). This mapping provides invaluable insight into the
important problem of the Mott transition [3]. The beauty of the CT-QMC algorithms lie in their
flexibility. Rather than being Hamiltonian-based – like the auxiliary-field QMC method (see
Ref. [4] for a review), they are action-based and allow the simulation of effective low-energy
models after having integrated out high-energy degrees of freedom. This aspect of the method
has spurred many applications. In the domain of model-building, screening effects by high
energy bands, which can be taken into account within the constrained random phase approx-
imation (cRPA) [5], naturally lead to a low-energy effective model with retarded interactions
which only has an action-based formulation. Retarded interactions are also obtained in the con-
text of electron-phonon interactions. Here, one can integrate out the bosonic phonon modes at
the expense of a retarded interaction [6–9]. Other applications of the algorithm have been in-
troduced in the realm of topological insulators [10, 11]. In this context, helical liquids can only
be realized as the edge theory of a quantum spin Hall insulator [12]. In many cases, correlation
effects can be neglected in the bulk but are dominant on the edge [13]. Thereby, one can retain
interactions along the edge of the system and view the bulk as a bath, which one can readily inte-
grate out [14–17]. Further applications of the CT-QMC include for example formulations along
the Keldysh contour (see Ref. [18]) or applications within the realm of extensions to DMFT
methods to include spatial fluctuations. Here one can mention cluster generalizations such as
the dynamical cluster or cellular DMFT approximations [19], the dual fermion approach [20],
the dynamical vertex approximation [21], or extended DMFT [22].

There is a price to the flexibility of the CT-QMC algorithms. In the best-case scenario – absence
of a sign problem – the computational time scales as the third power of the Euclidean volume;
to be more precise (Nimpβ)3, where β corresponds to the inverse temperature and Nimp to the
number of impurities. This scaling has to be contrasted with the auxiliary-field methods [4],
which have linear scaling in β. Such algorithms have recently been used in the context of
DMFT [23]. In the worst case, all stochastic methods are prone to the so-called negative sign
problem, which effectively leads to a signal-to-noise ratio that grows exponentially in the Eu-
clidian volume. There is to date no solution to this problem. Different algorithms or different
formulations of the same algorithm can lead to very different sign problems. Clever tricks such
as the fermion-bag approach can sometimes solve the problem in special situations [24].

Another issue when opting for stochastic algorithms – as opposed to NCA or tensor-network
based approaches – is the fact that QMC operates on the imaginary time axis. To produce
spectral functions on the real-frequency axis so as to compare with experiments, analytical con-
tinuation is necessary. This is a numerically ill-conditioned problem which limits the precision
for the calculation of spectral functions. This issue may be especially severe when considering
multi-orbital problems with complicated spectral line-shapes. The only solution to this prob-
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lem is to work directly on the real time axis, or to analytically continue spectral functions with
simple line shapes.
The CT-QMC approach is the method of choice for thermodynamics and equal time correlation
functions. It is unbiased. Given an adequate error analysis, exact results are reproducible within
the cited error-bars. The CT-QMC methods have different formulations. The interaction expan-
sion (CT-INT) [25] and auxiliary-field (CT-AUX) [26, 27] approaches turn out to be identical,
with CT-INT being the more general. The CT-INT is a weak coupling method and to access the
strong coupling it is more convenient to use the hybridization expansion CT-HYB [28].
The organization of this lecture is the following. In section 2, we concentrate on the CT-INT
[25, 26] approach in the context of the SIAM. We will review this algorithm in detail, since it
has the potential for tackling lattice problems. In section 3, we will cover the basic ideas of
the CT-HYB algorithm [28]. The CT-HYB is certainly the method of choice for multi-orbital
models in the strong coupling limit. In section 4, we provide a generalization of the CT-INT
method to tackle problems with bosonic baths. Here, the bosonic bath corresponds to a phonon
mode that after integration leads to a retarded interaction.
For completeness, we have included an appendix that reviews the basic ideas of the Monte
Carlo method as well as a discussion of error analysis. This is an important aspect of the
implementation of CT-INT algorithms.

1 The single impurity Anderson model (SIAM)

The Anderson impurity model [29] describes the formation and screening of local magnetic
moments in a metallic host. The metallic host is described by a conduction electron band with
dispersion relation ε(k). The impurity state is described by a localized Kramers doublet orbital.
The localized nature of the impurity orbital obliges one to include the Coulomb repulsion in
terms of a Hubbard U. Finally, a hybridization matrix element Vk allows for charge transfer
between the localized orbital and extended Bloch states. In second quantization, the model is
given by

ĤSIAM =
∑
k,σ

ε(k) ĉ†k,σ ĉk,σ +
∑
k,σ

(
Vk ĉ

†
k,σf̂σ + V̄k f̂

†
σ ĉk,σ

)
+ εf

∑
σ

n̂σ + U n̂↑n̂↓. (1)

Here, ĉ†k,σ creates a Bloch electron with z-component of spin σ, f̂ †σ an electron on the Kramers
doublet localized orbital and n̂σ = f̂ †σf̂σ. A discussion of the physics described by the single
impurity Anderson model can be found in Ref. [30]. In the spirit of action based CT-QMC
algorithms, it is convenient to integrate out the conduction electrons. To carry out this step, we
introduce fermion coherent states |c, f〉 that satisfy

ĉk,σ|c, f〉 = ck,σ|c, f〉, f̂σ|c, f〉 = fσ|c, f〉, (2)

with ck,σ and fσ being Grassmann variables. Using standard many body formalism, reviewed
for example in [31], the partition function of the SIAM is given by a path integral over Grass-
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mann variables

ZSIAM = Tr
[
e−βĤSIAM

]
=∫

D
{
c†cf †f

}
e−

∫ β
0 dτ[

∑
k,σ c

†
k,σ(τ)

∂
∂τ
ck,σ(τ)+

∑
σ f
†
σ(τ)

∂
∂τ
fσ(τ)+HSIAM(c†,c,f†,f)] .

(3)

Since the Grassmann variables satisfy anti-periodic boundary conditions in β, we can define the
Fourier transform

fσ(iωm) =
1√
β

∫ β

0

dτeiωmτfσ(τ) (4)

with ωm = (2m+ 1) π/β a fermionic Matsubra frequency. An equivalent equation holds for
the conduction electrons.
Owing to the fact that the action is bilinear in the conduction electrons one can integrate them
out with a Gaussian integration to obtain our final result

ZSIAM =

∫
D
{
f †f
}
e−S(f

†,f) with

S(f †, f) = −
∫ β

0

dτdτ ′
∑
σ

f †σ(τ)G−10 (τ − τ ′) fσ(τ ′) + U

∫ β

0

dτ f †↑(τ)f↑(τ)f †↓(τ)f↓(τ).
(5)

Here G0(τ − τ ′) = −〈T f̂σ(τ)f̂ †σ(τ ′)〉0 corresponds to the non-interacting f -Green function.
The Gaussian integration yields

G−10 (τ − τ ′) = −δ(τ − τ ′)
[
∂

∂τ ′
+ εf

]
+∆(τ − τ ′) with ∆(iωm) =

∑
k

|Vk|2

iωm − ε(k)
. (6)

The above equation is the starting point for both the CT-INT and CT-HYB algorithms. The
CT-INT follows the idea of expanding in the interaction term, whereas the CT-HYB expands in
the hybridization. In this lecture, we will assume that the fermonic bath possesses U(1) gauge
symmetry. Generalizations of the CT-INT to account for superconducting leads can be found in
Refs. [32, 33].

2 CT-INT

In this section, we will describe in some detail the implementation of the CT-INT and show that
it is equivalent to the CT-AUX

2.1 The partition function

Anticipating the elimination of the sign problem in some cases and to establish the equivalence
between the CT-INT and CT-AUX algorithms, we will rewrite the Hubbard interaction as

U

2

∑
s=±1

(n̂↑ − ρ/2− sδ) (n̂↓ − ρ/2 + sδ) . (7)
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Here we have introduced a additional Ising variable s, and ρ corresponds to the average elec-
tronic density. We will discuss the additional parameter δ later on in this section. Starting from
the action in Eq. (5), we can Taylor expand in the Hubbard interaction to obtain

ZSIAM

Z0

=
∞∑
n=0

(
−U
2

)n
1

n!

∫ β

0

dτ1
∑
s1

· · ·
∫ β

0

dτn
∑
sn

∏
σ

〈[nσ(τ1)− ασ(s1)] · · · [nσ(τn)− ασ(sn)]〉0

(8)
The expectation value 〈•〉0 is taken with respect to the non-interacting SIAM with partition
function Z0 and we have used the short cut notation

ασ(s) = ρ/2 + σsδ . (9)

The thermal expectation value is the sum over all diagrams, connected and disconnected, of a
given order n. Using the general formulation of Wick’s theorem, this sum can be expressed as
a determinant where the entries are the Green functions of the non-interacting system

〈[nσ(τ1)− ασ(s1)] · · · [nσ(τn)− ασ(sn)]〉0 =

det



g0(τ1, τ1)− ασ(s1) g0(τ1, τ2) · · · g0(τ1, τn)

g0(τ2, τ1) g0(τ2, τ2)− ασ(s2) · · · g0(τ2, τn)

· · · ·
· · · ·
· · · ·

g0(τn, τ1) g0(τn, τ2) · · · g0(τn, τn)− ασ(sn)


︸ ︷︷ ︸

≡Mσ(Cn)

, (10)

where we have defined the Green function:

g0(τ1, τ2) = 〈T f̂ †σ(τ1)f̂σ(τ2)〉0 , (11)

which we have assumed to be spin-independent. In the above, T corresponds to the time or-
dering. The product of the two determinants is nothing but the sum over connected and dis-
connected Feynman diagrams. The summation over individual Feynman diagrams reduces the
negative sign problem and, as we will see later, eliminates it altogether for a class of problems.
A configuration Cn is defined by the n Hubbard vertices and Ising spins introduced in Eq. (7)

Cn = {[τ1, s1] · · · [τn, sn]} . (12)

With the short-hand notation∑
Cn

=
∞∑
n=0

∫ β

0

dτ1
∑
s1

· · ·
∫ β

0

dτn
∑
sn

, (13)

the partition function can conveniently be written as

ZSIAM

Z0

=
∑
Cn

W (Cn), with W (Cn) =

(
−U

2

)n
1

n!

∏
σ

detMσ(Cn) . (14)

Here Mσ(Cn) is the n× n matrix of Eq. (10).
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2.2 Observables and Wick’s theorem

Observables Ô(τ) can now be computed with

〈Ô(τ)〉 =

∑
Cn
W (Cn)〈〈Ô(τ)〉〉Cn∑

Cn
W (Cn)

, (15)

where for Ô(τ) =
∏

σ Ôσ(τ) we have

〈〈Ô(τ)〉〉Cn =

∏
σ〈T [n̂σ(τ1)− ασ(s1)] · · · [n̂σ(τn)− ασ(sn)] Ôσ(τ)〉0∏

σ〈T [n̂σ(τ1)− ασ(s1)] · · · [n̂σ(τn)− ασ(sn)]〉0
. (16)

We will compute the single-particle Green function and then show that any many-particle Green
function can be expressed in terms of this quantity. This statement corresponds to Wick’s theo-
rem, which holds when expanding around a Gaussian theory.
Using the determinant identity given by Eq. (10), one will readily see that the single-particle
Green function is given by the ratio of two determinants:

〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn =
detBσ(Cn)

detMσ(Cn)
(17)

where

Bσ(Cn) =


g0(τ1, τ

′)

Mσ(Cn)
...

g0(τn, τ
′)

g0(τ, τ1) . . . g0(τ, τn) g0(τ, τ
′)

 . (18)

To compute the ratio of the two determinants, we use the determinant identity

det(A + u⊗ v) = det(A)
(
1 + v ·A−1u

)
(19)

as well as the Sherman-Morrison formula

(A + u⊗ v)−1 = A−1 − A−1u⊗ vA−1

1 + v ·A−1u
(20)

to obtain

det (A + u1 ⊗ v1 + u2 ⊗ v2) =

det(A)
[(

1 + v1 ·A−1u1

) (
1 + v2 ·A−1u2

)
−
(
v2 ·A−1u1

) (
v1 ·A−1u2

)]
,

(21)

where the outer product is given by (u⊗ v)i,j = uivj and the scalar product by u·v =
∑

i uivi.
Eq. (20) can be formally derived by Taylor-expanding (1 + A−1u⊗ v)−1. Eq. (19) can equally
be formally demonstrated by using the fact that det(A) = exp Tr log (A).
Decomposing the Bσ(Cn) matrix as

Bσ(Cn) =


0

Mσ(Cn)
...
0

0 . . . 0 1

+ u1 ⊗ v1 + u2 ⊗ v2 (22)
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with
u1 = (g0(τ1, τ

′), . . . , g0(τn, τ
′), g0(τ, τ

′)− 1) , (v1)i = δi,n+1

and
(u2)i = δi,n+1, v2 = (g0(τ, τ1), . . . , g0(τ, τn), 0)

yields the following expression for the single-particle Green function

g(τ, τ ′)Cn ≡ 〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn = g0(τ, τ
′)−

n∑
r,s=1

g0(τ, τr)
(
Mσ(Cn)−1

)
r,s
g0(τs, τ

′) . (23)

An important consequence of a continuous-time formulation is that one can compute the Green
function directly in Matsubara frequencies. With the Fourier transformation of Eq. (4) one
obtains:

g(iωm, iω
′
m)Cn = δωm,ω′mg0(iωm)− g0(iωm)

(
1

β

n∑
r,s=1

e−iωmτr
(
Mσ(Cn)−1

)
r,s
eiω
′
mτs

)
g0(iω

′
m).

(24)
For a given configuration of vertices Cn, translation symmetry in imaginary time is broken
such that g(iωm, iω

′
m)Cn has to be a function of two Matsubara frequencies. Clearly, translation

symmetry has to be restored after summation over the configurations Cn has been carried out.
One can use this fact to define improved estimators for the Green function.
Higher-order Green functions may be computed by using the matrix identity demonstrated in
App. B [32]. Here we consider Green functions of the form 〈T f̂ †σ(1)f̂σ(1′) . . . f̂ †σ(m)f̂σ(m′)〉.
For every configuration Cn, a relation similar to Wick’s theorem can be found, which greatly
simplifies the calculation of higher-order Green functions. The application of the ordinary Wick
theorem to the denominator and the numerator of Eq. (16) yields

〈〈T f̂ †σ(1)f̂σ(1′) . . . f̂ †σ(m)f̂σ(m′)〉〉Cn =
detBσ(Cn)

detMσ(Cn)
, (25)

where now Bσ(Cn) is a C(n+m)×(n+m) matrix given by

Bσ(Cn) =



g0(τ1, 1
′) . . . g0(τ1,m

′)

Mσ(Cn)
... . . . ...

g0(τn, 1
′) . . . g0(τn,m

′)

g0(1, τ1) . . . g0(1, τn) g0(1, 1
′) . . . g0(1,m

′)
... . . . ...

... . . . ...
g0(m, τ1) . . . g0(m, τn) g0(m, 1

′) . . . g0(m,m
′)


. (26)

Defining the matrices Bij
σ(Cn) ∈ C(n+1)×(n+1),

Bij
σ(Cn) =


g0(τ1, i

′)

Mσ(Cn)
...

g0(τn, i
′)

g0(j, τ1, ) . . . g0(j, τn) g0(j, i
′)

, (27)
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we can make use of the determinant identity (145) yielding

detBCn

detMCn

=
1

(detMCn)n
det

detB11
Cn

. . . detB1m
Cn

... . . . ...
detBm1

Cn
. . . detBmm

Cn

. (28)

From Eq. (17) and (18), it is obvious that detBij
σ(Cn)/ detMσ(Cn) is identical to the contribu-

tion of the configuration Cn to the one particle Green’s function 〈T f̂ †σ(j)f̂σ(i′)〉. Hence, Wick’s
theorem holds for every configuration Cn and is given by

〈〈T f̂ †σ(1)f̂σ(1′) . . .f̂ †σ(m)f̂σ(m′)〉〉Cn =

det

 〈〈T f̂
†
σ(1)f̂σ(1′)〉〉Cn . . . 〈〈T f̂ †σ(1)f̂σ(m′)〉〉Cn

... . . . ...
〈〈T f̂ †σ(m)f̂σ(1′)〉〉Cn . . . 〈〈T f̂ †σ(m)f̂σ(m′)〉〉Cn

 .
(29)

This demonstrates that knowing the single particle Green function 〈〈T f̂ †σ(τ)f̂σ(τ ′)〉〉Cn suffices
to compute any observable.

2.3 The negative sign problem

For each configuration of vertices Cn, we are able to compute arbitrary correlation functions.
Due to the dimension of the configuration space, it is prohibitively expensive to carry out the
summation over Cn exactly. One will thus opt for a stochastic Monte Carlo approach which, for
completeness sake, is reviewed in Appendix A.
A prerequisite for applying the Monte Carlo approach is that the weight, W (Cn), of Eq. (14)
is positive. For quantum systems, a positive formulation is not always possible, and one will
decide to sample |W (Cn)|. Thereby, we will carry out the Monte Carlo evaluation with

〈Ô(τ)〉 =

∑
Cn
W (Cn)〈〈Ô(τ)〉〉Cn∑

Cn
W (Cn)

=

∑
Cn
|W (Cn)|sign(W (Cn))〈〈Ô(τ)〉〉Cn∑

Cn
|W (Cn)|∑

Cn
|W (Cn)|sign(W (Cn))∑

Cn
|W (Cn)|

(30)

and separately compute the numerator and denominator. The denominator corresponds to the
average sign. On general grounds, one can argue that it is given by the ratio of two partition
functions and thereby decays exponentially with the inverse temperature and the number of
impurities Nimp

〈sign〉 =

∑
Cn
W (Cn)∑

Cn
|W (Cn)|

' e−∆βNimp . (31)

In other words, at low temperatures there is a next to perfect cancellation of positive and negative
weights. The sign problem is a consequence of the law of large numbers which states that the
error on the average sign scales as

σsign ∼
1√
TCPU

, (32)
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where TCPU corresponds to the computational time. Obviously, to obtain sensible results, we
will require that

σSign
〈sign〉

� 1 (33)

such that

TCPU � e2∆βNimp . (34)

Hence the required CPU time will scale exponentially with inverse temperature and number of
impurities. Note that one can counter the sign problem if one can define an improved estimator
for the average sign such that the fluctuations are greatly suppressed! Let us furthermore note
that the pre-factor ∆ is formulation dependent. One can for instance mention recent work of
Huffman et al. [24], who have found a CT-INT formulation for spin-polarized electron problems
at half-band filling that is free of the sign problem. Hence in this case ∆ = 0. There are other
problems which are free of the negative sign problem. To show this, for the special case of
attractive and repulsive Hubbard interactions, we will consider the mapping of the CT-INT to
the CT-AUX [26, 27, 34]. This mapping allows the use of results derived in the framework of
the Hirsch-Fye [35] and auxiliary-field QMC (for a review see Ref. [4]) algorithms to argue for
the absence of the sign problem.
Let us start with the repulsive Hubbard interaction, which we will write as

HU =
U

2

∑
s=±1

[(n̂↑ − 1/2) + sδ] [(n̂↑ − 1/2)− sδ] = −U (δ2 − 1/4)

2

∑
s=±1

eαsm̂ (35)

with

cosh(α)− 1 =
1

2

1

δ2 − 1/4

and magnetization m̂ = n̂↑ − n̂↓. This identity relies on the fact that m̂4 = m̂2 and requires
δ > 1/2. Using this identity, the weight of a vertex configuration is given by

W (Cn) =

(
U (δ2 − 1/4)

2

)n
1

n!
〈Teαs1m̂(τ1) . . . eαsnm̂(τn)〉0 (36)

where 〈•〉0 corresponds to the thermal expectation value with respect to the non-interacting
model. Several comments are in order. (i) The notation K = Uβ(δ2− 1/4) makes the mapping
to the CT-AUX explicit [27]. (ii) For δ > 1/2 , U (δ2 − 1/4) is positive for the repulsive case.
(iii) For a given set of Ising fields, the thermal expectation value has precisely the same structure
as in the Hirsch-Fye and auxiliary-field QMC algorithms [4]. It hence follows that the CT-INT,
CT-AUX, Hirsch-Fye and auxiliary-field QMC algorithms have the same sign problem for re-
pulsive Hubbard interactions. Thus, as shown in Ref. [36], the SIAM is free of the negative sign
problem. By the same token, one can argue that a class of one-dimensional problems [6] and
problems with particle-hole symmetry such as the Kane-Mele-Hubbard model [37, 13] are sign
problem free if formulated within the CT-INT. Studies of correlation effects in one-dimensional
helical liquids [15] hinge on this observation.
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For attractive interactions, one can use a similar identity as above. In this case, we have to adopt
a different convention for the δ-shift

HU =
U

2

∑
s=±1

[(n̂↑ − 1/2) + sδ] [(n̂↑ − 1/2) + sδ] =
U (δ2 − 1/4)

2

∑
s=±1

eαs(n̂−1) (37)

with n̂ = n̂↑ + n̂↓. Again, the above equation relies on the fact that (n̂− 1)4 = (n̂− 1)2 and
the same equation as above holds for α. Thus, for the attractive case, the weight reads

W (Cn) =

(
−U (δ2 − 1/4)

2

)n
1

n!
〈Teαs1(n̂(τ1)−1) . . . eαsn(n̂(τn)−1)〉0 . (38)

Since U < 0 and δ > 1/2, −U (δ2 − 1/4) is positive. Furthermore, provided that the non-
interacting model factorizes into identical spin-up an spin-down real representable Hamiltoni-
ans, the thermal expectation value reads

〈Teαs1(n̂(τ1)−1) . . . eαsn(n̂(τn)−1)〉0 =
[
〈Teαs1(n̂↑(τ1)−1/2) . . . eαsn(n̂↑(τn)−1/2)〉0,↑

]2
, (39)

which is manifestly positive. Here 〈•〉0,↑ corresponds to the thermal expectation value in the
spin-up sector. Factorization is not necessarily required for the absence of the sign problem in
the presence of attractive interactions. In general, time-reversal-symmetric fermionic problems
where time reversal symmetry is present for every configuration Cn, are free of the minus sign
problem. This follows essentially from Kramers theorem and is proven in Ref. [38].

2.4 The Monte Carlo sampling

At this point, we will assume that the weight is positive such that we can carry out Monte
Carlo importance sampling. Only two moves are required to guarantee ergodicity: addition and
subtraction of vertices. Vertex addition corresponds to the proposal

Cn = {[τ1, s1] · · · [τn, sn]} → Cn+1 = {[τ1, s1] · · · [τi, si], [τ ′, s′], [τi+1, si+1] · · · [τn, sn]} (40)

where we add the vertex τ ′, s′ at position i in the string. The proposal probability reads

T 0
Cn→Cn+1

=
1

n+ 1︸ ︷︷ ︸
Position in string

1

β︸︷︷︸
Value of τ ′

1

2︸︷︷︸
Value of s′

. (41)

Vertex removal corresponds to

Cn = {[τ1, s1] · · · [τn, sn]} → Cn−1 = {[τ1, s1] · · · [τi, si] , [τi+2, si+2] , · · · [τn, sn]} , (42)

where vertex i has been removed. The probability to propose this move reads

T 0
Cn→Cn−1

= 1/n , (43)
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which corresponds to the probability of choosing vertex i under the assumption that each vertex
is equally probable. As shown in Appendix A (see Eq. (132) ), the Metropolis acceptance reads

PC→C′ = min

(
T 0
C′→CW (C ′)

T 0
C→C′W (C)

, 1

)
. (44)

Thus

PCn→Cn+1 = min

(
− Uβ

(n+ 1)

∏
σ detMσ(Cn+1)∏
σ detMσ(Cn)

, 1

)
PCn+1→Cn = min

(
−(n+ 1)

Uβ

∏
σ detMσ(Cn)∏
σ detMσ(Cn+1)

, 1

)
.

Note that in our formulation the ordering of the vertices is important since we have defined the
integration without time-ordering

∫ β
0

dτ1 · · ·
∫ β
0

dτn as opposed to a time-ordered formulation∫ β
0

dτ1
∫ τ1
0

dτ2 · · ·
∫ τn−1

0
dτn. The reader is encouraged to show that both formulations lead to

the same acceptance/rejection ratios. In practical implementations one will also include a move
that keeps the vertex number constant but flips the value of the Ising spin. Strictly speaking,
this move is not necessary but has the potential of improving the autocorrelation time. For
repulsive interactions, this statement follows from the notion that summing over the Ising fields
will restore the broken SU(2) spin-symmetry.

2.5 Fast updates

The Monte Carlo dynamics relies on the calculation of ratios of determinants. Such ratios can
be computed using the determinant identities of Eq. (21). For instance, under vertex addition
we will have to compute for each spin sector

detMσ(Cn+1)

detMσ(Cn)
=

det


g0(τ1, τ

′)

Mσ(Cn)
...

g0(τn, τ
′)

g0(τ
′, τ1) . . . g0(τ

′, τn) g0(τ
′, τ ′)− ασ(s′)


detMσ(Cn)

=

det




0

Mσ(Cn)
...
0

0 . . . 0 1

+ u1 ⊗ v1 + u2 ⊗ v2


detMσ(Cn)

=
(
1 + v1 ·M−1

σ (Cn)u1

) (
1 + v2 ·M−1

σ (Cn)u2

)
−
(
v2 ·M−1

σ (Cn)u1

) (
v1 ·M−1

σ (Cn)u2

)
.

with
u1 = (g0(τ1, τ

′), . . . , g0(τn, τ
′), g0(τ

′, τ ′)− ασ(s′)− 1) , (v1)i = δi,n+1



7.12 Fakher F. Assaad

and
(u2)i = δi,n+1, v2 = (g0(τ

′, τ1), . . . , g0(τ
′, τn), 0).

Carrying out the calculation yields

detMσ(Cn+1)

detMσ(Cn)
= g0(τ

′, τ ′)− ασ(s′)−
n∑

i,j=1

g0(τ
′, τi)

[
M−1

σ (Cn)
]
i,j
g0(τj, τ

′) . (45)

Hence, provided that the matrix M−1
σ (Cn) is known, computing the ratio involves n2 operations.

The vertex removal takes a very simple form. Assume that we remove the nth vertex of the
configuration Cn. Then for a given spin sector, we will have to compute

detMσ(Cn−1)

detMσ(Cn)
=

det


g0(τ1, τ1)− ασ(s1) . . . g0(τ1, τn−1) 0

...
...

...
g0(τn−1, τ1) . . . g0(τn−1, τn−1)− ασ(sn−1) 0

0 . . . 0 1


detMσ(Cn)

=
det [Mσ(Cn) + u1 ⊗ v1 + u2 ⊗ v2]

detMσ(Cn)
(46)

with
u1 = −

(
[Mσ(Cn)]1,n , . . . , [Mσ(Cn)]n,n − 1

)
, (v1)i = δi,n

and
(u2)i = δi,n, v2 = −

(
[Mσ(Cn)]n,1 , . . . , [Mσ(Cn)]n,n−1 , 0

)
.

Evaluating the above gives

detMσ(Cn−1)

detMσ(Cn)
=
[
M−1

σ (Cn)
]
n,n
. (47)

Again, provided that we have the matrix M−1
σ (Cn) at hand, the computational cost for comput-

ing the ratio for vertex removal is negligible.
Having computed the ratio of determinants, we can compute the acceptance probability, draw
a pseudo-random number, and accept or reject the move. If accepted, we will have to upgrade
the matrix M−1

σ (Cn). This is readily done with the use of the Sherman-Morrison formula of
Eq. (20) and involves n2 operations.
In some cases, it is desirable to add more than one vertex at a time. For this purpose, it is more
useful to use the Woodbury formula

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (48)

with A ∈ Cn×n, U ∈ Cn×k, C ∈ Ck×k and V ∈ Ck×n. The Woodbury identity reduces to the
Sherman-Morrison formula of Eq. (20) at k = 1 and C = 1. A discussion of block updates as
well as a demonstration of various matrix identities can be found in Ref. [39].
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2.6 Average expansion parameter

A crucial issue concerns the average expansion parameter 〈n〉 since it will determine the average
size of the matrix Mσ(Cn). The computational effort to visit each vertex – a sweep – will then
scale as 〈n〉3. For a general interaction term Ĥ1, the average expansion parameter is [6]

〈n〉 =
1

Z

∑
n

(−1)nn

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτn 〈TĤ1(τ1) · · · Ĥ1(τn)〉0

= − 1

Z

∑
m

(−1)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτm

∫ β

0

dτ 〈TĤ1(τ1) · · · Ĥ1(τm)Ĥ1(τ)〉0

= −
∫ β

0

dτ〈Ĥ1(τ)〉 . (49)

For the Hubbard model, replacing Ĥ1 by the form of Eq. (7), we obtain

〈n〉 = −βU
[
〈(n̂↑ − 1/2)(n̂↓ − 1/2)〉 − δ2

]
, (50)

where we have set ρ = 1/2. Thus, the computational time for a sweep scales as in the Hirsch-
Fye approach, namely as (βU)3. The algorithm can be used for lattice models withN correlated
sites. In this case, the computational time for a sweep scales as (NβU)3, which is more expen-
sive than the auxiliary-field approach, which scales as βUN3. As mentioned in the introduction,
the advantage of the CT-INT method lies in the fact that it is action-based such that fermionic
and bosonic baths can be easily implemented.

3 CT-HYB

In this section we will provide a very succinct overview of the basic formulation of the CT-
HYB. For a detailed discussion of the algorithm, the reader is referred to the review article [1]
and references therein.

3.1 The partition function

In contrast to the CT-INT, the CT-HYB carries out the expansion in the hybridization matrix
∆(τ − τ ′). The action of the SIAM is decomposed into local

Sloc(f
†, f) =

∫ β

0

dτ
∑
σ

f †σ(τ)

[
∂

∂τ
+ εf

]
fσ(τ) + U

∫ β

0

dτ f †↑(τ)f↑(τ)f †↓(τ)f↓(τ) (51)

and hybridization

Shyb(f
†, f) = −

∫ β

0

dτdτ ′
∑
σ

f †σ(τ)∆(τ − τ ′) fσ(τ ′) (52)
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parts. Taylor expanding in Shyb gives

ZSIAM =

∫
D
{
f †f
}
e−Sloc(f

†,f)
∑
n

1

n!

∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
n

× f †σ1(τ1)fσ1(τ
′
1) . . . f

†
σn(τn)fσn(τ ′n)∆(τ1 − τ ′1) . . . ∆(τn − τ ′n). (53)

The insight of Ref. [28] is to sum up a set of configurations corresponding to the permutations
of the Grassmann variables f . As we will see, the weight of this sum of configurations is
given by an n × n determinant of the hybridization function. This is the crucial step in the
basic formulation of the algorithm that leads to the absence of a sign problem for the SIAM. To
achieve this, it is convenient to introduce the notation

x = (τ, σ),

∫
dx =

∑
σ

∫ β

0

dτ, ∆x,x′ = ∆(τ − τ ′)δσ,σ′ (54)

such that∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
nf
†
σ1

(τ1)fσ1(τ
′
1) . . . f

†
σn(τn)fσn(τ ′n)∆(τ1 − τ ′1) . . . ∆(τn − τ ′n)

=

∫
dx1dx

′
1 . . . dxndx

′
n f
†
x1
fx′1 . . . f

†
xnfx′n ∆x1,x′1

. . . ∆xn,x′n

=
1

n!

∑
P∈Sn

∫
dx1dx

′
P (1) . . . dxndx

′
P (n) f

†
x1
fx′

P (1)
. . . f †xnfx′P (n)

∆x1,x′P (1)
. . . ∆xn,x′P (n)

. (55)

In the above P is a permutation of n objects, and we have merely replicated the result n! times.
Using the anti-commuting property of the Grassmann algebra, one can show that

f †x1fx′P (1)
. . . f †xnfx′P (n)

= (−1)Pf †x1fx′1 . . . f
†
xnfx′n

where (−1)P is the sign of the permutation. Since dx1dx′P (1) . . . dxndx
′
P (n) = dx1dx

′
1 . . . dxndx

′
n

Eq. (55) transforms as

1

n!

∫
dx1dx

′
1 . . . dxndx

′
n f †x1fx′1 . . . f

†
xnfx′n

∑
P∈Sn

(−1)P∆x1,x′P (1)
. . . ∆xn,x′P (n)

=
1

n!

∫
dx1dx

′
1 . . . dxndx

′
n f †x1fx′1 . . . f

†
xnfx′n det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n

 (56)

Using the above, the partition function is written as

ZSIAM

Zloc
=
∑
n

1

n!2

∫
dx1dx

′
1 . . . dxndx

′
n 〈f †x1fx′1 . . . f

†
xnfx′n〉loc det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n

 (57)
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where

Zloc =

∫
D
{
f †f
}
e−Sloc(f

†,f)

and

〈•〉loc =
1

Zloc

∫
D
{
f †f
}
e−Sloc(f

†,f) • .

For the special case where the hybridization function is spin diagonal, one can simplify the
above equation. In this case, the spin variables {σ′1 . . . σ′n} have to be a permutation of {σ1 . . . σn}
such that

σ′i = σP (i) with P ∈ Sn. (58)

Hence,

∫
dx1dx

′
1 . . . dxndx

′
n 〈f †x1fx′1 . . . f

†
xnfx′n〉loc det

∆x1,x′1
. . . ∆x1,x′n

...
...

∆xn,x′1
. . . ∆xn,x′n


=
∑
P∈Sn

∑
σ1...σn

∫ β

0

dτ1dτ
′
1 . . . dτndτ

′
n 〈f †τ1,σ1fτ ′1,σP (1)

. . . f †τn,σn,fτ ′n,σP (n)
〉loc

× det

∆(τ1,σ1),(τ ′1,σP (1)) . . . ∆(τ1,σ1),(τ ′n,σP (n))

...
...

∆(τn,σn),(τ ′1,σP (1)) . . . ∆(τn,σn),(τ ′n,σP (n))

 .

For a given permutation P one can carry out the substitution τ ′i = τ ′′P (i). This substitution leaves
the integration measure invariant such that the above reads

∑
P∈Sn

∑
σ1...σn

∫ β

0

dτ1dτ
′′
1 . . . dτndτ

′′
n 〈f †τ1,σ1fτ ′′P (1)

,σP (1)
. . . f †τn,σn,fτ ′′P (n)

,σP (n)
〉loc

× det


∆(τ1,σ1),(τ ′′P (1)

,σP (1)) . . . ∆(τ1,σ1),(τ ′′P (n)
,σP (n))

...
...

∆(τn,σn),(τ ′′P (1)
,σP (1)) . . . ∆(τn,σn),(τ ′′P (n)

,σP (n))

 .

One can get rid of the permutation under the integral by reordering the Grassmann variables
fτ ′′
P (i)

,σP (i)
as well as the columns of the matrix. In this process, the minus signs cancel and the

sum over the permutations gives a factor n!. Hence, the partition function reads

ZSIAM

Zloc
=

∑
n

1

n!

∑
σ1...σn

∫ β

0

dτ1dτ
′′
1 . . . dτndτ

′′
n 〈f †τ1,σ1fτ ′′1 ,σ1 . . . f

†
τn,σn,fτ ′′n ,σn〉loc

× det

∆(τ1,σ1),(τ ′′1 ,σ1)
. . . ∆(τ1,σ1),(τ ′′n ,σn)

...
...

∆(τn,σn),(τ ′′1 ,σ1)
. . . ∆(τn,σn),(τ ′′n ,σn)

 . (59)
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3.2 The Monte Carlo sampling and evaluation of the trace

For the SIAM where the hybridization matrix is spin-diagonal, we can define a configuration as

Cn = {[τ1, τ ′1, σ1] · · · [τn, τ ′n, σn]} (60)

and the weight of a configuration as

W (Cn) =
1

n!
〈f †τ1,σ1fτ ′′1 ,σ1 . . . f

†
τn,σn,fτ ′′n ,σn〉loc det

∆(τ1,σ1),(τ ′′1 ,σ1)
. . . ∆(τ1,σ1),(τ ′′n ,σn)

...
...

∆(τn,σn),(τ ′′1 ,σ1)
. . . ∆(τn,σn),(τ ′′n ,σn)

 (61)

such that ZSIAM
Zloc

=
∑

Cn
W (Cn). The simplest possible proposal matrix to add a vertex reads,

T 0
Cn→Cn+1

=
1

n+ 1︸ ︷︷ ︸
Position in string

1

β︸︷︷︸
Value of τ

1

β︸︷︷︸
Value of τ ′

1

2︸︷︷︸
Spin up or spin down

. (62)

To remove a vertex
T 0
Cn→Cn−1

=
1

n
. (63)

With the above we are now in a position to compute the Metropolis acceptance ratio given in
Eq. (132). The update of the hybridization matrix follows the same ideas as in the CT-INT.
The computationally expensive part of the CT-HYB algorithm is the evaluation of the trace〈
·
〉

loc. In general, as the expectation value is taken with respect to the local Hamiltonian, the
operators can be represented by matrices in a basis of the local Hilbert space.
One particular basis that is often used is the eigenbasis of the local Hamiltonian. This makes
the time evolution of the operators trivial but leads to dense operator matrices, which have to
be multiplied. Here the main drawback of the CT-HYB becomes apparent: the size of the local
Hilbert space D, and thus of the operator matrices, grows exponentially with the number of
local degrees of freedom. Thus, simulation of larger systems become unfeasible quite rapidly.
Nevertheless, there are strategies to simulate multi-orbital systems as well as small clusters for
Cluster-DMFT applications.
To reduce the size of the matrices that have to be multiplied, one can exploit certain symmetries
of the Hamiltonian. This allows splitting the matrices into blocks of size di � D [40], such that∑

i di = D. Each block contains all the states associated with a certain value of a conserved
quantity. The most obvious conserved quantities are the total f -particle number Nf and the
z-component of the total spin Sz. There are well-defined rules governing how an operator
connects the different blocks corresponding to different quantum numbers. As an example, the
creation operator f̂ †↑ connects the blocks (Nf , Sz) and (Nf + 1, Sz + 1/2).
In Ref. [41], another set of conserved quantities was identified, which leads to even smaller
matrix blocks. For each orbital or site, the projection onto single occupation

PSa = (na,↑ − na,↓)2, a = 1 . . .M (64)
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Considered symmetries None Nf Nf , Sz Nf , Sz, PS

N = 3 64 = 43 20 9 3
N = 5 1024 = 44 252 100 10

Table 1: Largest matrix block size, with different sets of conserved quantities taken into account.

commutes with the local Hamiltonian. This makes the whole sequence of PS=(PS1, . . . , PSM)

a good quantum number, so that the Hamiltonian can be written in a block-diagonal form with
respect to PS. The resulting reduction of the matrix block sizes is shown in table 1.

Besides the matrix code described above, there are other possibilities for calculating the local
trace. An algorithm based on a Krylov-subspace method was brought forward in Ref. [42].
Here the particle-number basis is used, so that applying operators to states is trivial. However,
now the time evolution becomes more involved. Another recent proposal uses matrix product
states for the propagation in time [43].

3.3 Selected applications

The CT-HYB is clearly the method of choice to tackle complex impurity problems at strong
coupling and with the full Coulomb repulsion. In the context of the DMFT, extracting the local
Green function is essential. In this context it is important to point out the work of Hafermann et
al. [44], which describes an improved estimator for computing the self-energy.

In a two-orbital model, the inclusion of the Hund’s coupling J greatly influences the critical
Hubbard interaction Uc for the Mott transition [45]. A three-orbital model studied in Ref. [46]
exhibits not only the Mott phase at integer fillings, but also a non-Fermi-liquid frozen-moment
phase. In Ref. [47], models with only d-orbitals and with d- and additional oxygen p-orbitals
where compared. With the p-orbitals included, the filling of the d-orbitals changes significantly,
which thereby leads to a very different low-energy behavior.

Another recent application of the CT-HYB method in the context of DMFT is the study of
models for topological Kondo insulators conducted in Ref. [48]. It was found that, starting from
the non-interacting case, switching on the Hubbard interaction can drive the system through
a series of transitions. In particular, a transition was observed between different topological
states that are distinct due to the point-group symmetry of the lattice considered. Meanwhile,
in Ref. [49] it was found that the edge spectrum of topological Kondo insulators is governed by
the same scale as the bulk heavy-fermion state, namely the coherence scale Tcoh. This makes
it possible to infer information about the bulk coherence from the topological properties of the
system.
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4 Application of CT-INT to the Hubbard-Holstein model

The CT-INT allows for a very simple and efficient inclusion of phonon degrees of freedom.
The path we follow here is to integrate out the phonons in favor of a retarded interaction and
then solve the purely electronic model with the CT-INT approach. Starting from the Hubbard-
Holstein model with Einstein phonons we show how to integrate out the phonons, describe
some details of the algorithm, and then present results for the crossover from adiabatic to anti-
adiabatic phonons in the one-dimensional Holstein model.

4.1 Integrating-out the phonons

The Hubbard-Holstein Hamiltonian we consider reads

Ĥ = −
∑
i,j,σ

ti,j ĉ
†
i,σ ĉj,σ+U

∑
i

(n̂i,↑ − 1/2) (n̂i,↓ − 1/2)+g
∑
i

Q̂i (n̂i − 1)+
∑
i

(
P̂ 2
i

2M
+
k

2
Q̂2
i

)
(65)

Here, n̂i =
∑

σ n̂i,σ and the last two terms correspond respectively to the electron-phonon
coupling, g, and the phonon energy. The Hamiltonian is written such that for a particle-hole
symmetric band, half-filling corresponds to chemical potential µ = 0. Opting for fermion
coherent states

ĉi,σ|c〉 = ci,σ|c〉 , (66)

ci,σ being a Grassmann variable, and a real space representation for the phonon coordinates

Q̂i|q〉 = qi|q〉 , (67)

the path integral formulation of the partition function reads

Z =

∫
D{q}D

{
c†c
}
e−(SU+Sep) , (68)

with

SU =

∫ β

0

dτ
∑
i,j,σ

c†i,σ(τ)

(
δi,j

∂

∂τ
− ti,j

)
cj,σ(τ) + U

∑
i

(ni,↑(τ)− 1/2)(ni,↓(τ)− 1/2)

Sep =

∫ β

0

dτ
∑
i

(
Mq̇i

2(τ)

2
+
k

2
q2i (τ) + g qi(τ)(ni(τ)− 1)

)
. (69)

In Fourier space,

qj(τ) =
1√
βN

∑
k,Ωm

e−i(Ωmτ−kj)qk,m , (70)

where Ωm is a bosonic Matsubara frequency, the electron-phonon part of the action reads

Sep =
∑
Ωm,k

M

2

(
Ω2
m + ω2

0

)
q†k,mqk,m + gqk,mρ

†
k,m ,

ρ†k,m =
1√
βN

∫
dτ
∑
j

e−i(Ωmτ−kj)(nj(τ)− 1) . (71)
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Gaussian integration over the phonon degrees of freedom leads to a retarded density-density
interaction ∫

D{q} e−Sep = e
∫ β
0 dτ

∫ β
0 dτ ′

∑
i,j [ni(τ)−1]D0(i−j,τ−τ ′)[nj(τ ′)−1] . (72)

For Einstein phonons the phonon propagator is diagonal in real space,

D0(i− j, τ − τ ′) = δi,j
g2

2k
P (τ − τ ′) with

P (τ) =
ω0

2 (1− e−βω0)

(
e−|τ |ω0 + e−(β−|τ |)ω0

)
. (73)

Hence the partition function of the Hubbard-Holstein model takes the form

Z =

∫
D
{
c†c
}
e−(SU−

∫ β
0 dτ

∫ β
0 dτ ′

∑
i,j [ni(τ)−1]D0(i−j,τ−τ ′)[nj(τ ′)−1]) .

In the anti-adiabatic limit, limω0→∞ P (τ) = δ(τ) such that the phonon interaction maps onto
an attractive Hubbard interaction of magnitude g2/k. We are now in a position to apply the
CT-INT algorithm by expanding in both the retarded and the Hubbard interactions.

4.2 Formulation of CT-INT for the Hubbard-Holstein model

To avoid the minus-sign problem at least for one-dimensional chains with nearest neighbor
hopping matrix element t, we rewrite the phonon retarded interaction as

HP (τ) = − g
2

4k

∫ β

0

dτ ′
∑
i,σ,σ′

∑
s=±1

P (τ − τ ′) [ni,σ(τ)− α+(s)] [ni,σ′(τ
′)− α+(s)] . (74)

For each phonon vertex, we have introduced an Ising variable s. Summation over this Ising
field reproduces, up to a constant, the original interaction. Since the phonon term is attractive,
the adequate choice of signs is α+(s) ≡ 1/2 + sδ, irrespective of the spin σ and σ′. Following
Eq. (7), we rewrite the Hubbard term as

HU(τ) =
U

2

∑
i,s

∏
σ

(ni,σ(τ)− ασ(s)) . (75)

To proceed with a description of the implementation of the algorithm, it is useful to define a
general vertex

V (τ) = {i, τ, σ, τ ′, σ′, s, b} , (76)

where b defines the type of vertex at hand, Hubbard (b = 0) or phonon (b = 1). For this vertex,
we define a sum over the available phase space

∑
V (τ)

=
∑

i,σ,σ′,s,b

∫ β

0

dτ ′, (77)
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a weight

w [V (τ)] = δb,0
U

2
− δb,1P (τ − τ ′) g

2

4k
, (78)

as well as

H [V (τ)] = δb,0δσ,↑δσ′,↓δ(τ − τ ′) [ni,↑(τ)− α+(s)] [ni,↓(τ)− α−(s)] (79)

+ δb,1 [ni,σ(τ)− α+(s)] [ni,σ′(τ
′)− α+(s)] .

With the above definitions, the partition function can now be written as

Z

Z0

=
∞∑
n=0

(−1)n

n!

∫ β

0

dτ1
∑
V1(τ1)

w[V1(τ1)] · · ·
∫ β

0

dτn
∑
Vn(τn)

w [Vn(τn)] 〈TĤ [V1(τ1)] · · · Ĥ [Vn(τn)]〉0.

(80)
As for the Hubbard model, a configuration consists of a set of verticesCn = {V1(τ1), . . ., Vn(τn)}.
With the short-hand notation∑

Cn

=
∑
n

∫ β

0

dτ1
∑
V (τ1)

· · ·
∫ β

0

dτn
∑
V (τn)

(81)

and

W (Cn) =
(−1)n

n!
w[V1(τ1)] · · ·w [Vn(τn)] 〈TĤ [V1(τ1)] · · · Ĥ [Vn(τn)]〉0 (82)

the partition function takes a form amenable to Monte Carlo sampling

Z

Z0

=
∑
Cn

W (Cn). (83)

The Monte Carlo sampling follows precisely the scheme presented in Sec. 2.4, namely the
addition and removal of vertices. To be more specific, we consider the following form for
vertex addition

T 0
Cn→Cn+1

= PU
1

n+ 1

1

L

1

β

1

2
+ (1− PU)

1

n+ 1

1

L

1

β
P (∆τ)

(
1

2

)3

. (84)

The first term corresponds to the addition of a Hubbard vertex and has the same form as in
Eq. (41). Note the additional factor 1/L, which corresponds to the choice of the lattice site.
This move is carried out with probability PU . The second term corresponds to the addition
of the phonon vertex and is carried out with probability 1 − PU . The factor P (∆τ) allows
a direct sampling of the phonon propagator. In particular, for a randomly chosen value of τ ,
τ ′ = τ + ∆τ . The factor (1/2)3 accounts for the choice of the Ising field, as well as for the
choice of the spin variables σ, σ′ entering into the density-density two-body term. The vertex
removal retains the same form as for the SIAM

T 0
Cn→Cn−1

=
1

n
. (85)
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4.3 The quarter-filled Holstein model
from adiabatic to anti-adiabatic phonons

The concept of pre-formed fermion pairs or bosonic degrees of freedom that condense to form
a superfluid can be found in many domains of correlated quantum many-body systems. Ex-
amples include the resonating valence bond theory of high-temperature superconductivity [50],
Mott metal-insulator transitions in cold atoms [51], or transitions between charge-density-wave
and superconducting states in the family of dichalcogenides [52]. As an interesting applica-
tion of the CT-INT to the Holstein model, we show that these concepts can be carried over to
one dimension where, in the absence of continuous symmetry breaking, the phase transition is
replaced by a crossover.
In the anti-adiabatic limit ω0 →∞, P (τ) in equation (73) reduces to a Dirac δ-function, facili-
tating the above-mentioned mapping of the Holstein model onto the attractive Hubbard model,
with U = g2/k. The ratio of this binding energy and the bandwidth W = 4t gives the dimen-
sionless electron-phonon coupling

λ =
g2

kW
. (86)

In this section, we set λ = 0.35 and concentrate on the quarter-filled band with kF = π/4.
Figure 1 shows equal-time correlation functions

CO(q) =
∑
r

eiqr
(
〈Ô†rÔ0〉 − 〈Ô†r〉〈Ô0〉

)
, (87)

for charge, Ôr = n̂r,↑ + n̂r,↓; spin, Ôr = n̂r,↑ − n̂r,↓; pairing, Ôr = ĉ†r,↑ĉ
†
r,↓; and single-

particle, Ôr = ĉr,↑ + ĉr,↓, degrees of freedom at various phonon frequencies. In the adiabatic
limit ω0/t = 0, any λ > 0 leads to an insulating state with 2kF long-range charge order
corresponding to the Peierls instability. We choose the coupling strength λ = 0.35 such that
we have a metallic Luther-Emery liquid with dominant 2kF charge correlations for low phonon
frequencies and then study the evolution as a function of increasing ω0/t. In particular, we
have verified that for ω0/t = 0.1, the lowest nonzero frequency considered in the following,
there is no long-range order; this can be seen from the finite-size dependence of the charge
susceptibility [53].
The density (or charge) structure factor is plotted in Fig. 1(a). For classical phonons (ω0 = 0) the
Peierls instability leads to long-range 2kF charge order at zero temperature. As discussed above,
quantum lattice fluctuations (occurring for ω0 > 0) can melt this order and lead to a state with
dominant but power-law 2kF charge correlations [8], as confirmed by the cusp at 2kF = π/2

in Fig. 1(a). The magnitude of the peak at q = 2kF initially decreases and then saturates
upon increasing the phonon frequency, signalling competing ordering mechanisms as well as
enhanced lattice fluctuations. The linear form of the charge structure factor at long wavelengths
[see figure 1(a)] indicates a 1/r2 power-law decay of the real-space charge correlations and
hence a metallic state.
In Fig. 1(b), we present the pair correlation function in the onsite s-wave channel. In contrast to
the density correlator, which picks up diagonal order, P (r) detects off-diagonal order charac-
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Fig. 1: Static correlation functions for different values of the phonon frequency ω0/t at λ = 0.35
for a quarter-filled band (n = 0.5). The panels show (a) the charge structure factor, (b) the
pairing correlator, (c) the spin structure factor, and (d) the momentum distribution function.
Here L = 28 and βt = 40.

teristic of a superconducting state. In the Peierls state obtained for classical phonons, diagonal
long-range charge order leads to an exponential decay of pairing correlations at long distances.
The fluctuations resulting from a finite phonon frequency close the charge gap and render the
pairing correlations critical. Comparing figures 1(a) and 1(b), we see that the suppression of the
2kF charge correlations is accompanied by an increase of the pairing correlations, especially at
large distances. A possible interpretation is that with increasing phonon frequency, the trapping
of bipolarons in the 2kF lattice modulation gives way to a “condensation” (in the usual sense of
superfluidity in one dimension) of those preformed pairs. A detailed study of the dynamics of
the observed crossover can be found in Ref. [54].
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5 Concluding remarks

The aim of this lecture was to give a detailed theoretical overview of the CT-INT and to com-
ment on the general formulation of the CT-HYB. For the SIAM, the CT-QMC methods are easy
to implement and the interested reader is encouraged to try. It is essential to point out once
again that the CT-QMC methods are action based such that the pool of potential applications is
extremely large.
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A Basic principles of Monte Carlo methods
in statistical mechanics

In this section, we show how to use the Monte Carlo method to compute integrals of the form

〈O〉P =

∫
Ω

dx P (x)O(x) . (88)

Ω is a discrete or continuous configuration space with elements x, P (x) is a probability distri-
bution on this space, ∫

Ω

dxP (x) = 1 and P (x) ≥ 0 ∀ x ∈ Ω, (89)

and O is an observable or random variable.
To illustrate why stochastic methods are useful, let us assume Ω to be a subspace of Rd with
volume V = Ld. One can break up Ω into hypercubes of linear dimension h and approximate
the integral by a Riemann sum. The required number of function evaluations N then scales as
V/hd = (L/h)d = ed ln(L/h). Hence, the numerical effort – which is nothing but the number
of function evaluations – grows exponentially with the dimension d. In contrast, stochasitc
methods provide an estimate of the integral with statistical uncertainty scaling as the inverse
square root of the number of function evaluations, irrespective of the dimensionality d. Hence,
in the large-d limit, stochastic methods become attractive. This result stems from the central
limit theorem.

A.1 The central limit theorem

Before proceeding in illustrating and proving the central limit theorem, let us introduce some
notation. We will denote by PO(O) the probability that the observable O takes the value O.
Hence in terms of integrals over the configuration space,

PO(O) =

∫
Ω

dx P (x) δ(O(x)−O) (90)

such that

〈O〉p =

∫
dO PO(O)O, and 〈O2〉p =

∫
dO PO(O)O2. (91)

Suppose that we have a set of configurations {xi | i ∈ 1 . . . N} distributed according to the
probability distribution P (x), then we can approximate 〈O〉P by

〈O〉P ∼
1

N

N∑
i=1

O(xi)︸ ︷︷ ︸
=Oi

= X. (92)

Clearly, X will depend upon the chosen set {xi | i ∈ 1 . . . N} . Hence the relevant question
is the distribution of X , P(X), for a given value of N . The central limit theorem tells us that
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N = 8000, � = 0:0185
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Fig. 2: Boxes correspond to the distribution results obtained after 10000 simulations. For each
simulation we draw N = 8000 points. For a single simulation, we obtain σ = 0.0185. The
heavy line corresponds to the result of central limit theorem with above value of σ.

provided that theO1 · · · ON are statistically independent and thatN is large enoughP(X) reads

P(X) =
1√
2π

1

σ
exp

[
−(X − 〈O〉P )2

2σ2

]
with σ2 =

1

N

(
〈O2〉P − 〈O〉2P

)
. (93)

Thus irrespective of the dimension d, the convergence to the exact result scales as 1/
√
N , and

the width of the above normal distribution, σ, corresponds to the statistical error. For practical
purposes, one estimates σ by

σ2 ≈ 1

N

 1

N

N∑
i=1

O(xi)
2 −

(
1

N

N∑
i=1

O(xi)

)2
 . (94)

More general methods for estimating the error are discussed in section A.2.
Before demonstrating the central limit theorem we give a simple example, the evaluation of the
number π obtained with

π = 4

∫ 1

0

dx

∫ 1

0

dy Θ(1− x2 − y2). (95)

Here Θ is the Heaviside function, Θ(x) = 1 for x > 0 and vanishes otherwise. In this ex-
ample we have P (x, y) ≡ 1. To generate a sequence of N points (x, y)i from this probability
distribution, we draw random numbers, x, y, in the interval [0, 1]. For N = 8000 we obtain
an error σ = 0.0185 with the use of Eq. (94). To check the central limit theorem, we repeat
the simulation 10000 times with different random numbers. Fig. (2) shows the thus obtained
distribution which compares well to the result of the central limit theorem.
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We now demonstrate the central limit theorem.
Proof: The probability of obtaining the result X reads

P(X) =

∫
dO1 · · · dON PO(O1,O2, · · · ,ON) δ

(
X − 1

N

N∑
i=1

Oi

)
. (96)

The assumption that the Oi are statistically independent means that the combined probability
factorizes

PO(O1,O2, · · · ,ON) = PO(O1)PO(O2) · · ·PO(ON).

Furthermore, using the representation δ(x) = 1
2π

∫
dλ eiλx of the Dirac-δ function, we can

reduce the above expression of P(X) to

P(X) =
1

2π

∫
dλ dO1 · · · dON PO(O1) · · ·PO(ON) eiλ(X−

1
N

∑
iOi)

=
1

2π

∫
dλ eiλX

(∫
dO PO(O) e−i

λ
N
O
)N

=
N

2π

∫
dλ e−NS(λ,X) with S(λ,X) = −iλX − ln

∫
dO PO(O) e−iλO (97)

As N →∞ the saddle point approximation becomes exact

P(X) ' N

2π

∫
dλ e

−N
(
S(λ∗(X),X)+

(λ∗(X)−λ)2

2
∂2

∂λ2
S(λ,X)

∣∣∣
λ=λ∗(X)

)

=

√
N

2π ∂2

∂λ2
S(λ,X)

∣∣
λ=λ∗(X)

e−NS(λ
∗(X),X) with

∂

∂λ
S(λ,X)

∣∣∣∣
λ=λ∗(X)

= 0 (98)

such that λ∗(X) is determined by:

X =

∫
dO PO(O)O e−iλ∗(X)O∫
dO PO(O) e−iλ∗(X)O . (99)

To proceed, we again use that for large values of N we can expand around the saddle point

d

dX
S(λ∗(X), X)

∣∣∣∣
X=X∗

=

 ∂

∂λ
S(λ,X)

∣∣∣∣
λ=λ∗(X)︸ ︷︷ ︸

=0

d

dX
λ∗(X) +

∂

∂X
S(λ∗(X), X)


X=X∗

= −iλ∗(X∗) = 0. (100)

Hence with Eq. (99) we have X∗=〈O〉P . Expanding around X∗ (note that S(λ∗(X∗), X∗)= 0)
yields

P(X) =

√
N

2π ∂2

∂λ2
S(λ,X∗)

∣∣
λ=λ∗(X∗)

e
−N (X−〈O〉P )

2

2
d2

dX2 S(λ
∗(X),X)

∣∣∣
X=X∗ . (101)
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Using Eqn. (100) and (99) we obtain

d2

dX2
S(λ∗(X), X)

∣∣∣∣
X=X∗

= −i dλ
∗(X)

dX

∣∣∣∣
X=X∗

=
1

〈O2〉P − 〈O〉2P

∂2

∂λ2
S(λ,X∗)

∣∣∣∣
λ=λ∗(X∗)

= 〈O2〉P − 〈O〉2P (102)

such that

P(X) '

√
N

2π (〈O2〉P − 〈O〉2P )
e
−N (X−〈O〉P )

2

2
1

〈O2〉P−〈O〉
2
P . (103)

This completes the demonstration of the central limit theorem. The two important conditions
for the validity of the theorem are that (i) the O1 · · · ON are statistically independent and that
(ii) N is large.

A.2 Jackknife and bootstrap methods for error evaluation

The jackknife and bootstrap methods [55] provide alternative ways of estimating the error (94).
These methods become particularly useful, if not essential, when one wishes to estimate the er-
ror on f(〈O1〉, · · · , 〈On〉), where f is an arbitrary function of n variables. For a given sequence
of configurations {x1 · · · xN} drawn from the probability distribution P (x), the jackknife fo-
cuses on the samples that leave out one configuration at a time

fJi = f

(
1

N − 1

∑
j 6=i

O1(xj), · · · ,
1

N − 1

∑
j 6=i

On(xj)

)
. (104)

The error estimate on f is then given by

(
σJf
)2 ≈ N

 1

N

N∑
i=1

(fJi )2 −

(
1

N

N∑
i=1

fJi

)2
 . (105)

One may verify explicitly that for n = 1 and f(x) = x Eq. (105) reduces to Eq. (94) up to a
factor (N/(N − 1))2, which tends to unity in the large N limit.
An alternative method for determining errors of f is the bootstrap algorithm. For a given sample
ofN configurations {x1 · · · xN} drawn from the probability distribution P (x), we can construct
NN sets of N configurations, {xi1 · · · xiN} with i1 ∈ 1 · · ·N , i2 ∈ 1 · · ·N , · · · , iN ∈ 1 · · ·N ,
which correspond to the ideal bootstrap samples. For a given bootstrap sample, defined by the
vector i = (i1, · · · , iN),

fBi = f

(
1

N

N∑
k=1

O1(xik), · · · ,
1

N

N∑
k=1

On(xik)

)
. (106)

The bootstrap estimate of the error is given by

(
σBf
)2 ≈ 1

NN

NN∑
i

(fBi )2 −

 1

NN

NN∑
i

fBi

2

. (107)
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Again, one may check that for the special case n = 1 and f(x) = x, Eq. (107) reduces
to Eq. (94). Clearly, when N is large, it is numerically out of reach to generate all of the NN

bootstrap samples. Typically, to estimate the right-hand side of Eq. (107), 200 or more bootstrap
samples are generated stochastically. Since each bootstrap sample is equally probable we can
generate them with: ik = trunc(N ∗ ξk + 1) where ξk is a random number in the interval [0, 1)

and the function trunc returns an integer by truncating the numbers after the decimal point.

A.3 Markov chains

Our task is now to generate a set of states distributed according to a given probability distribu-
tion. Here we will consider a discrete space Ω with Ns states; x runs over all the states 1 · · ·Ns,
and P (x) denotes the probability of the occurrence of the state x. We introduce a Monte-Carlo
time t and a time dependent probability distribution Pt(x) that evolves according to a Markov
process: the future (t + 1) depends only on the present (t). To define the Markov process, we
introduce a matrix Ty,x, which corresponds to the transition probability from state x to state y.
The time evolution of Pt(x) is given by

Pt+1(y) =
∑
x

Ty,xPt(x). (108)

T has to satisfy the properties ∑
y

Ty,x = 1 and Ty,x ≥ 0 . (109)

Hence, if Pt(x) is a probability distribution then Pt+1(x) is also a probability distribution.
T has to be ergodic

∀x, y ∈ Ω ∃ s | (T s)y,x > 0 . (110)

Thus, we are assured to sample the whole phase space provided the above is satisfied. Last, we
have the requirement of stationarity∑

x

Ty,x P (x) = P (y) . (111)

Once we have reached the desired distribution P (x) we wish to stay there. Stationarity is
automatically satisfied if

Ty,x P (x) = Tx,y P (y) (112)

as may be seen by summing on both sides over x. This relation is referred to as detailed balance
or microreversibility. However, one has to keep in mind that only stationarity and not detailed
balance is essential.
Given the above, in the Monte Carlo simulation we will generate the Markov Chain

x1, x2, . . . , xn ,



CT-QMC 7.29

where the conditional probability of sampling the state xt+1 given the state xt reads

P (xt+1|xt) = Txt+1,xt . (113)

Our aim is now to show that when n → ∞ the fraction of the time one can expect the Markov
process to be in state x is P (x), independent of the initial state x1. In other words as n → ∞
the set of states x1 · · · xn are distributed according to P (x).
At step t in the Markov chain, the state xwill occur on average with probability, [T t]x,x1 . Hence,
we have to show that

lim
n→∞

1

n

n∑
t=1

[
T t
]
x,x1

= P (x) . (114)

We will first show the above under the assumption that T is regular. That is, there is an integer
N such that TN has only positive, non-zero, entries. If T is regular then T is ergodic. However
the inverse is not true so that the condition of regularity is more stringent than that of ergodicity.
After the demonstration, we will argue on the basis of a simple example that Eq. (114) is equally
valid for ergodic but not regular transition matrices.
We now demonstrate Eq. (114) for regular transition matrices.
Proof: We introduce the set of vectors of real numbers, at

at+1 = atT and dt = max(at)−min(at) (115)

where max(at) corresponds to the largest element of the vector a. Since

[at+1]x =
∑
y

[at]y Ty,x ≤ max(at)
∑
y

Ty,x = max(at)

and [at+1]x =
∑
y

[at]y Ty,x ≥ min(at)
∑
y

Ty,x = min(at) (116)

the sequence dt satisfies
dt+1 ≤ dt. (117)

We now show that there is a subsequence that is strictly decreasing. Let us consider vector
at with max(at) = [at]M = aM and min(at) = [at]m = am. We define the vector aM (am)
by replacing all the elements of at apart from the minimal (maximal) one by aM (am). Hence
am ≤ at ≤ aM where the inequalities hold element-wise. Furthermore let ε be the minimal
entry in TN . In light of the assumption that T is regular, ε > 0. With those definitions, we have

[at+N ]x =
[
atT

N
]
x
≤
[
aMTN

]
x

= aM
∑
y 6=m

TNy,x + amT
N
m,x

= aM
(
1− TNm,x

)
+ amT

N
m,x = aM − (aM − am)TNm,x

≤ aM − (aM − am)ε

and [at+N ]x ≥
[
amt T

N
]
x

= am + (aM − am)TNM,x ≥ am + (aM − am)ε. (118)
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With the above inequalities,

dt+N = max(at+N)−min(at+N) ≤ aM− (aM−am)ε−am− (aM−am)ε = dt(1−2ε) (119)

Hence, dt+mN ≤ dt(1 − 2ε)m such that the series dt+mN decreases at least exponentially with
increasing m. Recalling that dt+1 ≤ dt, we can find positive numbers τ and b such that

dt ≤ be−t/τ . (120)

In particular, we can set a1 = ei such that eiT corresponds to the ith row of the matrix T .
Hence, since dt tends towards zero in the limit t→∞, the ith row of matrix T t tends towards a
constant when t→∞. Hence, we have

lim
t→∞

T t =



α1 · · · α1

α2 · · · α2

· · ·
· · ·
· · ·

αNs · · · αNs


(121)

where Ns denotes the total number of states. Many comments are now in order.

(i) Since T satisfies Eq. (109), so does T t for all values of t. Thus
∑Ns

x=1 αx = 1 and αx > 0.
In other words α is a probability vector.

(ii) Due to Eq. (120), T tx,y = αx +∆
(t)
x,y with |∆(t)

x,y| ≤ be−t/τ .

(iii) For any probability vector v, limt→∞ T
tv = α.

Hence, there is a unique asymptotic distribution: α.

(iv) Due to the stationarity condition, we have T tP = P for all values of t and hence also for
t→∞. Since there is a unique asymptotic distribution, α = P.

The validity of Eq. (114) now follows from

lim
n→∞

1

n

n∑
t=1

[
T t
]
x,x1

= lim
n→∞

1

n

n∑
t=1

(
P (x) +∆(t)

x,x1

)
= P (x) + lim

n→∞

1

n

n∑
t=1

∆(t)
x,x1

. (122)

However since ∣∣∣∣∣
n∑
t=1

∆(t)
x,x1

∣∣∣∣∣ ≤
n∑
t=1

∣∣∆(t)
x,x1

∣∣ ≤ b

n∑
t=1

e−t/τ (123)

and b
∑n

t=1 e
−t/τ is a convergent series as n→∞, Eq. (114) is satisfied. QED

We now show on the basis of a simple example that if T is ergodic but not regular, Eq. (114) is
still valid. Consider Ns = 2 and

T =

(
0 1

1 0

)
, T 2n =

(
1 0

0 1

)
, T 2n+1 = T. (124)
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T is ergodic but not regular. It is cyclic and in contrast to the regular transition matrices the
limt→∞ T

t does not exist. However, since

TP = P with P =

(
1/2
1/2

)
(125)

and for even and odd values of n

1

2n

2n∑
t=1

T t =

(
1/2 1/2
1/2 1/2

)
,

1

2n+ 1

2n∑
t=1

T t =

(
1/2 1/2
1/2 1/2

)
+

1

2n+ 1
T, (126)

Eq. (114) holds. For further reading and a more precise and mathematical oriented discussion
of Markov chains, the reader is referred to [56].

A.4 Construction of the transition matrix T

Having defined T , we now have to construct it explicitly. Let T 0
y,x be the probability of propos-

ing a move from x to y and ay,x the probability of accepting it. 1 − ay,x corresponds to the
probability of rejecting the move. T0 is required to satisfy Eq. (109). Since in general we want
to propose moves that change the initial configuration, T 0

x,x = 0. With ay,x and T 0
y,x we build

Ty,x with

Ty,x =

{
T 0
y,xay,x if y 6= x∑

z
z 6=x

T 0
z,x (1− az,x) if y = x

(127)

Clearly Ty,x satisfies Eq. (109). To satisfy the stationarity, we impose the detailed balance
condition to obtain the equality

T 0
y,x ay,x Px = T 0

x,y ax,y Py . (128)

Let us set

ay,x = F
(
T 0
x,yPy

T 0
y,xPx

)
(129)

with F :]0 :∞[→ [0, 1]. Since

ax,y = F
(
T 0
y,xPx

T 0
x,yPy

)
= F

 1
T 0
x,yPy

T 0
y,xPx

 , (130)

the detailed balance condition reduces to

F (Z)

F (1/Z)
= Z where Z =

T 0
x,yPy

T 0
y,xPx

. (131)

There are many possible choices. The Metropolis algorithm is based on the choice

F (Z) = min (Z, 1) . (132)
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Thus, one proposes a move from x to y and accepts it with probability Z =
T 0
x,yPy

T 0
y,xPx

. In the
practical implementation, one picks a random number r in the interval [0 : 1]. If r < Z (r > Z)
one accepts (rejects) the move. Alternative choices of F (Z) are for example

F (Z) =
Z

1 + Z
(133)

which is referred to as the heat-bath method.
That the so-constructed T matrix is ergodic depends upon the choice of T 0. In many cases, one
will wish to combine different types of moves to achieve ergodicity. For a specific move i, we
construct T (i) as shown above so that T (i) satisfies conditions (109) and (112). The moves may
be combined in two ways

T =
∑
i

λiT
(i),

∑
i

λi = 1 (134)

which is referred to as random updating since one picks with probability λi the move T (i).
Clearly, T equally satisfies (109) and (112), and the moves have to be chosen appropriately
to satisfy the ergodicity condition. Another choice is sequential upgrading. A deterministic
ordering of the moves is chosen to obtain

T =
∏
i

T (i). (135)

This choice does not satisfy detailed balance but does satisfy stationarity (111) as well as (109).
Again ergodicity has to be checked on a case to case basis.
The observable O may now be estimated with

〈O〉P ≈
1

N

N∑
t=1

O(xt). (136)

The required value of N depends on the autocorrelation time of the observable O

CO(t) =

1
N

∑N
s=1O(xs)O(xs+t)−

(
1
N

∑N
s=1O(xs)

)2
1
N

∑N
s=1O(xs)2 −

(
1
N

∑N
s=1O(xs)

)2 . (137)

One expects CO(t) ∼ e−t/τO , where τO corresponds to the MC time scale on which memory of
the initial configuration is lost. Hence, to obtain meaningful results, N � τO. Note that one
should also take into account a warm up time by discarding at least the first τO configurations in
the MC sequence. Naively, one would expect τO = τ . However, this depends on the overlap of
the observable with the slowest mode in the MC dynamics, which relaxes as e−t/τ . In particular
in a model with spin rotation symmetry the slowest mode may correspond to the rotation of the
total spin. In this case, observables that are invariant under a spin rotation will not be affected
by the slowest mode of the MC dynamics. Hence, in this case τO < τ .
We now consider the error estimation. To apply the central limit theorem, we need a set of
independent estimates of 〈O〉P . This may be done by regrouping the data into bins of size nτO.

Õn(t) =
1

nτO

nτO∑
s=1

O(x(t−1)nτO+s) (138)
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with t = 1 · · ·N/(nτO). If n is large enough (i.e. n ≈ 10− 20) then Õn(t) may be considered
as an independent estimate, and the error is given by

σn =

√√√√√ 1

M

 1

M

M∑
t=1

Õn(t)2 −

(
1

M

M∑
i=1

Õn(t)

)2
 (139)

where M = N/(nτO). If n is large enough, the error σn should be independent of n.

A.5 One-dimensional Ising model

We conclude this appendix with an example of a Monte Carlo simulation with error analysis for
the one-dimensional Ising model

H({σ}) = −J
L∑
i=1

σiσi+1 , σL+1 = σ1 (140)

where σi = ±1. This model is easily solved exactly with the transfer matrix method and thus
produces a useful testing ground for the MC approach. In particular at zero temperature, a phase
transition to a ferromagnetically ordered phase (J > 0) occurs [57]. Spin-spin correlations are
given by

g(r) =
1

L

L∑
i=1

〈σiσi+r〉 with 〈σiσi+r〉 =

∑
{σ} e

−βH({σ})σiσi+r∑
{σ} e

−βH({σ}) (141)

where β corresponds to the inverse temperature.
We now construct the transition matrix T corresponding to a random single site updating
scheme. For an L-site chain, we denote the spin configuration by

x = (σx,1, σx,2, · · · , σx,L). (142)

The transition matrix reads

T =
1

L

L∑
i=1

T (i) with T (i)
x,y = T (i),0

x,y ax,y and

T (i),0
x,y =

{
1 if x = (σy,1, · · · ,−σy,i, · · ·σy,L)

0 otherwise
(143)

The above corresponds to choosing a site i randomly, changing the orientation of the spin
(σi → −σi), and accepting the move with with probability ax,y corresponding to a heat-bath or
Metropolis algorithm. The MC time unit corresponds to a single sweep, meaning that L sites
are randomly chosen before a measurement is carried out.
Fig. 3 plots the autocorrelation time for g(r = L/2) on an L = 24 site lattice at βJ = 1 and
βJ = 2. From Fig. 3a one can extract the autocorrelation time: τO ≈ 11, 54 for βJ = 1, 2

respectively. Fig. 3b plots the error as a function of bin size in units of the τO (see Eq. (139)).
As one can see, n ≈ 10 is sufficient to get a reliable estimate of the error.
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Fig. 3: One dimensional Ising model on an L=24 site lattice. (a) Autocorrelation time (see
Eq. (137)) for g(r = L/2). The time unit corresponds to a single sweep. (b) Estimate of the
error (see Eq. (139)). Here, n corresponds to the size of the bins in units of the autocorrelation
time. n ∼ 10 is sufficient to obtain a reliable estimate of the error. After 2 × 106 sweeps, our
results yield g(r = L/2) = 0.076 ± 0.0018 and 0.909 ± 0.0025 for βt = 1 and 2 respectively.
The exact result is g(r = L/2) = 0.0760 and 0.9106 at βt = 1 and 2 respectively.
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B Proof of the determinant identity

In this section, a general determinant identity is proven [32] that can be used to derive Wick’s
theorem for contributions of a configuration Cn to physical observables. Let us define the
vectors ui, vi ∈ Cm and the numbers αij ∈ C. Further, let A ∈ Cm×m be a matrix of rank m.
We define the non-singular matrices Mn ∈ C(m+n)×(m+n) and Aij ∈ C(m+1)×(m+1) by

Mn =


A u1 . . . un

v1
T α11 . . . α1n

...
... . . . ...

vn
T αn1 . . . αnn

 , Aij =

(
A uj

vi
T αij

)
. (144)

With these definitions, the following determinant identity holds

detMn (detA)n−1 = det

detA11 . . . detA1n

... . . . ...
detAn1 . . . detAnn

. (145)

The identity can be proven by induction in n. It is trivial for n = 1, so we have to start with
n = 2, where we have to show

detM2

detA
=

detA11

detA

detA22

detA
− detA12

detA

detA21

detA
. (146)

For the following calculations, we introduce several vectors

u1
ij =

(
uj

αij − 1

)
, v2

ij =

(
vi

0

)
, u2 = v1 =

(
0

1

)
∈ Cm+1. (147)

u1
M =

 u2

α12

α22 −1

,v2
M =

 v2

α21

0

,u2
M = v1

M =

(
0

1

)
∈Cm+2. (148)

Let us define the expanded matrix Cex of a square matrix C as the matrix C expanded by one
row and one column containing a unit vector

Cex =

(
C 0

0T 1

)
. (149)

As a last definition, we introduce the abbreviation bij = vi
TA−1uj. Using these notations, we

can write the matrices Aij as

Aij = Aex + u1
ijv

1T + u2v2
ij
T
. (150)

To calculate the determinant detAij, we use the matrix determinant lemma det(A + uvT ) =

(1 + vTA−1u) detA, yielding

detAij

detAex
=
[
1+ v2

ij
T
(Aex + u1

ijv
1T )−1u2

]
(1 + v1TA−1ex u

1
ij) . (151)
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The inverse matrix of (Aex+u1
ijv

1T ) can be obtained from the Sherman-Morrison formula, and
a tedious calculation making use of the special form of the vectors and matrices gives the result

detAij

detA
= αij − bij. (152)

From this, the right-hand side of Eq. (146) can be easily obtained. For the left-hand side, we
have to perform an analogous calculation using the decomposition of the matrix M2

M2 = A11ex + u1
Mv1

M
T

+ u2
Mv2

M
T
. (153)

Again, we apply the matrix determinant lemma two times and insert the Sherman-Morrison
formula to calculate the inverse matrix of (A11ex + u1

Mv1
M
T

). Simplifying the result as far as
possible, we finally arrive at

detM2

detA
= (α11 − b11) (α22 − b22)− (α12 − b12) (α21 − b21) . (154)

If we compare (154) with (152), it is clear that Eq. (146) holds.
We now assume that for a certain value n ∈ N Eq. (145) holds. For n + 1, we can cast the
matrix Mn+1 in a form where we can make use of Eq. (145) holding for n

Mn+1 =


Ã ũ2 . . . ũn+1

ṽT2 α2,2 . . . α2,n+1

...
... . . . ...

ṽTn αn,2 . . . αn,n+1

ṽTn+1 αn+1,2 . . . αn+1,n+1

 , (155)

where we have introduced the new matrix Ã and the vectors ũi and ũj with

Ã =

(
A u1

v1
T α11

)
, ũi =

(
ui

α1i

)
, ṽi =

(
vi

αi1

)
. (156)

Further, we need the matrices Ãij defined analogously to (144)

Ãij =

(
Ã ũj

ṽTi αij

)
=

 A u1 uj

v1
T α11 α1j

vi
T αi1 αij

 . (157)

With these definitions, and with the abbreviations aij = detAij and ãij = det Ãij, we are now
able to apply Eq. (145) holding for n

detMn+1 (det Ã)(n−1) = det

 ã2,2 . . . ã2,n+1

... . . . ...
ãn+1,2 . . . ãn+1,n+1

 . (158)

For ãij , we make use of Eq. (145) with n = 2, which we have proved above

ãij =
1

detA
(a11aij − ai1a1j) . (159)
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Inserting this result in (158) yields a determinant with entries of the form a11aij − ai1a1j . We
make use of the multi linearity of the determinant to decompose this expression and we obtain
a sum of determinants with prefactors of the form aij . Eliminating zero contributions, the
resulting expression corresponds precisely to the Laplace expansion of a larger determinant,
and we finally obtain

detMn+1 detAn = det


a1,1 a1,2 . . . a1,n+1

a2,1 a2,2 . . . a2,n+1

...
... . . . ...

an+1,1 an+1,2 . . . an+1,n+1

 . (160)

This is the identity (145) for n + 1. Hence, we have derived the determinant identity for n + 1

using only the identity for n and n = 2. By induction, the identity (145) therefore holds for
every n ∈ N, as it is trivial for n = 1.
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8.2 Erik Koch

The central challenge of electronic structure theory is the solution of the many-electron Hamil-
tonian in the Born-Oppenheimer approximation (in atomic units)

H = −1

2

∑
i

~∇2
i +

∑
i

Vext(~ri) +
∑
i<j

1

|~ri − ~rj|
, (1)

where the external potential is, e.g., the Coulomb potential of the nuclei of charge ZI at position
~RI , shifted by their mutual Coulomb interaction

Vext(~r) =
∑
I

ZI

|~r − ~RI |
+
∑
I<J

ZIZJ

|~RI − ~RJ |
. (2)

Introducing a basis-set {ϕα(x)} of spin-orbitals, we can rewrite H in second quantization

H = −
∑
αβ

tαβ c
†
αcβ +

1

2

∑
αβγδ

Uαδ
βγ
c†αc
†
βcγcδ (3)

where the creation/annihilation operators fulfill the anticommutation relations {c†α, c
†
β} = 0 =

{cα, cβ} and {cα, c
†
β} = 〈α|β〉 = Sαβ , and S is the overlap matrix [1]. The matrix elements are

given by integrating over the orbital degrees of freedom x = (~r, σ)

tαβ =
∑
α′β′

(S−1)αα′

∫
dx ϕα′(x)

(
1

2
~∇2 − Vext(~r )

)
ϕβ′(x) (S−1)β′β (4)

and

Uαδ
βγ

=
∑
α′δ′
β′γ′

S−1
αα′ S

−1
ββ′

∫
dx

∫
dx′ ϕα′(x)ϕβ′(x′)

1

|~r − ~r ′|
ϕγ′(x

′)ϕδ′(x) S−1
γ′γ S

−1
δ′δ . (5)

This representation of the Hamiltonian is suited for introducing approximations. By truncating
the basis-set to only K functions, the Hilbert space H of H for a system with N electrons is
restricted to a finite variational subspaceH({ϕαn(x); |n = 1 . . . K}) of dimension

(
K
N

)
. Work-

ing with a finite basis set introduces a basis-set error. To keep it small, the basis functions are
chosen such that the eigenstates of interest are represented well onH({ϕαn(x) |n = 1 . . . K}),
using, e.g., low-energy orbitals to represent the ground state. The basis-set error can be esti-
mated by comparing results calculated with basis sets of increasing size and extrapolating to the
complete-basis-set-limit. Such calculations are computationally demanding, as the dimension
of the Hilbert space increases for K � N � 1 (using Stirling’s approximation) with a high
power, given by the (fixed) number of electrons in the system, as O(KN).
For extended systems the problem becomes even harder. To ensure size-consistency [2], mean-
ing that the basis-set error for extensive observables, e.g., the total energy, scales at most with
the number of electrons, we have to increase K along with N , leading to an exponential scal-
ing of the variational space with system size. Practical simulations are therefore restricted to
quite small clusters. These have a large fraction of surface atoms. As a simple example, for
a 10 × 10 × 10 cluster 488 of the 1000 atoms are on the surface. The surface effects can be
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removed by putting the system in a simulation cell spanned by three vectors ~Ri and assuming
that the system is periodically repeated [3]. Instead of leaving the system, an electron passing
through a face of the simulation cell continues into the neighboring cell, while one of its im-
ages enters through the opposite face. Thus, we are dealing with an extended system with an
infinite number of electrons. Still, by virtue of the periodicity, only the N electrons inside the
simulation cell are independent degrees of freedom. We can then restrict the calculation to the
simulation cell C =

{∑
i xi

~Ri

∣∣ xi ∈ [0, 1)
}

by including the periodic images of the external
potential (created inside the simulation cell) and the interaction with the electrons outside the
simulation box in the Hamiltonian [4]

Hpbc = −1

2

N∑
i=1

~∇2
i +

∑
~n∈Z3

∑
i

V Cext(~ri − ~R~n) +
1

2

∑
~n∈Z3

∑
i,j

′ 1

|~ri − ~rj − ~R~n|
. (6)

where ~R~n =
∑3

i=1 ni
~Ri and the prime on the last sum indicates that i 6= j when ~n = 0. The

eigenfunctions of (6) on the simulation cell C represent a system of average electron density
N/VC . We see that, while removing surface effects, the introduction of periodic boundary con-
ditions not only modifies interactions of ranges longer than the radius of the simulation cell
but also suppress fluctuations of the number of electrons between simulation cells. Moreover,
the average electron density can only be a multiple of 1/VC as the simulation cell must con-
tain an integer number of electrons. Obviously, these finite-size errors vanish in the limit of
infinite simulation cell volume VC → ∞. Fig. 1 shows a comparison of the finite-size scaling
for the ground-state energy with open and with periodic boundary conditions. For systems that
develop long-range correlations, care has to be taken in the finite-size extrapolation for corre-
lation functions C(~r, ~r′), as imposing periodic boundary conditions C(~r, ~r + ~Ri) = C(~r, ~r′)

can frustrate correlations that are not commensurate with the simulation cell. This becomes
particularly evident for a crystal in which the external potential of the infinite system is periodic
Vext(~r + ~ai) = Vext(~r ) with the periodicity of the lattice spanned by the vectors ~ai. Only when
the vectors ~Ri spanning C are chosen as integer linear combinations ~Ri =

∑
j nij ~aj will the

external potential in Hpbc agree with Vext:∑
~n∈Z3

V Cext(~r − ~R~n) = Vext(~r) , (7)

where V Cext is the external potential originating, e.g., from the nuclei inside C.
For such periodic systems the nature of the many-body problem becomes apparent. The inter-
action term by itself is not particularly complicated. It is diagonal in real space, so finding the
arrangement of electrons that minimizes their mutual Coulomb repulsion is a straightforward
classical optimization problem, the solution being a Wigner crystal [5]. The kinetic energy,
on the other hand, is diagonal in k-space. For a lattice-periodic potential, Vext couples only a
discrete set of k-vectors, so that the single-electron part of H can be solved in terms of Bloch
waves. Solutions of the full problem thus have to balance the extended Bloch waves (kinetic
energy) against the localized Wigner crystal (electron-electron repulsion).
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Fig. 1: Energy per site for Hubbard chains of L sites with open and periodic boundary condi-
tions. Calculations are for the non-interacting half-filled Hubbard model with nearest-neighbor
hopping t. For open boundary conditions (open squares) the energy converges linearly with 1/L
to the result for the infinite chain, ε∞ = −4t/π. For periodic boundary conditions (circles) con-
vergence is quadratic, both for open- and closed-shell chains.

1 Periodic systems

1.1 Lattices

A d-dimensional lattice is the collection of points

L =
{

rn1,...,nd =
∑
i

ni ai

∣∣∣ ni ∈ Z
}

(8)

defined by the integer linear combinations of a set of d linearly independent vectors ai. Arrang-
ing the vectors ai into a matrix A = (a1, a2, . . .), we see that the points in the lattice are given
by rn = An with n ∈ Zd; i.e., A maps the d-dimensional cubic lattice into L. Likewise, we
can write an arbitrary point r = Af . In general, the coordinates f = A−1r in the basis A will
not be integers. They are called the fractional coordinates of r. The primitive cell defined by A

is the set of all points r whose fractional coordinates lie in the unit cube f ∈ [0, 1)d. Its volume
is Vc = | det(A)|. It is convenient to arrange the vectors ai such that the determinant is positive.
The vectors ai are called the primitive vectors of the lattice L. They are not unique: we can
construct an equivalent set of primitive vectors Ã by adding to ±ai any integer multiple of the
other aj 6=i, such that | det(Ã)| = | det(A)|. Since the transformation Ã = AM is then given
by an integer matrix M with | det(M)| = 1, by Cramer’s rule, its inverse is also an integer
matrix. Thus any point in the lattice L can be written in terms of either set of primitive vectors:
An = Ãñ, with the integer indices related by ñ = M−1n. The canonical choice is to make the
primitive vectors as short as possible, ãi =

∑
j 6=i round(ai · aj/||aj||2) aj , so they provide the

notion of nearest-neighbor and give a compact unit cell.
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The reciprocal latticeRL associated with L arises naturally when considering the Fourier trans-
form of lattice periodic functions, i.e., functions V (r + An) = V (r). The Fourier expansion of
a general function V (r) is given by

V (r) =

∫
ddk V̂ (k) eik·r . (9)

When V (r) is periodic on L, we have

V (r + An) =

∫
ddk V̂ (k) eik·r eik·An = V (r) . (10)

By the linear independence of Fourier modes it follows that only terms with exp(ik ·An) = 1

for all n ∈ Zd can contribute. The k-vectors fulfilling this condition form the reciprocal lattice

RL =
{

Gm
∣∣ m ∈ Zd

}
(11)

with primitive vectors G = (2πA−1)T . Since (2πG−1)T = A, the reciprocal lattice of RL
is L. By construction, the reciprocal lattice vectors g ∈ RL define plane waves exp(ig · r)

for which all lattice points rn ∈ L fall on planes of phase = 1. The reciprocal lattice vectors,
except the gamma-point g = 0, are thus orthogonal to planes containing an infinite number of
lattice points. A given set of lattice planes can be characterized by the shortest reciprocal lattice
vector gmin = Gm perpendicular to it. The expansion coefficients m in terms of the primitive
reciprocal vectors are the Miller indices. As for the real lattice, the primitive vectors are not
unique: Ã = AM gives G̃ = (2πÃ−1)T = G(M−1)T , which also span RL. The canonical
choice for the primitive reciprocal cell is k ∈ G (−1/2, 1/2]d. A momentum k from a primitive
reciprocal cell (first Brillouin zone) is called a crystal momentum.
Transforming the single-electron Hamiltonian

Hsingle = −1

2
∇2

r + Vext(r) (12)

with lattice-periodic potential Vext(r) =
∑

m∈Zd V̂Gm eiGm·r to k-space

〈k|Hsingle|k′〉 =
k2

2
δ(k− k′) + V̂Gm δ(k− k′ −Gm) (13)

or, more elegantly,

Hsingle =
∑
k

k2

2
c†k,σ ck,σ +

∑
k

∑
m∈Zd

V̂Gm c†k+Gm,σ ck,σ , (14)

we see that the Hamiltonian only couples states whose wave-vectors differ by reciprocal lattice
vectors (for m 6= 0 they are Umklapp processes). Thus, Hsingle is block-diagonal in k-space so
that its eigenstates are of the form

ϕn,k(r) =
∑
m∈Zd

cn,m ei(k+Gm)·r , (15)
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where k, now restricted to the primitive reciprocal cell, is the cryrstal momentum of the state
and n its band index. Under translations by a lattice vector An they transform as

ϕn,k(r + An) = eik·An ϕn,k(r) , (16)

i.e., as irreducible representations of the abelian translation group. This is the Bloch theorem.
Transforming back to real space, we could determine the eigenfunctions ϕn,k(r) by solving the
eigenvalue problem for Hsingle(

1

2
∇2

r + Vext(r)

)
ϕn,k(r) = εn,k ϕn,k(r) (17)

not on the entire space Rd, but on a single primitive lattice cell imposing k-boundary conditions
ϕn,k(ai) = eik·ai ϕn,k(0). It is, however, more common to rewrite (15) as

ϕn,k(r) = eik·r
∑
m

cn,m eiGm·r = eik·r un,k(r) . (18)

with the lattice-periodic Bloch function un,k(r). Using this form as an ansatz in (17), we see
that the Bloch functions can be obtained from the eigenvalue problem(

1

2

(
− i∇r + k

)2
+ V (r)

)
un,k(r) = εn,k un,k(r) , (19)

on a primitive cell of Lwith periodic boundary conditions. We note that in this equation k plays
the role of a constant vector potential.
For a general time-reversal-symmetric Hamiltonian, every eigenfunction ϕα(r) is degenerate
with its complex conjugate, so that we can choose real eigenfunctions. Taking the complex
conjugate of (19) shows that for a real potential we can choose un,k(r) = un,−k(r). When the
potential is inversion-symmetric, V (−r) = V (r), then ϕα(−r) is degenerate with ϕα(r). For
(19) it implies un,k(−r) = un,−k(r). In the presence of both symmetries we obtain un,k(r) =

un,−k(r) = un,k(−r).
A Bloch theorem also holds for the eigenstates of a many-body Hamiltonian that is invariant
under lattice translations. Translating all electrons by the same lattice vector An will multiply
the wave-function by a phase eiktot·An, where ktot is the total crystal momentum of the many-
body state. Thus, in k-space the Hamiltonian block-diagonalizes into sectors with a given total
crystal momentum. Writing H in k-space

H =
∑
k,σ

(
k2

2
c†k,σ ck,σ +

∑
m

V̂Gm c†k+Gm,σck,σ +
1

2

∑
k′,σ′;q

c†k+q,σc
†
k′−q,σ′

1

|q |2
ck′,σ′ck,σ

)
(20)

we see that acting on a Slater determinant of plane waves with momenta ki (or Bloch waves of
crystal momenta ki), the Hamiltonian does not change total crystal momentum ktot =

∑
ki.

However, while the kinetic energy is diagonal and the external potential scatters only between
plane waves differing by a reciprocal lattice vector, the electron-electron interaction scatters



Quantum Cluster Methods 8.7

plane waves of arbitrary single-electron momentum. Thus, for the eigenvalue problem we have
to consider Slater determinants of plane waves with arbitrary wave-vectors ki.
As the simplest example, let us consider the Slater determinant of two plane waves

Φk1,k2(r1, r2) =
1√
2

(
1

(2π)d/2

)2
∣∣∣∣∣ eik1·r1 eik2·r1

eik1·r2 eik2·r2

∣∣∣∣∣ ∝ ei(k1·r1+k2·r2) − ei(k2·r1+k1·r2) (21)

By construction it transforms as desired under a shift of all electrons by a lattice vector

Φk1,k2(r1 + An, r2 + An) = e(k1+k2)·An Φk1,k2(r1, r2) . (22)

The situation is, however, markedly different from the single-electron case (15): there, we can
always translate a single electron coordinate into a primitive cell, allowing us to consider the
single-electron Bloch functions on a finite volume. For more electrons, however, their relative
distance is unchanged under the collective translation, so that we cannot bring all coordinates
into a finite volume. To make this possible, we would need a Bloch-type theorem for translations
of individual electrons:

Φk1,k2(r1 + c, r2) = eik̃·c Φk1,k2(r1, r2) (23)

(the equivalent equation for translations of r2 follows from the antisymmetry). Inserting (21) we
see that such an individual-electron Bloch-condition puts constraints on the allowed momenta:
exp(i(ki− k̃) ·c) = 1. Thus, to be able to restrict the many-electron wavefunction to a primitive
cell spanned by three vectors C with boundary conditions

Φk1,k2(ci, r2, . . .) = eik̃·ci Φk1,k2(0, r2, . . .) , (24)

we can only allow Slater determinants constructed from plane waves with wave vectors ki such
that the ki − k̃ are reciprocal lattice vectors of C. For k̃ = 0 we obtain the simulation cell
with periodic boundary conditions discussed in the introduction. The eigenfunctions of H with
boundary conditions (24) can be written in the Bloch-like form

ΨC
n,k̃

(r1, r2, . . .) = eik̃·
∑
i ri UC

n,k̃
(r1, r2, . . .) , (25)

where UC
n,k̃

(r1, r2, . . .) is invariant under translations of a single electron by a vector from C and
antisymmetric under particle exchange. While UC

n,k̃
apparently is the many-body generalization

of the single-electron Bloch function un,k(r), we have to keep in mind that its construction is
based on the artificial boundary conditions (24), which depend on the choice of the volume C.
When the volume is chosen small, calculations are simple but the wave functions ΨC

n,k̃
will give

poor approximations to the actual ground state, while increasing the cell improves the accuracy
but also makes calculations increasingly difficult.
Physically, as in the single-electron case (19), the twisted boundary conditions (24) correspond
to a constant vector potential. The dependence of the ground state energy EC

0 (k̃) can be used
to distinguish metallic from (Mott) insulating systems: the second derivative at k̃ = 0 of the
energy with respect to the current driving vector potential gives the static response. For metals
it stays finite while for insulators it vanishes in the thermodynamic limit [6].
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1.2 Superlattices

For a system with lattice periodicity the single- and many-electron boundary conditions (16) and
(24) should be consistent. This implies, in particular, that the vectors spanning the cell should be
integer linear-combinations of the primitive lattice vectors, ci =

∑
ai lij , or, in matrix notation,

C = AL, where the columns of L are the primitive cell vectors in units of the primitive lattice
vectors. The vectors C span a lattice S ⊆ L, called a superlattice. The volume of the primitive
unit cell of C is | det(L)| times the volume of the primitive lattice cell. Since L is an integer
matrix, its determinant is also an integer.
As the choice of the primitive lattice vectors A for a given latticeL is not unique, so is the choice
of L for a given superlattice S. We can, however, easily check whether, for given primitive
lattice vectors A, two integer matrices span the same superlattice by reducing them to their
Hermite normal form [7] and checking if they agree. The reduction of a non-singular integer
matrix L to its Hermite normal form (HNF)

Λ =


λ11 0 0 · · ·
λ21 λ22 0

λ31 λ32 λ33

... . . .

 (26)

with λii ≥ 1, and λii > λij ≥ 0 can be done recursively. Allowed operations that leave the
superlattice spanned by the transformed matrix unchanged are (i) multiplying a column by ±1,
(ii) exchanging columns, and (iii) adding an integer multiple of another column. The reduction
algorithm [8] is based on the Euclidean algorithm for finding the greatest common divisor

gcd(a, b) =


|a| if b = 0 (operation of type (i))
gcd(b, a) if |a| < |b| (operation of type (ii))
gcd(a− ba/bcb, b) otherwise (operation of type (iii))

(27)

where a and b are the matrix elements in a given row of the matrix, and we perform the op-
erations not just on these matrix elements but on their entire column vectors. To reduce the
first row of L to the required form, we apply the Euclidean algorithm on the last two columns,
reducing the coefficient in the last column to zero. In this way we reduce all matrix elements
except the first to zero, obtaining λ11 = gcd(l11, . . . , l1d). We iterate this procedure for the sub-
matrix obtained by removing the first row and column to bring the matrix to lower triangular
form. Finally, we use column operations to replace the off-diagonal elements in a row by their
remainders on division by the corresponding diagonal element.
Besides giving a criterion for determining equivalent primitive cell vectors, the Hermite normal
form gives a prescription for enumerating all non-equivalent periodic clusters of a given size.
We have to be careful, however, when the lattice L spanned by A has point symmetries besides
simple inversion. Since the construction of Λ contains no information on the underlying lattice,
such additional symmetries can render superlattices with different HNF equivalent.
Fig. 2 gives an example of how different equivalent primitive cells can appear. For the square
lattice with point-symmetry C4v, we see that primitive vectors spanning the same superlattice
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L :

(
2 0
4 8

)
HNF

(
4 2
0 4

) (
0 4
−4 −2

) (
4 8
−2 0

) (
4 0
2 4

)
HNF

Fig. 2: Primitive superlattice cells on a square lattice. All primitive superlattice vectors span
the same superlattice, i.e., calculations for any of the shown cells will give the same results.
The primitive superlattice vectors L are shown below the plot. The first two plots show a set
of primitive vectors and the corresponding Hermite normal form. The next two are obtained by
rotating the vectors by −π/2, (x, y) → (−y, x). Because of the point-symmetry of the under-
lying square lattice, they span equivalent superlattices. Their Hermite normal form, shown on
the far right, is, however, different from the unrotated HNF on the far left.

can have different Hermite normal form when they are related by a non-trivial point-symmetry
operation. This happens when the primitive cells break the point symmetry of the lattice. It
is often advantageous to work with cells that retain symmetries of the underlying lattice. Well
known examples are the conventional cells of cubic lattices, e.g., the face-centered cubic lattice

A =
a

2

 0 1 1

1 0 1

1 1 0

 C = a

 1 0 0

0 1 0

0 0 1

 L =

 −1 1 1

1 −1 1

1 1 −1

 . (28)

While the primitive lattice vectors A do not exhibit the cubic symmetry of the lattice, the vectors
of the conventional unit cell C do. Symmetry is one of the criteria used for selecting cells that
best represent the infinite system [9].
The reciprocal lattice RS of S is spanned by the primitive vectors Ks = (2πC−1)T . They can
be written in terms of the reciprocal lattice vectors of L as

Ks =
(
2πC−1

)T
= K

(
L−1

)T (29)

The primitive cell spanned by Ks is smaller than that spanned by K by a factor of 1/| det(L|.
The Slater determinants in a simulation on the primitive cell spanned by C with periodic bound-
ary conditions can then contain Bloch waves of wave vector k = KSm with m ∈ Zd that fall
in the Brillouin zone of the original lattice. With twisted boundary conditions (24), the allowed
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wave vectors are shifted by k̃. The choice k̃ = ki/2 corresponds to a sign-change under a
translation by ci, i.e., antiperiodic boundary conditions in that direction.
When the primitive superlattice vectors are chosen as integer multiples of the primitive lattice
vectors, ci = ni ai, the reciprocal lattice shifted by k̃ =

∑
i(ni − 1)ki/2ni forms a Monkhorst-

Pack grid of special k-points that are popular for Brillouin-zone integrations [10].

2 Variational methods

Conceptually, the variational approach is straightforward: to find the ground state of a Hamil-
tonian H, just minimize the energy expectation value

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (30)

The practical problem is, of course, the choice of a suitable variational space. The system-
atic approach is to write the trial wave function as a linear combination of Slater determi-
nants Ψ(r) =

∑
α cα Φα(r) and allow all amplitudes cα to vary. For a finite system with N

electrons and a finite basis set of K orbitals there will be
(
K
N

)
Slater determinants. Mini-

mizing E[Ψ ] = E(c1, c2, . . .) amounts then to a high-dimensional optimization problem. As
E(c1, c2, . . .) has no local minima, this can be done using a steepest descent method, e.g., the
Lanczos method [11]. It involves the repeated application of the Hamiltonian to the trial func-
tion. When working with a basis set, a Hamiltonian (2) with pair interaction only couples
Slater determinants that differ in at most two orbitals. Thus, the matrix representation of H in
Slater-determinant space is reasonably sparse so that the matrix-vector product can be efficiently
calculated. Nevertheless this method, called configuration interaction (CI) as it describes the in-
terplay of Slater determinants (electron configurations), is limited to quite small systems by the
sheer number of Slater determinants spanning the Hilbert space, or, equivalently, by the number
of parameters cα that need to be simultaneously optimized: For a system with 25 electrons and
just 50 basis functions, the number of parameter is already above 1014, i.e., requiring a peta byte
of memory just for storing the parameters cα. A way out might be to consider only “important”
Slater determinants. It turns out that the variational energy converges, however, only slowly
with the number of determinants included in the calculation. Moreover, when we want to study
systems of increasing size a truncated CI easily leads to size-consistency problems [2].
An alternative to the full-CI ansatz are wave functions that capture the strongest effects of elec-
tron correlation with only a small number of parameters. To identify the major effect of electron
correlation on the wave function, we return to the energy expectation value (30). Considered as
a wave function functional, the stationarity condition

0 =
δE

δΨ
=
H|Ψ〉
〈Ψ |Ψ〉

− 〈Ψ |H|Ψ〉
〈Ψ |Ψ〉2

|Ψ〉 (31)

is equivalent to the Schrödinger equation H Ψ(r) = E Ψ(r). Dividing by the wave function we
obtain the local energy

Eloc(r) =
H Ψ(r)

Ψ(r)
, (32)
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which is constant for eigenstates ofH , i.e., its variance is zero (zero variance property). We can
thus find eigenstates by minimizing the variance of the local energy (variance minimization)

σ2[Ψ ] =

∫
|Eloc(r)|2 |Ψ(r)|2 dr−

(∫
Eloc(r) |Ψ(r)|2 dr

)2

= 〈Ψ |H2|Ψ〉 − 〈Ψ |H|Ψ〉2. (33)

This approach can also be employed for constructing good trial wave functions.
We might think that, as the solution of a second-order differential equation, wave functions
are smooth with continuous first derivative. This is, however, not true at singularities in the
potential. A well-known example is the hydrogen atom. Its ground state fulfills

Hϕ1s(~r) = −1

2
~∇2ϕ1s(~r)−

1

r
ϕ1s(~r) = E1s ϕ1s(~r) . (34)

For r → 0, the potential energy diverges while Hϕ1s(~r) remains finite. For this reason, the 1s

function goes to a finite value at the position of the nucleus, producing a cusp , i.e., a discon-
tinuity in the first derivative, which gives rise to the canceling divergence in the kinetic energy.
The cancelation condition determining the cusp in the wave function, in the case of hydrogen
ϕ1s ∼ exp(−

√
x2 + y2 + z2), is called the cusp condition [12]. Removing divergences in the

local energy by implementing the cusp condition is the most important step towards reducing
the variance of Eloc(r), i.e., constructing good variational wave functions.
The cusps at the position of the nuclei are built into the single-particle orbitals obtained from
a mean-field solution of (1). The many-body eigenstates will, however, also have cusps when
two electrons meet (~ri → ~rj). These cusps are, of course, not easily reproduced by a linear
combination of Slater determinants, which explains the slow convergence of CI expansions.
To derive the cusp conditions, we start with the electron-nucleus cusp. Following the example
of hydrogen, we write the wave function close to a nucleus of charge Z as exp(−uZ(r)), where
r is the distance of the electron from the nucleus. For r close to zero the local energy is

Eloc(r) = −1

2

(
d2

dr2
+ 2

r
d
dr

)
e−uZ(r)

e−uZ(r)
− Z

r
= −
−u′′Z(r) + u′Z

2(r)− 2u′Z(r)

r

2
− Z

r
. (35)

Thus, it stays finite for r → 0 when

duZ
dr

∣∣∣∣
r=0

= +Z . (36)

For electrons, the cusp condition will depend on their relative spin orientation. Electrons with
opposite spin need not be antisymmetrized so that we can write the wave function when the
electrons are close to each other as exp(−uσ,−σ(r)) with r = |r1 − r2|. The situation is almost
the same as for the electron-nucleon cusp, except that (i) electrons repel each other and (ii) we
now have two electronic degrees of freedom, i.e., we get contributions from the kinetic energy
operator for both electrons, resulting in

duσ,−σ
dr

∣∣∣∣
r=0

= −1

2
. (37)
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For electrons with parallel spin, the wave function must be antisymmetric in the electron co-
ordinates, i.e., there must be a nodal surface separating the region where the wave function is
positive from that where it is negative. For r1 ≈ r2 we can approximate the nodal surface by
a · r = 0, which is a plane when we keep one of the electron coordinates fixed. We can then
write the antisymmetric wave function close to r = 0 as a · r exp(−uσ,σ(r)). Removing the
singularity in the local energy now requires [4]

duσ,σ
dr

∣∣∣∣
r=0

= −1

4
. (38)

Thus, the correlation cusp for opposite-spin electrons affects the wave function more than
that for parallel spins since electrons with the same spin already tend to avoid each other as
a consequence of exchange.
The cusp conditions just tell us the form of the wave function right at the singularity. To put this
information into a usable wave function, we have to parametrize the electron-electron functions
uσ,σ′(r) for finite r. This is typically done by writing u(r) as a rational function that fulfills
the cusp condition for r → 0 and goes to a constant for r → ∞. To ensure antisymmetry
and the electron-nucleus cusps, the electron-electron correlators are multiplied onto a Slater
determinant. This gives the Jastrow wave function [14]

ΨJ(r1, σ1; . . . ; rN , σN) = Φ(r1, σ1; . . . ; rN , σN)
∏
i<j

e−uσi,σj (rij) . (39)

The product of pair functions is called the Jastrow factor. It will tend to reduce the amplitude of
the Slater determinant when electrons come close to each other, i.e., it introduces a correlation
hole. For systems with inhomogeneous charge density this means that the Jastrow factor pushes
electrons away from regions of high charge-density, where the probability of two electrons
approaching each other is largest. This can be compensated by introducing single-electron
terms in the Jastrow factor [15]. That is particularly important when the Slater determinant
used in (39) accurately describes the charge density of the system, e.g., from density-functional
theory.
Having chosen parametrizations for uσ,σ′(r) and the single-electron term, the variational ap-
proach looks straightforward: just minimize the energy expectation value 〈ΨJ |H|ΨJ〉/〈ΨJ |ΨJ〉
with respect to the (relatively few) Jastrow parameters. The pair functions, however, make it
impossible to evaluate the expectation value other than by integrating over all electron configu-
rations

〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

=

∫
dr1 · · · drN ΨJ(r1, σ1; . . . ; rN , σN)H ΨJ(r1, σ1; . . . ; rN , σN)∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
(40)

This 3N -dimensional integral is best done using stochastic sampling – variational Monte Carlo.
What improvements in energy can we expect? Typically, optimizing a good trial function will
lower the energy expectation value by only a few percent of the energy calculated with just the
mean-field Slater determinant. This might seem little reward for the considerable effort. We
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Fig. 3: Weight of configurations with given number D of double occupancies for Gutzwiller
wave functions ΨT (R) = gD(R) Φ(R). Reducing the Gutzwiller factor g suppresses configura-
tions with high Coulomb energy ECoul(R) = U D(R) at the expense of increasing the kinetic
energy. The results shown are for a Hubbard model on a square lattice of 16 × 16 sites with
periodic boundary conditions and 101 electrons of each spin. For the uncorrelated Slater de-
terminant (g = 1) the distribution is centered around D = Nsite n↑n↓ = 162 (101/162)2 ≈ 40.

have, however, to keep in mind that the effects of correlation, essentially the integral over the
correlation-hole, are very small compared to the Coulomb energy of the uncorrelated charge
density (Hartree energy) and the kinetic term. So correlation effects are barely noticeable on
the scale of the total energy. The dominating role of the Hartree energy also becomes appar-
ent when comparing the charge density of a solid to a simple superposition of atomic charge
densities: the bonding induces barely noticable changes, see, e.g., Fig. 1 in [16]. A more sensi-
ble benchmark than the change in total energy is how much of the correlation energy, i.e., the
difference between the Hartree-Fock and the exact energy, is captured. On this count, varia-
tional wave functions fare much better: they typically recover roughly 90% of the correlation
energy. Still, correlations are a subtle effect also on this energy scale, and variational methods
are usually not sufficient for reaching chemical accuracy.
When working in second quantization with a finite (and therefore incomplete) basis set, we can-
not describe two electrons coming arbitrarily close to each other. So there are no cusp conditions
here. Still, we can correlate the electrons in the orbitals of the basis set by introducing correla-
tion factors of the form exp(−ηD), where D is a two-body operator. Such trial wave functions,
with D =

∑
i ni↑ni↓ the number of doubly occupied sites, were introduced by Gutzwiller [17]

as variational states for the Hubbard model

H = −t
∑
ij,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (41)

The Gutzwiller wave function (GWF), with |Φ〉 a mean-field solution of H , can be written as

|ΨT 〉 = e−η
∑
i ni↑ni↓ |Φ〉 = g

∑
i ni↑ni↓ |Φ〉 =

∏
i

(
1− (1− g)ni↑ni↓

)
|Φ〉 , (42)

where g = exp(−η) and the final equality arises from the fact that ni↑ni↓ can only take the
values 0 or 1. The role of the Gutzwiller parameter g ∈ [0, 1] is to reduce the number of doubly
occupied sites relative to the mean-field solution |Φ〉, thus reducing the Coulomb repulsion at
the expense of increasing the kinetic energy. This is illustrated in Fig. 3. Introducing more
general two-body operators D, Gutzwiller wave functions can be devised for realistic multi-
band models. See [18] for a nice introduction.
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2.1 Variational Monte Carlo

As seen in (40), evaluating the energy expectation value for a Jastrow wave function involves
the integration over the 3N -dimensional configuration space of the electrons. The key for doing
this using stochastic sampling is again the local energy, which allows us to rewrite (40) as

〈ΨJ |H|ΨJ〉
〈ΨJ |ΨJ〉

=

∫
dr1 · · · drN Eloc(r1, σ1; . . . ; rN , σN) |ΨJ(r1, σ1; . . . ; rN , σN)|2∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
. (43)

As it is non-negative and normalized,

p(r1, σ1; . . . ; rN , σN) =
|ΨJ(r1, σ1; . . . ; rN , σN)|2∫

dr1 · · · drN |ΨJ(r1, σ1; . . . ; rN , σN)|2
(44)

is a probability distribution function on the configuration space, so that we can evaluate (43)
by sampling configurations R = (r1, σ1; . . . ; rN , σN) with probability p(R) and average the
corresponding local energy Eloc(R).
The same approach works for Hamiltonians written in second quantization, the main difference
being that in this case the electron configurations are discrete, specifying the occupation of
the orbitals used in second quantization. In the following, we specialize to the case of the
simple Hubbard model (41) with one orbital per site. Denoting by R an electron configuration,
specifying on which site the electrons are located as well as their spin, we can write the energy
expectation value of a trial function ΨT as

ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∑
REloc(R) Ψ 2

T (R)∑
R Ψ

2
T (R)

, (45)

with the local energy

Eloc(R) =
∑
R′

〈ΨT |R′〉 〈R′|H|R〉
〈ΨT |R〉

=
∑
R′ 6=R

t
ΨT (R′)

ΨT (R)
+ U D(R). (46)

If the Hamiltonian allows only hopping to near neighbors, the sum over R′ in the local energy
scales with the number of near neighbors times the number of electrons in the system. In
contrast, the sum over R in (45) is over all configurations, i.e., of the order of the dimension of
the Hilbert space. With increasing system size this rapidly becomes extremely large. To give an
impression, the dimension of the Hilbert space for the model shown in Fig. 3 is

(
162

101

)
×
(

162

101

)
,

which is larger than 10146. So it seems quite impossible to do the sum in (45). Even generating
configurations at a rate of 3.3 GHz, we could visit just 1017 configurations per year. It is the
magic of stochastic methods that sums over such spaces can still be done to an astonishing
accuracy.
The idea of variational Monte Carlo [19, 20] is to perform a random walk in the space of
configurations, with transition probabilities p(R → R′) chosen such that the configurations
RVMC in the random walk have the probability distribution function Ψ 2

T (R). Then

EVMC =

∑
RVMC

Eloc(RVMC)∑
RVMC

1
≈
∑

REloc(R) Ψ 2
T (R)∑

R Ψ
2
T (R)

= ET . (47)
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Fig. 4: Illustration of the random walk in configuration space.

The transition probabilities can be determined from detailed balance

Ψ 2
T (R) p(R→ R′) = Ψ 2

T (R′) p(R′ → R) , (48)

which gives p(R → R′) = 1/N min
(
1, Ψ 2

T (R′)/Ψ 2
T (R)

)
, with N being the maximum number

of possible transitions. It is sufficient to consider only transitions between configurations that
are connected by the Hamiltonian, i.e., transitions in which one electron hops to a neighboring
site. The standard prescription is then to propose a transition R → R′ with probability 1/N

and accept it with probability min
(
1, Ψ 2

T (R′)/Ψ 2
T (R)

)
. This works well when U is not too

large. For strongly correlated systems, however, the random walk will stay for long times in
configurations with a small number of double occupancies D(R), since most of the proposed
moves will increase D and hence be rejected with probability ≈ 1− gD(R′)−D(R).
Fortunately, there is a way to integrate-out the time the walk stays in a given configuration [21].
To see how, we first observe that for the local energy (46) the ratio of the wave functions for
all transitions induced by the Hamiltonian have to be calculated. This in turn means that we
also know all transition probabilities p(R→ R′). We can therefore eliminate any rejection, i.e.,
accept with probability one, by proposing moves R→ R′, (R′ 6= R), with probabilities

p̃(R→ R′) =
p(R→ R′)∑
R′ p(R→ R′)

=
p(R→ R′)

1− pstay(R)
. (49)

Checking detailed balance (48) we find that now we are sampling configurations R̃VMC from
the probability distribution function Ψ 2

T (R) (1− pstay(R)). To compensate for this, we assign a
weight w(R) = 1/(1− pstay(R)) to each configuration R. The energy expectation value is then
given by

ET ≈
∑

R̃VMC
w(R̃VMC)Eloc(R̃VMC)∑
R̃VMC

w(R̃VMC)
. (50)

The above method is very efficient since it ensures that in every Monte Carlo step a new con-
figuration is created. Instead of staying in a configuration where ΨT is large, this configuration
is weighted with the expectation value of the number of steps the simple Metropolis algorithm
would stay there. This is particularly convenient for simulations of systems with strong cor-
relations: instead of having to do longer and longer runs as U is increased, the above method
produces, for a fixed number of Monte Carlo steps, results with comparable error estimates.



8.16 Erik Koch

2.2 Correlated sampling

The essence of the variational method is the minimization of the energy expectation value (45)
as a function of the variational parameters in the trial function. To this end, we could simply
perform independent VMC calculations for a set of different parameters. It is, however, difficult
to compare the energies from independent calculations since each VMC result comes with its
own statistical errors. This problem can be avoided with correlated sampling [19,22]. The idea
is to use the same random walk in calculating the expectation value for different trial functions.
This reduces the relative errors and hence makes it easier to find the minimum.
Let us assume that we have generated a random walk {RVMC} for the trial function ΨT . Using
the same random walk, we can also estimate the energy expectation value (47) for a different
trial function Ψ̃T . To do so we have to compensate for the fact that the configurations have the
probability distribution Ψ 2

T instead of Ψ̃ 2
T by introducing reweighting factors

ẼT ≈
∑

RVMC
Ẽloc(R) Ψ̃ 2

T (R)/Ψ 2
T (R)∑

RVMC
Ψ̃ 2
T (R)/Ψ 2

T (R)
. (51)

Likewise, (50) is reweighted into

ẼT ≈
∑

R̄VMC
w(R̄) Ẽloc(R̄) Ψ̃ 2

T (R̄)/Ψ 2
T (R̄)∑

R̄VMC
w(R̄) Ψ̃ 2

T (R̄)/Ψ 2
T (R̄)

. (52)

Also, the local energy Ẽloc(R) can be rewritten such that the new trial function appears only
in ratios with the old one. For Gutzwiller functions this implies a drastic simplification. Since
they differ only in the Gutzwiller factor, the Slater determinants cancel, leaving only powers
(g̃/g)D(R)

ET (g̃) ≈
∑

RVMC
Ẽloc(R) (g̃/g)2D(R)∑
RVMC

(g̃/g)2D(R)
(53)

and

Ẽloc(R) = −t
∑
R′ 6=R

(g̃/g)D(R′)−D(R) ΨT (R′)

ΨT (R)
+ U D(R). (54)

As the number of doubly occupied sites D(R) for a configuration R is an integer, we can
rearrange the sums in (53) and (54) into polynomials in g̃/g. The energy expectation value for
any Gutzwiller parameter g̃ is then given by a rational function in the variable g̃/g, where the
coefficients only depend on the fixed trial function |Ψ(g)〉.
It is then clear how we proceed to optimize the Gutzwiller parameter in variational Monte
Carlo [21]: we first pick a reasonable g and perform a VMC run for |Ψ(g)〉 during which we
also estimate the coefficients of the above polynomials. We can then easily calculate ET (g̃) by
evaluating the rational function in g̃/g. Since the number of non-vanishing coefficients typically
is only of the order of a few tens (see the distribution of weights shown in Figure 3), this is a
very efficient process.
Figure 5 shows how the method works in practice. Although we deliberately picked a bad
starting point, we still find the correct minimum. Of course, this will not be true for the whole
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Fig. 5: Optimizing the Gutzwiller parameter g: The left-hand panel shows the straightforward
approach of calculating the variational energy for a number of different values of g in separate
VMC runs. The curve in the right-hand panel shows the result of a single correlated sampling
run, calculated at g = 0.4. The predicted minimum is indicated by the dotted line and cor-
responds to the actual minimum. The calculations are for a cluster of 32 C60 molecules with
48+48 electrons (half-filling) and U = 1.0 eV [23].

range of Gutzwiller parameters. When g̃ differs too much from g, the method breaks down. To
understand this we again turn to Figure 3. We see that most configurations in a random walk
generated with, say, g = 0.50 will have about 20 doubly occupied sites. In the Monte Carlo
run we therefore sample the coefficients for (g̃/g)2×20 best, while the statistics for much larger
or smaller powers is poor. But it is exactly these poorly sampled coefficients that we need for
calculating the energy expectation value of trial functions with g̃ much different from g. We
can thus use the overlap of the wave functions 〈Ψ(g̃)|Ψ(g)〉 as a measure of the reliability of the
calculated energy ET (g̃). Like the energy expectation value itself, it can be recast in the form
of polynomials, the coefficients of which can be sampled during the VMC run

〈Ψ(g̃)|Ψ(g)〉 =

∑
R Ψ̃(R)Ψ(R)√∑

R Ψ̃
2(R)

∑
R Ψ

2(R)
=

∑
RVMC

(g̃/g)D(R)√∑
RVMC

(g̃/g)2D(R)
∑

RVMC
1
. (55)

Figure 6 shows how the reliability of correlated sampling results depends on the overlap of with
the trial function that is used in the VMC run.
There are some straightforward modifications of the scheme we have described above. Often,
it is more appropriate to minimize the variance in the local energy σ2(g) rather than the energy
E(g) [22]. Since the variance can also be rewritten in terms of a rational function in g̃/g,
variance minimization can be implemented in much the same way as the energy minimization
that we have described here. Furthermore, it is clear that the method is not restricted to the
plain Gutzwiller wave function but can be generalized to trial functions with more correlation
factors of the type rc(R). As long as the correlation function c(R) is integer-valued on the space
of configurations, expectation values for such trial functions can still be rewritten as rational
functions. The only difference to the simpler case described above is that now the rational
function is multivariate, reflecting the fact that there is more than one variational parameter.
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Fig. 6: The reliability of a correlated sampling run depends on the overlap of the trial function
with the wave function at the predicted minimum. Left: inefficient sampling for small overlap.
Right: reliable sampling for sufficiently large overlap. The thin line gives the energy curve
obtained from the correlated sampling run, the thick line shows the overlap. The calculations
are for the same system as in Figure 5.

2.3 Gutzwiller approximation

In Fig. 3 we found that we can estimate the number of doubly occupied sites in a non-interacting
Slater determinant by simply assuming that the electrons of different spins are distributed uni-
formly over the lattice: D ≈ Nsite n↑ n↓. In terms of electron configurations, this can be
rephrased: all electron configurations R have the same weight in Φ〉, i.e., |Φ〉 =

∑
R cR|R〉 with

|cR|2 = const. This is the basic assumption of the Gutzwiller approximation (GA) [17, 24]. It
provides surprisingly reliable estimates of the properties of the Gutzwiller wave function using
simple combinatorics.
As electron correlation in the Hubbard model arises from the doubly occupied sites, it is rea-
sonable to use the number of doubly occupied sites to characterize an electron configuration R.
More specifically, we introduce the notation

M : number of lattice sites (= Nsite)
Nσ : number of electrons with spin σ

E : number of empty sites
Lσ : number of sites with a single electron of spin σ
D : number of doubly occupied sites

While the number of lattice sites and electrons is fixed for a given system, the other quantities
have to fulfill physical constraints. A site is either empty, singly, or doubly occupied, i.e., M =

E +L↑ +L↓ +D, and the electrons are on singly or doubly occupied sites, i.e., Nσ = Lσ +D.
Given this notation, the number of configurations with a given D is obtained by distributing the
empty, singly, and double occupied sites over the lattice

G(D) =

(
M

E

)(
M − E
L↑

)(
M − E − L↑

L↓

)(
M − E − L↑ − L↓

D

)
=

M !

E!L↑!L↓!D!
. (56)
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Fig. 7: Comparison of the weight of doubly occupied configurations for Gutzwiller wave
functions (histograms) and as calculated in the Gutzwiller approximation (curves). The system
is the same as in Figure 3.

Figure 7 shows that the distribution (56) matches that calculated for an uncorrelated Slater
determinant almost perfectly. For a Gutzwiller wave function, the Gutzwiller parameter changes
the GA-weights to

∑
R withD double occs |cR|2 ∝ G(D) g2D. Even for quite large correlation, i.e., small

g, the agreement with the actual weights is surprisingly good. As we are dealing with quite large
factorials, we can use Stirling’s approximationN ! ∼

√
2πN exp(N ln(N)−N) to simplify (56)

G(D)

Gtot

g2D =

√
n↑ (1− n↑) n↓ (1− n↓)

2πM e l↑ l↓ d

(
n
n↑
↑ (1− n↑)1−n↑ n

n↓
↓ (1− n↓)1−n↓

e
e
l
l↑
↑ l

l↓
↓ d

d

)M

(57)

where nσ = Nσ/M and d = D/M , etc. From this we see that the distribution of double
occupancies, as a function of d, narrows with increasing M . Thus, for general g ∈ [0, 1],
the density of double occupancies in the thermodynamic limit is given by the position of the
maximum of the distribution. Using the asymptotics of the derivative of the gamma function
Γ (z)′ = Γ (z)Ψ0(z) ∼ Γ (z) ln(z), we find g2 = e d/(l↑ l↓), or, explicitly.

d(n↑, n↓; g) = −1

2

(
1

1− g2
− n↑ − n↓

)
+

√
1

4

(
1

1− g2
− n↑ − n↓

)2

+
n↑ n↓ g2

1− g2
, (58)

i.e., in the thermodynamic limit the Gutzwiller parameter determines d. In the uncorrelated case
it gives the familiar d(g = 1) = n↑ n↓ from Fig. 3, while in the opposite limit there are only
double occupancies above half-filling: d(g = 0) = max(0, n− 1).
Similarly, we can estimate the overlap of wave functions with different Gutzwiller parameters,
which is a measure of the efficiency of correlated sampling,

〈Ψ(g̃)|Ψ(g)〉 ∼
∑
D

M !

E!L↑!L↓!D!
(gg̃)D . (59)

Expanding around g̃ = g we find that the overlap looks like a Gaussian: exp[−M (g̃− g)2/σ2
0],

with M the number of lattice sites. As expected, for fixed g̃ 6= g, the overlap goes to zero
exponentially with system size (orthogonality catastrophe). σ0 is a function of g and the filling
and generally decreases with g. This can be seen in Figure 7: for small g the weights are peaked
more sharply than for larger Gutzwiller parameters. For half-filling, σ0 =

√
2g 2(1 + g).

The relation between the overlap and the reliability of correlated sampling (53) is illustrated in
Figure 6.
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For the energy expectation value

E(g) =
〈Ψ(g)|H|Ψ(g)〉
〈Ψ(g)|Ψ(g)〉

= −2t
∑
ij,σ

〈Ψ(g)|c†jσciσ|Ψ(g)〉
〈Ψ(g)|Ψ(g)〉

+ U D(g) (60)

in the Gutzwiller approximation, the Hubbard energy is explicitly given through the relation (58)
between g and the density of doubly occupied sites. For estimating the kinetic energy, we first
observe that 〈Ψ(g)|c†jσciσ|Ψ(g)〉/〈Ψ(g)|Ψ(g)〉 is the probability for an electron of spin σ to
hop from site i to site j. The probability for a hop being allowed by the Pauli principle is
nσ (1− nσ). In the Gutzwiller approximation there are more severe constraints on the hopping
processes coming from the condition that the density of doubly occupied sites is fixed at (58).
Thus, only hops from a singly occupied to an empty site (probability lσ e) or from a doubly to
a singly occupied site (probability d l−σ) are allowed. Thus, replacing the Pauli constraint with
the more severe Gutzwiller constraints reduces the hopping matrix elements of the uncorrelated
Slater determinant by the hopping reduction factor

γσ(nσ, g) =

(√
lσ e+

√
d l−σ

)2

nσ (1− nσ)
, (61)

where we have added the amplitudes for the two allowed hopping processes. Using again the
basic assumption of the Gutzwiller approximation that all configurations contribute the same,
we find for the energy per site

εGA(g) =
∑
σ

γσ(nσ, g) ε(0)
σ (nσ) + U d(n↑, n↓; g) , (62)

where ε0
σ(nσ) is the kinetic energy for the Slater determinant of the Gutzwiller wave functions.

Optimizing the Gutzwiller parameter g thus means finding the best trade-off between lowering
the Hubbard energy by reducing the density of double occupancies and the simultaneous in-
crease in the (negative) kinetic energy due to the band narrowing proportional to the hopping
reduction γσ. Because of the relation (58) between g and d we actually need not consider g but
can minimize the energy using d as the parameter.

2.4 Brinkman-Rice transition

At half-filling (nσ = 1/2) the expressions from the Gutzwiller approximation simplify signifi-
cantly. The hopping reduction factor becomes γ = 16d(1/2 − d), so we can write the energy
expectation value per site as

ε(d) = 16 d (1/2− d) ε(0) + U d , (63)

where ε(0) is the kinetic energy density of the uncorrelated system (both spins). Minimizing
gives

dmin(U) =
1

4
+

U

32ε(0)
. (64)
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Fig. 8: Gap calculated by variational Monte Carlo for the Gutzwiller wave function on the finite
one-dimensional Hubbard model with periodic boundary conditions (Hubbard rings). For 30-
site rings a gap appears to open at U ≈ 6. For larger rings the gap opens at slightly increasing
values of U , and it looks as if the result of the Gutzwiller approximation is reached for large
enough systems. But actually the opening of a gap is a pure finite-size effect, as a Gutwiller
wave function with metallic Slater determinant is always metallic, unless g = 0.

For the uncorrelated system this gives the familiar dmin(U = 0) = n↑n↓. With increasing U ,
double occupancies are reduced until they vanish entirely at Uc = 8|ε(0)|. From that point on,
the system has no doubly occupied sites; the hopping reduction becomes γ = 0 suppressing
all hopping, i.e., making the system an insulator. This is the Brinkman-Rice scenario for a
half-filled band turning insulating [25].
We might wonder if we could see the metal-insulator transition in VMC calculations. The
insulating state can be determined by calculating the gap

Eg(M) = E(N + 1)− 2E(N) + E(N − 1) (65)

=
ε(n+ 1/M)− ε(n)

1/M
− ε(n)− ε(n− 1/M)

1/M
(66)

→ dE(n)

dn

∣∣∣∣
n+

− dE(n)

dn

∣∣∣∣
n−

= µ+ − µ− . (67)

Opening of the gap Eg > 0 indicates a jump in the chemical potential, i.e., an insulator. For
an insulating half-filled system N = M at large U we would expect Eg ∼ U , since the system
cannot avoid double occupancy with M + 1 electrons. Results for a simple Hubbard chain
are shown in Figure 8. It appears that around Uc = 32t/π ≈ 10 t, the value predicted by the
Gutzwiller approximation for the one-dimensional Hubbard model, the gap indeed starts to open
proportionally to U . As the size of the Hubbard chain used in the simulation increases, the gap is
slightly reduced, seemingly approaching the value predicted by the Gutzwiller approximation.
This is, however, a pure finite-size effect.
For the one-dimensional Hubbard model, the ground state properties were actually calculated
analytically by Metzner and Vollhardt [26]. For any finite U , the ground state energy εGWF (n)
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has a continuous derivative at half-filling. So the Gutzwiller wave function always describes a
metal, except for g = 0. This example should serve as a warning that finite-size extrapolations
can be quite tricky. Here, even though the energy per site converges quickly to the exact result,
having to take finite differences instead of derivatives in the evaluation of the gap for finite
systems can create the appearance of a gapped system.
There is an elegant argument using the response of the energy to twisted boundary conditions
that shows that, quite generally, Gutzwiller-type wave functions with a metallic Slater determi-
nant are always metallic [27]. Consider a variational wave function

|Ψ〉 =
∏
α

gCαα |Φ〉 , (68)

where |Φ〉 is a Slater determinant and Cα a set of correlation functions (the simple Gutzwiller
function uses only one correlation function,

∑
i ni↑ni↓). For twisted boundary conditions in

direction c on a finite simulation cell, moving an electron by the cell vector c = An introduces
a phase exp(ik · c). This phase can be absorbed into the Hamiltonian by transforming the cre-
ation/annihilation operators at site Aj into cjσ → eik·Aj cjσ and introducing periodic boundary
conditions. The Hamiltonian thus becomes dependent on k with the hopping terms picking up a
phase from the twisted boundary conditions, while in the Hubbard interaction the phases cancel

H(k) = −t
∑
ij,σ

eik·A(i−j) c†jσciσ + U
∑
i

ni↑ ni↓ . (69)

The energy expectation value for the Gutzwiller wave function depends on k and the gα, where
the Gutzwiller parameters change with the boundary conditions as

EG(k+dk, {gα(k+dk)}) = EG(k, {gα(k)})+

(
∂EG
∂k

+
∑
α

∂EG
∂gα

dgα
dk

)
dk+O(dk2). (70)

The Gutzwiller parameters minimize EG, i.e., the variations of the energy expectation value
with respect to the gα vanish. Solving the resulting linear system for the first-order term gives
the dependence of the Gutzwiller parameters on the boundary conditions

dgα
dk

= −
∑
β

(
∂2EG
∂gβ ∂gα

)−1(
∂2EG
∂gβ ∂k

)
, (71)

while the second derivative of the energy with respect to the boundary conditions is

d2EG
dk2

=
d

dk

(
∂EG
∂k

+
∑
α

∂EG
∂gα

dgα
dk

)
=
∂2EG
∂k2

+
∑
α

∂2EG
∂k ∂gα

dgα
dk

. (72)

When the Gutzwiller factors in (68) are independent of the boundary conditions, e.g., the Ci are
density or spin correlation functions, the explicit dependence of EG on the boundary conditions
k is only through the kinetic energy T . For a metallic Slater determinant the first term will then
produce a non-vanishing conductivity for any U , except in the atomic limit U →∞.
The Brinkman-Rice transition is thus produced by the Gutzwiller approximation, although it is
not present in the underlying Gutzwiller wave function, except in the limit d → ∞, where the
Gutzwiller approximation becomes exact [26].
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3 Projection techniques

We can systematically improve on the variational results by using projection techniques [28].
The basic idea is surprisingly simple: when we operate with exp(−τH) on a wave function
|ΨT 〉 then, for large τ , the ground state |ψ0〉 will dominate in the projected function, provided
that the initial function had non-zero overlap with it. For a finite-dimensional Hamiltonian,
where the spectrum is bounded not only from below but also from above, this imaginary-time
propagation can be simplified to a matrix vector product

|Ψ (n+1)〉 = [1− τ(H − Ē(n))] |Ψ (n)〉 ; |Ψ (0)〉 = |ΨT 〉, (73)

where τ has to be small enough and Ē(n) is chosen to ensure normalization of the projected
functions. To see under what conditions this converges to the ground state, we expand the
starting function |ΨT 〉 =

∑
i ci|Ψi〉 in eigenstates H|Ψi〉 = Ei|Ψi〉. Then

|Ψ (n)〉 =
∑

ci
∏
n

[1− τ(Ei − Ē(n))]|Ψi〉 . (74)

Convergence to |Ψ0〉, up to normalization, is ensured if ci 6= 0 and

|1− τ(E0 − Ē(n))| > |1− τ(Ei − Ē(n))| ∀i 6= 0 . (75)

For τ > 0 we distinguish two cases

• 1− τ(E0 − Ē(n)) > 1− τ(Ei − Ē(n)), which leads to the trivial E0 < Ei, and

• 1−τ(E0−Ē(n)) > −[1−τ(Ei−Ē(n))], from which follows that 2 > τ(Ei+E0−2Ē(n)).

Thus, to secure convergence, one has to choose

0 < τ <
2

Emax + E0 − 2Ē(n)
(76)

which implies that Ē(n) ∈ [E0, Emax] must lie inside the spectrum of H . In fact, for large n it
will approach the ground state energy.
Because of the prohibitively large dimension of the many-body Hilbert space, the matrix vector
product in (73) cannot be done exactly. Instead, we rewrite the equation in configuration space∑

R′

|R′〉〈R′|Ψ (n+1)〉 =
∑
R,R′

|R′〉 〈R′|1− τ(H − E0)|R〉︸ ︷︷ ︸
=:F (R′,R)

〈R|Ψ (n)〉 (77)

and perform the propagation in a stochastic sense: |Ψ (n)〉 is represented by an ensemble of
configurations R with weights w(R). The transition matrix element F (R′, R) is rewritten as
a transition probability p(R → R′) times a normalization factor m(R′, R). The iteration (77)
is then stochastically performed as follows: for each R we pick, out of the set of all allowed
configurations, one new configurationR′ with probability p(R→ R′) and multiply its weight by
m(R′, R). Then the new ensemble of configurations R′ with their respective weights represents
the new function |Ψ (n+1)〉.
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3.1 Importance sampling

Importance sampling introduces a guiding function |ΨG〉 to decisively improve the efficiency of
the stochastic projection by enhancing transitions from configurations where the trial function is
small to configurations with large trial function, i.e., by replacing the transition matrix element
F (R′, R) with G(R′, R) = 〈R′|ΨG〉F (R′, R)/〈R|ΨG〉. The propagation is then given by∑

R′

|R′〉〈R′|ΨG〉〈R′|Ψ (n+1)〉 =
∑
R,R′

|R′〉G(R′, R) 〈R|ΨG〉 〈R|Ψ (n)〉 (78)

and the ensemble of configurations now represents the product ΨG Ψ (n). This means that the
probability distribution function P (n)(w,R) dw of configurations R with weight w is such that

ΨG(R)Ψ (n)(R) =

∫
wP (n)(w,R) dw . (79)

To see this, we rewrite the matrix element of the propagation as

G(R′, R) = p(R→ R′)m(R′, R) , (80)

where p(R → R′) is the probability for the random walk to move from configuration R to
R′ and the weight m(R′, R) takes care of the normalization. For the probability distribution
function this implies

P (n+1)(w′, R′) dw′ =
∑
R

p(R→ R′) P (n)

(
w′

m(R′, R)
, R

)
dw′

m(R′, R)
(81)

and hence∫
w′ P (n+1)(w′, R′) dw′ =

∑
R

p(R→ R′)

∫
w′ P (n)

(
w′

m(R′, R)
, R

)
dw′

m(R′R)

=
∑
R

p(R→ R′)m(R′, R)

∫
wP (n)(w,R) dw

=
∑
R

G(R′, R) ΨG(R)Ψ (n)(R)

= ΨG(R′)Ψ (n+1)(R′) .

After a large number n of iterations, the ground-state energy is given by the mixed estimator

E
(n)
0 =

〈ΨG|H|Ψ (n)〉
〈ΨG|Ψ (n)〉

≈
∑

REloc(R) w(n)(R)∑
R w

(n)(R)
. (82)

When we start the iteration from the guiding function, we can generate the configurations for the
initial state ΨG(R)Ψ (0)(R) by a variational Monte Carlo run for ΨG. For this practical reason
one usually choses the guiding function to be the VMC trial function. In the following we
therefore use ΨG and ΨT synonymously.
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Hilbert space
Hamiltonian full restricted system
H −1.2238 −1.2203 4× 4-Hubbard model, 5 + 5 electrons
Heff −1.2236 −1.2201 U = 4 t, free electron nodes

H 8.46487 8.46490 4 C60 molecules, 5 + 6 electrons
Heff 8.46557 8.46728 U = 1.0 eV, U0 = 0.1 eV
H 10.69937 10.69937 4 C60 molecules, 6 + 6 electrons
Heff 10.70045 10.70045 U = 1.0 eV, U0 = 0.1 eV
H 19.50941 19.54933 4 C60 molecules, 7 + 8 electrons
Heff 19.51073 19.55372 U = 1.0 eV, U0 = 0 eV
H 19.50941 19.50941 4 C60 molecules, 7 + 8 electrons
Heff 19.50941 19.51068 U = 1.0 eV, U0 = 0.1 eV

Table 1: Approximations in FNMC: results of exact diagonalization of the true/effective
Hamiltonian on the full/restricted Hilbert space for the Hubbard model and a model of solid
K3C60 [23]. For the meaning of U0 see section 3.3.2.

3.2 Fixed-node Monte Carlo

As long as the evolution operator has only non-negative matrix elements G(R′, R), all weights
w(R) will be positive. If, however, G has negative matrix elements there will be configurations
with negative as well as positive weight. Their contributions to the estimator (82) tend to cancel
so that eventually the statistical error dominates, rendering the simulation useless. This is the
infamous sign problem. A straightforward way to get rid of the sign problem is to remove the
offending matrix elements from the Hamiltonian, thus defining a new Hamiltonian Heff by

〈R′|Heff |R〉 =

{
0 if G(R′, R) < 0

〈R′|H|R〉 else
(83)

for R′ 6= R. For each off-diagonal element 〈R′|H|R〉 that has been removed, a term is added to
the diagonal

〈R|Heff |R〉 = 〈R|H|R〉+
∑
R′

ΨG(R′)〈R′|H|R〉/ΨG(R) . (84)

This is the fixed-node approximation for lattice Hamiltonians [29]. By construction, Heff is free
of the sign-problem, and it gives a variational energy, i.e. Eeff

0 ≥ E0. The exact ground-state
energy is obtained if ΨG(R′)/ΨG(R) = Ψ0(R′)/Ψ0(R) for all R, R′ with G(R′, R) < 0.
It is important to realize that fixed-node Monte Carlo involves two distinct approximations.
The obvious approximation is replacing the true Hamiltonian by the effective Hamiltonian Heff .
Somewhat less obvious is the fact that importance sampling amounts to restricting the acces-
sible region of the Hilbert space to configurations where ΨG(R) 6= 0. For small systems these
two approximations can be considered separately by performing exact diagonalization for the
effective Hamiltonian on the full Hilbert space and by diagonalizing the true Hamiltonian on
the restricted Hilbert space. Finally, the fixed-node Monte Carlo energy can be determined by
diagonalizing Heff on the restricted Hilbert space. Examples are given in Table 1.
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Fig. 9: Optimizing the Gutzwiller parameter g in fixed-node Monte Carlo: the left-hand panel
shows how the correlated sampling approach for the Gutzwiller parameter g works for FNMC.
The error bars give the results of independent Monte Carlo calculations, while the curves show
the results of different correlated sampling runs. The right-hand panel compares variational
and fixed-node Monte Carlo. The calculations are for the same system as in Figure 5.

Fixed-node Monte Carlo for a lattice Hamiltonian thus means that we choose a guiding/trial
function from which we construct an effective Hamiltonian and determine its ground-state by
Monte Carlo. Because of the variational property, we want to pick the ΨT such that Eeff

0 is
minimized; i.e., we want to optimize the trial function or, equivalently, the effective Hamil-
tonian. As in variational Monte Carlo we can use the concept of correlated sampling [21].
For optimizing the Gutzwiller parameter g we can even exploit the idea of rewriting the cor-
related sampling sums into polynomials in g̃/g. There is, however, a problem arising from
the fact that the weight of a given configuration R(n) in iteration n is given by the product
w(R(n)) =

∏n
i=1m(R(i), R(i−1)): each individual normalization factor m(R′, R) can be written

as a finite polynomial, but the order of the polynomial for w(R(n)) keeps increasing with the
number of iterations. It is therefore not practical to try to calculate the ever-increasing number
of coefficients for the correlated sampling function E(n)(g̃). But since we still can easily calcu-
late the coefficients for the m(R′, R), we may use them to evaluate E(n)(g̃) in each iteration on
a set of predefined values g̃i of the Gutzwiller parameter. Figure 9 shows an example. We find
that the FNMC energy depends much less on the trial function than in VMC. This is not un-
expected: while in variational Monte Carlo the whole trial function is fixed, only the values of
the trial function next to a node enter the fixed-node Hamiltonian Heff , which in FNMC is then
treated exactly. To realize the higher accuracy of the FNMC method, it is nevertheless important
to carefully optimize the trial function. Finally, it is interesting to note that the Gutzwiller factor
that minimizes EVMC is usually not quite the optimum Gutzwiller factor for fixed-node MC.

3.3 Optimization of the trial function

As mentioned before, typical trial functions for quantum Monte Carlo calculations are of the
type ΨT (R) = gD(R) Φ(R), with g the Gutzwiller parameter and Φ a Slater determinant. Along
with explaining the Monte Carlo approaches, we have already described how g can be opti-
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mized. The fundamental idea was that, for the reweighting in correlated sampling, only ratios
of the new and old trial functions are needed so that the weights and energies appearing in the
Monte Carlo calculation can be recast in the form of polynomials in the ratio of the Gutzwiller
parameters. In the following, we discuss generalizations of this approach to trial functions
with several Gutzwiller parameters. After that, we address the optimization of the other part
of a Gutzwiller wave function: the Slater determinant. In particular, we demonstrate how the
character of the Slater determinant affects the result of the Monte Carlo calculation.

3.3.1 More Gutzwiller parameters

To study the static dielectric screening [30], we have to determine the response of the charge
density to the introduction of a test charge q placed on molecule iq. To describe the test charge,
the term

H1(q) = qU
∑
mσ

niqmσ (85)

is added to the Hamiltonian. In the spirit of the Gutzwiller ansatz, we correspondingly add a
second Gutzwiller factor to the wave function that reflects the additional interaction term qUNiq

|ΨT (g, h)〉 = gDhNiq |Φ〉. (86)

Finding the best Gutzwiller parameters is now a two-dimensional optimization problem. Deal-
ing with polynomials in the two variables g and h, the method of correlated sampling works as
straightforwardly as described above for the case of a plain Gutzwiller wave function. As an ex-
ample, Fig. 10 shows the result of the optimization, both in variational and in fixed-node Monte
Carlo, for a cluster of 64 C60 molecules in an fcc arrangement (periodic boundary conditions)
resembling K3C60 with a test charge q = 1/4. In practice, we first optimize the parameters in
variational Monte Carlo. We then use the optimum VMC parameters as starting points for the
optimization in the more time-consuming fixed-node Monte Carlo calculations.

3.3.2 Variation of the Slater determinant

In the traditional Gutzwiller ansatz, the Slater determinant Φ is the ground-state wave func-
tion of the non-interacting Hamiltonian. This is, however, not necessarily the best choice. An
alternative would be to use the Slater determinant Φ(U) obtained by solving the interacting
problem in the Hartree-Fock approximation. We can even interpolate between the two extremes
by doing a Hartree-Fock calculation with a fictitious Hubbard interaction U0 to obtain Slater
determinants Φ(U0). Yet another family of Slater determinants Φ(Hstag) can be obtained from
solving the non-interacting Hamiltonian with an added staggered magnetic field, which lets us
control the antiferromagnetic character of the trial function. Although optimizing parameters
in the Slater determinant is not possible with the method described in the preceding sections,
an efficient optimization of the Gutzwiller factors makes it possible to optimize the overall trial
function without too much effort.
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Fig. 10: Correlated sampling for the parameters g and h of the generalized Gutzwiller wave
function |ΨT 〉 = gDhNc |Φ〉, in variational (left) and fixed-node Monte Carlo (right). The plots
show the energy as a function of the Gutzwiller parameters g and h, both as surfaces and
contours. The calculations are for an fcc cluster of 64 molecules with 96 + 96 electrons (half-
filled t1u-band), an on-site Hubbard interaction U = 1.25 eV , and a test charge of q = 1/4 (in
units of the electron charge).

Staggered magnetic field Introducing a staggered magnetic field, we can construct Slater
determinants by solving the non-interacting Hamiltonian with an added Zeeman term. To be
specific, we consider K3C60, which has a half-filled t1u-band. Since K3C60 crystallizes in an fcc
lattice, antiferromagnetism is frustrated and the definition of a staggered magnetic field is not
unique. We split the fcc lattice into two sublattices A and B such that frustration is minimized.
The Zeeman term is then given by

Hm = Hstag

∑
i

sign(i) [ni↑ − ni↓] (87)

with sign(i) = +1 if i ∈ A and −1 if i ∈ B. It effectively introduces an on-site energy that has
opposite sign for the two spin orientations on the same site, and for the same spin orientation,
has opposite sign on the two sublattices. Therefore, hopping to neighboring sites on different
sublattices involves an energy cost of twice the Zeeman energy. The staggered magnetic field
thus not only induces antiferromagnetic order in the Slater determinant but also serves to local-
ize the electrons. This is reflected in the fact that the optimum Gutzwiller parameter is much
larger for Slater determinants constructed from a Hamiltonian with large Hstag than for para-
magnetic Slater determinants. Varying Hstag then interpolates between paramagnetic/itinerant
and antiferromagnetic/localized wave functions.
The energy expectation values for such trial functions as calculated in variational Monte Carlo
are shown in Fig. 11. It shows EVMC as a function of the antiferromagnetic correlation

〈sisi+1〉 =
1

N

∑
〈ij〉

(ni↑ − ni↓) (nj↑ − nj↓), (88)

where the sum is over the N nearest neighbors. 〈sisi+1〉 is a monotonic function of Hstag.
For each different value of the Hubbard interaction U we find a curve with two minima. One
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Fig. 11: Variational energy EVMC for trial functions with different character. Plotted are the
energies (error bars, lines are to guide the eye) for a Hamiltonian describing K3C60 (periodic
fcc cluster of 32 molecules) with Hubbard interaction U = 1.0, 1.1 . . . 1.9, 2.0 eV (U = 1.0 eV
corresponding to the lowest curve). Instead of the total energies Etot, we plot the difference of
Etot and the energy in the atomic limit (each site occupied by three electrons) so that the results
for different U can be readily compared. The trial functions are of the Gutzwiller type. The
Slater determinants were determined from diagonalizing the non-interacting Hamiltonian (i.e.
setting U = 0) with a staggered magnetic field Hstag. This field gives rise to an antiferromag-
netic correlation of neighboring spins, which is plotted on the abscissa. For U = 1.5 eV (dotted
curve) the minima in the paramagnetic and the antiferromagnetic regions have about the same
energy.

minimum is realized for the non-magnetic (Hstag = 0) trial function. The energy as a function of
U scales roughly likeEpara ∝ −(1−U/Uc)2, as predicted by the Gutzwiller approximation. The
second minimum is in the antiferromagnetic/localized region and scales roughly like EAF ∝
−t2/U , as expected. For small U , the non-magnetic state is more favorable, while for large
U the localized Slater determinant gives lower variational energies. The crossover is at Uc ≈
1.50 eV (dotted line) and resembles a first-order phase transition.

Hartree-Fock An alternative method for constructing Slater determinants is to use the inter-
acting Hamiltonian with the physical Hubbard interaction U replaced by a parameter U0 and
solve it in the Hartree-Fock approximation. In practice this is done simply by means of an unre-
stricted self-consistent calculation for the finite, periodic clusters under consideration, starting
from some charge and spin density that breaks the symmetry of the Hamiltonian. It is well
known that Hartree-Fock favors the antiferromagnetic Mott insulator, predicting a Mott transi-
tion at much too small values UHF

c . It is therefore not surprising that good trial functions are
obtained for values of U0 considerably smaller than U . For U0 close to zero, the Slater determi-
nant has metallic character, while for somewhat larger U0 there is a metal-insulator transition.
Figure 12 shows the energy as a function of U0 for the model of K3C60. We find that the re-
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Fig. 12: Optimizing U0: Dependence of variational (VMC) and fixed-node Monte Carlo
(FNMC) on the trial function. U0 is the Hubbard interaction that was used for the Slater deter-
minant in the Gutzwiller wave function ΨT (R) = gD(R) Φ(U0). The Gutzwiller parameter has
always been optimized. The results shown here are the energies (relative to the atomic limit)
for a Hamiltonian that describes K3C60 (32 molecules), with U being varied from 1.25 (lowest
curve) to 2.00 eV (highest curve).

sults of variational Monte Carlo depend quite strongly on the parameter U0. As expected, for a
given Hubbard interaction U there is a transition from the paramagnetic region for small U0 to
a region where the trial function is antiferromagnetic. In fixed-node Monte Carlo, energies are
consistently lowered and the dependence on the trial function is weaker. It seems that here it
is mainly the character (paramagnetic/antiferromagnetic) of the trial function that matters. For
small U , trial functions with small U0 give lower energy, while for large U trial functions with
larger U0 are favorable. The crossover coincides with the Mott transition, which takes place
between U = 1.50 and 1.75 eV .

3.4 Quasi-particle energies

As discussed above, the sign-problem in quantum Monte Carlo simulations for fermions makes
it necessary to introduce an approximation. Such an approximation is of course undesirable
when we are interested in the ground state. Surprisingly, however, we can use the fixed-node
approximation to our advantage to calculate excited states and quasi-particle energies. The basic
idea is that by the proper choice of the trial function, an excited state can be stabilized in the
Monte Carlo simulation that otherwise would decay to a state with lower energy.
The fundamental concept for understanding this is what we call the nodal sets, defined as the
sets of configurations where the trial function is positive/negative:

N±Ψ :=
{
R
∣∣∣ 〈R | Ψ〉 ≷ 0

}
. (89)
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Fig. 13: C60 bands: Full symbols show the k-states that are present in a 4-molecule cluster
with periodic boundary conditions: 3 (degenerate states) with k = 0 (Γ -point) and 9 states [3
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The first observation we make is that under the importance-sampled FNMC iterations (78) (with
H replaced by Heff) the nodal sets do not change. To see this, we write |Ψ (n)〉 in terms of the
trial function

〈R|Ψ (n)〉 = α(n)(R) 〈R|ΨT 〉 . (90)

Then the iterations (78) take the form

〈ΨT |R′〉 〈R′|Ψ (n)〉 =
∑
R

GFN(R′, R) 〈ΨT |R〉 〈R|Ψ (n−1)〉

= α(n)(R′) |ΨT (R′)|2︸ ︷︷ ︸
>0

=
∑
R

GFN(R′, R)︸ ︷︷ ︸
≥0

|ΨT (R)|2︸ ︷︷ ︸
>0

α(n−1)(R) .

Since α(0)(R) = 1 and never changes sign, α(n)(R) ≥ 0 for all n.
On the other hand, each eigenstate Ψn of H is characterized by its nodal sets. If there were two
eigenstates with the same nodal sets, then

〈Ψn|Ψm〉 =
∑
R∈N+

Ψn(R)Ψm(R) +
∑
R∈N−

Ψn(R)Ψm(R) > 0 (91)

in contradiction to the orthogonality of the eigenstates.
It thus seems reasonable to try to calculate excited-state energies with fixed-node Monte Carlo,
where the trial function is chosen such as to have nodal sets similar to that of the desired state.
As we have seen above, the most straightforward guess for the ground-state is to use the non-
interacting Slater determinant |Φ0〉 (remember that the Gutzwiller factors do not change the sign
of the wave function). Then the simplest trial functions for the nodes of excited states are the
non-interacting wave functions

• quasi-electron: c†k |Φ0〉

• quasi-hole: ck |Φ0〉.
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Fig. 14: Quasi-particle energies for the half-filled, 4-molecule C60 cluster: The left-hand
panel shows the fixed-node energies (εn = EN+1

n −EN
0 for quasi-electrons in states X3 and Γ ,

εn = EN
0 − EN−1

n for quasi-holes in X1 and X2). For comparison, the open squares give the
position of the peak in the corresponding spectral function calculated by exact diagonalization,
as shown in Figure 15. The right-hand panel shows the result of Lanczos calculations starting
from the quasi-particle trial functions used in fixed-node Monte Carlo. It is clear that for U > 0
the quasi-hole at X1 is not stable.

To see how this simple approach works, we consider the model for describing the t1u-electrons
in C60 (cf. Table 1) and compare to results of exact diagonalization for a cluster of 4 molecules.
The t1u-bands are reproduced in Figure 13, where the filled squares represent the reciprocal
lattice vectors of the 4-molecule simulation cell: three degenerate states at the Γ point, and
three different levels at the X point, each of which is three-fold degenerate. For the half-filled
system, the lower two levels at the X point are filled (below we will refer to them as X1 and
X2), while the highest level at X (referred to as X3) and Γ are empty. To calculate the quasi-
particle energies, we first perform a calculation for the ground-state energy of the half-filled
system EN

0 using a Gutzwiller wave function based on the non-interacting Slater determinant
|Φ0〉. Then, we calculate the fixed-node energy for the system with an extra electron/hole with a
trial function based on c†k |Φ0〉 or ck |Φ0〉, respectively. To keep the wave functions real we make
use of the inversion symmetry, setting ck = cos(k ri) ci. The resulting quasi-particle energies
are plotted in Figure 14. To compare to the true quasi-particle energies, we have calculated the
corresponding spectral functions

A(k, ω) =


∑

n

∣∣∣〈ΨN+1
n

∣∣ c†k ∣∣ΨN0 〉∣∣∣2 δ(ω − (EN+1
n − EN

0 )) (quasi-electron)∑
n

∣∣〈ΨN−1
n

∣∣ ck ∣∣ΨN0 〉∣∣2 δ(ω − (EN
0 − EN−1

n )) (quasi-hole)

by exact diagonalization (see Figure 15). The position of the peak in A(k, ω) is plotted in
Figure 14. We find a remarkable agreement between fixed-node and exact energies. This is not
too unexpected. Looking again at the band-structure, we see that the quasi-electron at X3 is the
lowest energy state with that k-vector, while the quasi-electron at Γ is the lowest with k = 0. So
these states are ground-states in their respective symmetry sectors and should thus be accessible
by a ground-state method like fixed-node Monte Carlo. The same is true for the quasi-hole at
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Fig. 15: Spectral function for a 4 C60 molecule cluster calculated by exact diagonalization.
From back to front the curves show the spectral function for U from 0 to 2 eV in steps of 0.2 eV.

X2. The quasi-hole at X1, however, has the same k as the one at X2 and thus cannot be the
ground-state in that symmetry sector. To check this, we have performed Lanczos runs starting
from the determinants used in the respective fixed-node calculations. The results are shown in
the right panel of Figure 14. We indeed find that all states are stable, except for X1, which for
U > 0 decays into a lower-energy quasi-hole. This decay is induced by the interaction term.
This can be understood by writing it in k-space

U

M

∑
k,k′,q

c†k↑ck−q↑c
†
k′↓ck′+q↓ .

What happens for the X1 state is visualized in Figure 16: The lower-energy quasi-hole is ob-
tained by filling the X1 hole with an X2 electron, while exciting another X2 electron into Γ .

To verify that this picture is indeed correct, we have calculated the spectral function for the
decayed state

A =
∑∣∣∣〈ΨN−1

n

∣∣ cX2
c†Γ cX2

∣∣ΨN0 〉∣∣∣2 δ(ω − (EN
0 − EN−1

n )) , (92)
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Fig. 17: Three-body quasi-hole cX2
c†Γ cX2

: spectral function and fixed-node energies.

shown in Figure 17. As expected, the position of the peak corresponds closely to the energy of
the decayed state found in the Lanczos calculation of Figure 14. Moreover, performing a fixed-
node calculation with the trial function cX2

c†Γ cX2
|Φ0〉 again gives excellent agreement with the

exact quasi-particle energy (see right panel of Figure 17). Working with such more complex
quasi-particles, we could extract quasi-particle interactions. A more straightforward application
is to look at how the quasi-particle dispersion changes with U , as shown in Figure 18. This can
be related to the effective mass m∗ defined as

kF
m∗

=
dεk
dk

∣∣∣∣
kF

. (93)

Rewriting the derivative as a finite difference, for the ratio of the effective mass to the bare mass
at U = 0 we obtain

m∗

m0

≈ ∆ε0

∆ε
. (94)

The ratio on the right-hand side is also plotted in Figure 18. Even though the k-points for the
four molecule cluster are quite far apart, so that the finite difference is not a good approximation
to the derivative, we get consistent results when comparing the results derived from the quasi-
electron and the quasi-hole states.
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Fig. 18: Change in quasi-particle dispersion with U . The left-hand panel shows the energy
difference between the two quasi-electron (filled circles) and the two simple quasi-hole (open
circles) states. The full line connects the exact results, the full dashed line the fixed-node results.
The right-hand panel shows the inverse of the energy difference normalized by its value atU=0.

4 Conclusion

Practical many-body calculations need to be done on finite systems. A standard approach for
reducing a solid to a finite system is to introduce periodic boundary conditions on finite clusters.
How well such a periodic cluster represents the infinite solid depends on its shape. We have
seen how we can use the Hermite normal form to systematically enumerate all distinct clusters.
Introducing more general twisted boundary conditions, we can study the dependence of the
system on the boundary conditions, providing an elegant criterion for distinguishing metals
from (Mott) insulators.
We have demonstrated how to use the local energy to derive compact variational wave functions
that incorporate a correlation-hole based on the cusp conditions. In contrast to a CI-expansion,
such Jastrow/Gutzwiller functions need only few parameters to efficiently describe correlation
effects. Still, simple correlation factors are usually not sufficient to describe a metal-insulator
transition. To improve on the wave function, we can use projection techniques. In princi-
ple, they converge to the ground state, in practice their stochastic implementation is, however,
hampered by the appearance of negative matrix elements – the fermion sign problem. The fixed-
node approximation is a practical way for eliminating the sign problem without compromising
accuracy. Moreover, fixing the nodes can be used to stabilize quasiparticle states.
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Emergent Phenomena in Correlated matter
Reihe Modeling and Simulation, Vol. 3 (Forschungszentrum Jülich, 2013)
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1 Motivation

Self-energy-functional theory (SFT) [1–4] is a general theoretical framework that can be used
to construct various approximate approaches by which the thermal properties and the spectrum
of one-particle excitations of a certain class of correlated electron systems can be studied. The
prototype considered here is the single-band Hubbard model [5–7], but quite generally, the SFT
applies to models of strongly correlated fermions on three or lower-dimensional lattices with
local interactions.
There are several extensions of the theory, e.g. to systems with non-local interactions [8], to
bosonic systems [9, 10] and the Jaynes-Cummings lattice [11, 12], to electron-phonon systems
[13], to systems with quenched disorder [14], as well as for the study of the real-time dynamics
of systems far from thermal equilibrium [15]. To be concise, those extensions will not be
covered here.
The prime example of an approximation that can be constructed within the SFT is the variational
cluster approximation (VCA) [2, 16]. Roughly, one of the main ideas of the VCA is to adopt a
divide and conquer strategy: A tiling of the original lattice into disconnected small clusters is
considered, as shown in Fig. 1, for example. While the Hubbard model on the infinite square
lattice cannot be solved exactly, there are no serious practical problems in solving the same
model for an isolated cluster or for a set of disconnected clusters. The VCA constructs an
approximate solution for the infinite lattice from the solution of the individual clusters by means
of all-order perturbation theory for those terms in the Hamiltonian that connect the clusters.
This is actually the concept of the so-called cluster perturbation theory (CPT) [17, 18]. How-
ever, it is not sufficient in most cases, and we would like to go beyond the CPT. The essential
problem becomes apparent, e.g., for a system with spontaneously broken symmetry such as an
antiferromagnet. The antiferromagnetic state is characterized by a finite value for the sublattice
magnetization which serves as an order parameter. On the other hand, quite generally, the order
parameter must be zero for a system of finite size and thus for a small cluster in particular.
Coupling finite (and thus necessarily non-magnetic) clusters by means of the CPT, however,
one never gets to an antiferromagnetic solution for the infinite lattice. Divide and conquer is not
sufficient to describe the emergence of new phases with broken symmetries.

= +

Fig. 1: Sketch of the decomposition of the original system H = H0(t) + H1 into a reference
system H ′ = H0(t

′) +H1 and the inter-cluster hopping H0(V ) for a square lattice and cluster
size Lc = 16. Blue lines: nearest-neighbor hopping t. Red dots: on-site Hubbard interaction.
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Fig. 2: Grand potential Ω as a function of a Weiss field B′ in the case of a paramagnet (P)
and in the case of an antiferromagnet (AF). B′ is a fictitious staggered field, the optimal value
of which (B′opt) must be determined by minimization of Ω. As there is no physically applied
staggered field, i.e. B = 0, a finite B′opt indicates spontaneous symmetry breaking.

An obvious way out is to enforce a finite antiferromagnetic order parameter within each of the
isolated clusters by applying a (staggered) magnetic field B′. Coupling those antiferromagnetic
clusters may then result in an antiferromagnetic solution for the entire lattice.
However, what determines the strength of this magnetic field? As we are aiming at a description
of spontaneous antiferromagnetic order, there is no external physical field B that is applied to
the original system (B = 0). The field B′ is actually a Weiss field, i.e. a fictitious field or mean
field that is produced by the system itself. We are seeking for a formalism that allows for the
formation of a finite Weiss field if this is favorable, i.e. if a thermodynamical potential can be
lowered in this way.
Self-energy-functional theory provides a relation Ω(B′) between the grand potential of the sys-
tem Ω and the Weiss field B′ that can be used to fix the optimal value B′opt of the staggered
magnetic field by minimization (see Fig. 2):

∂Ω(B′)

∂B′

∣∣∣∣∣
B′=B′

opt

!
= 0 (1)

The purpose of this lecture is to show how this can be achieved in practice. To this end we have
to answer the following how to questions:

• How can we solve the problem for an isolated cluster?

• With this at hand, how can we construct a solution for the problem on the infinite lattice?

• How can we construct the relation Ω(B′) such that Eq. (1) determines B′opt?

Actually, there is no reason to consider only a staggered magnetic field as a Weiss field. An-
other goal is therefore to generalize the idea to arbitrary Weiss fields or to an arbitrary set
of variational parameters λ′ that characterize the isolated cluster and that are optimized via
∂Ω(λ′opt)/∂λ

′ !
= 0. Finally, the VCA should be compared with other theories available, and its

practical as well as fundamental limitations have to be discussed.
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2 The cluster approach

2.1 Tiling the lattice into small clusters

We start with the second question and consider a simple non-interacting system given by

H0 =
∑
ijσ

tijc
†
iσcjσ = H0(t) . (2)

Here, c†iσ creates an electron with spin σ =↑, ↓ at the site i of a D-dimensional lattice, and tij
are the (spin-independent) hopping parameters, which are also considered as the elements of
the hopping matrix t. Furthermore,

H ′0 =
∑
ijσ

t′ijc
†
iσcjσ = H0(t

′) , (3)

denotes the Hamiltonian of the system with decoupled clusters (see Fig. 1 and take H1 = 0). If
L is the number of lattice sites in the original lattice modelH0 and Lc is the number of sites in an
individual cluster, there are L/Lc decoupled clusters. We assume that all clusters are identical.
In terms of hopping matrices, we have

t = t′ + V (4)

where V is the inter-cluster hopping.
Consider the resolvent of the hopping matrix, i.e. the Green’s function

G0(ω) =
1

ω + µ− t
. (5)

Here, ω is a complex frequency (units with ~ = 1 are used). We have also introduced the
chemical potential µ (which is not important here but used later). Furthermore, we employ a
matrix notation and write ω rather than ω1 etc. for short. Note that (· · · )−1 and 1/(· · · ) both
mean matrix inversion.
Having the Green’s function of the reference system at hand,

G′0(ω) =
1

ω + µ− t′
, (6)

how can be get the Green’s function of the original model? With some algebra, one easily
derives the equation

G0(ω) = G
′
0(ω) +G

′
0(ω)V G0(ω) (7)

which is solved by

G0(ω) =
1

G′0(ω)
−1 − V

. (8)

We see that using Green’s functions it is formally rather easy to couple a system of isolated
clusters.
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2.2 Cluster perturbation theory

Actually, we are interested in interacting systems. For the single-orbital model H0, the only
possible local interaction is a Hubbard interaction of the form

H1 =
U

2

∑
iσ

niσni−σ (9)

with niσ = c†iσciσ, where U is the interaction strength. Since H1 is completely local, the Hamil-
tonian of the so-called reference system H ′ = H0(t

′) +H1 is obtained form the Hamiltonian of
the original system H = H0(t) +H1 by switching off the inter-cluster hopping V .
For a small cluster and likewise for a system of disconnected clusters, even for the interacting
case, it is comparatively simple to solve the problem exactly (by numerical means if necessary),
while for the original lattice model this is a hard problem. One therefore cannot expect a simple
relation between the original and the reference system like Eq. (7). Nevertheless, as it is too
tempting, we will write down

G(ω) = G′(ω) +G′(ω)V G(ω) (10)

where now G and G′ are interacting Green’s functions. This is an equation that constitutes
the cluster-perturbation theory [17, 18]. It must be seen as an approximate way to compute the
Green’s function of the interacting model from the exact cluster Green’s function. In a way
the approximation is controlled by the size Lc of the clusters in the reference system since for
Lc → ∞ one can expect the approximation to become exact. In fact, the CPT is not too bad
and has been successfully applied in a couple of problems, see Ref. [19] and references therein.

2.3 Green’s function and exact diagonalization

Before proceeding with the interpretation of the CPT equation (10), which provides an ap-
proximate expression for G(ω), let us give the exact definition of the Green’s function for the
interacting case. Its elements are defined as

Gijσ(ω) =

∫ ∞
−∞

dz
Aijσ(z)

ω − z
, (11)

where ω is an arbitrary complex frequency and where

Aijσ(z) =

∫ ∞
−∞

dt eiztAijσ(t) (12)

is the single-particle spectral density whose Fourier transform

Aijσ(t) =
1

2π
〈[ciσ(t), c†jσ(0)]+〉 (13)

is given as the thermal expectation value of the anti-commutator of the annihilator with the
creator in the (grand-canonical) Heisenberg picture, e.g.

ciσ(t) = ei(H−µN)t ciσ e
−i(H−µN)t (14)
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with N =
∑

iσ niσ =
∑

iσ c
†
iσciσ. The thermal average is a grand-canonical average 〈· · · 〉 =

Z−1Tr(e−β(H−µN) · · · ), where Z = Z(β, µ) = Tr e−β(H−µN) is the partition function at chemi-
cal potential µ and inverse temperature β.
In the case of a non-interacting system, one may use the Baker-Campbell-Hausdorff formula to
get the simple result (t: hopping, t: time):

ciσ(t) =
∑
j

(
e−i(t−µ)t

)
ij
cjσ (15)

which can be used in Eq. (13), and then via the Fourier transformation (12) and finally the
Hilbert transformation (11) one arrives at the result given by Eq. (5) above.
In the interacting case (U > 0), one may compute the Green’s function from the eigenvalues
En and eigenstates |n〉 of the (grand-canonical) Hamiltonian:

(H − µN)|n〉 = En|n〉 . (16)

Using a resolution of the unity 1 =
∑

n |n〉〈n| in Eq. (13), one can easily do the calculation and
arrives at

Gijσ(ω) =
1

Z

∑
mn

(e−βEm + e−βEn)〈m|ciσ|n〉〈n|c
†
jσ|m〉

ω − (En − Em)
. (17)

However, as one must solve the many-body energy eigenvalue problem (16), this way of cal-
culating the Green’s function is obviously impossible in practice for the Hamiltonian of the
original system – the Hilbert-space dimension exponentially increases with L. On the other
hand, for the reference system and if the size of the cluster Lc is not too large, this can be done
numerically. For a half-filled system (N = Lc), up to Lc = 8 sites can be managed in this way
easily. At zero temperature, using the Lanczos algorithm [20], the Green’s function for some-
what larger clusters can be computed, typically Lc ≤ 12 at half-filling. This already answers
the first question posed in the introduction.

2.4 Freedom in the CPT construction

The CPT gives a preliminary answer to the second question. However, it is easily seen that the
answer is not unique: consider a modified reference system with a Hamiltonian

H0(t̃′) +H1 = H0(t
′) +H0(∆t) +H1 =

∑
ijσ

(t′ij +∆tij)c
†
iσcjσ +H1 , (18)

i.e. a reference system where t′ 7→ t̃′ = t′ +∆t′. The new reference system shall still describe
the same set of decoupled clusters but with different intra-cluster hoppings t̃′. The modified
non-interacting Green’s function of the reference system is G̃′0(ω) = 1/(ω + µ− t̃′). Now, the
non-interacting Green’s function of the original model is obtained from the equation

G0(ω) = G̃
′(ω) + G̃′(ω)Ṽ G0(ω) (19)



Variational Cluster Approximation 9.7

with the modified inter-cluster hopping Ṽ = t − t̃′ = V − ∆t′. G0(ω) can be considered as
the limit of a geometrical series that is found by iterating equation (19):

G0(ω) = G̃
′(ω) + G̃′(ω)Ṽ G̃′(ω) + · · · . (20)

We infer that G0(ω) can be obtained by (all-order) perturbation theory in Ṽ when expanding
around the Green’s function of the modified reference system given by the hopping matrix t̃′.
Obviously, the same result is obtained by perturbation theory in V around the Green’s function
of the modified reference system with hopping matrix t′. This freedom in choosing the starting
point for perturbation theory that we have in the non-interacting case turns into a real problem
for the interacting case. Namely, since the CPT equation (10) is approximate, we generally
have:

G̃(ω) ≡ G̃′(ω) + G̃′(ω)Ṽ G̃′(ω) + · · · 6= G′(ω) +G′(ω)V G′(ω) + · · · ≡ G(ω) . (21)

Concluding, different starting points t′ and t̃′ for the all-order cluster perturbation theory in V
and Ṽ lead to different resultsG(ω) and G̃(ω), respectively.
But which is the right starting point? The idea is to turn the problem into an advantage by
optimizing the starting point: this can be done by making use of a variational principle, i.e. by
expressing a thermodynamical potential, e.g. the grand potential Ω, as a function of t′ and by
subsequent minimization. The optimal t′opt shall be obtained by

∂Ω(t′)

∂t′

∣∣∣∣∣
t′=t′opt

!
= 0 . (22)

We see that the set of variational parameters is just the set of hopping parameters of the reference
systems or, in the case of multi-orbital models, simply the set of all one-particle parameters
except for those, of course, that would couple the different clusters. This set also includes a
staggered magnetic field

H0(t̃′) = H0(t
′)−B′

∑
i

zi(ni↑ − ni↓) , (23)

where zi = ±1 alternates between the sites of a bipartite lattice.

2.5 The Ritz principle?

The most popular variational principle is the Ritz variational principle. It states that

E[|Ψ〉] = 〈Ψ |H|Ψ〉 = min. (24)

for the ground state of H when the search extends over all normalized trial states 〈Ψ |Ψ〉 = 1.
Evaluated at the ground state |Ψ0〉, the functional yields the ground-state energy E[|Ψ0〉] = E0.
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Hence, a straightforward idea that suggests itself is to compute the normalized ground state
|Ψ(t′)〉 of a reference system with hopping matrix t′ and to use this as a trial state. The trial
state can be varied by varying the parameters t′, and the optimal parameters are given by

∂E[|Ψ(t′)〉]
∂t′

∣∣∣∣∣
t′=t′opt

!
= 0 . (25)

To test this idea, let

|Ψ(t′)〉 = |Ψ1(t
′
1)〉 ⊗ |Ψ2(t

′
2)〉 ⊗ · · · ⊗ |ΨL/Lc(t

′
L/Lc

)〉 (26)

be the ground state of H ′ = H0(t
′) + H1. It is given as a product of the ground states of the

L/Lc individual clusters where the ground state of the I-th cluster with hopping matrix t′I is
|ΨI(t′I)〉. Now, if E0(t

′) denotes the ground-state energy of the reference system,

E[|Ψ(t′)〉] = 〈Ψ(t′)|(H0(t
′) +H0(V ) +H1)|Ψ(t′)〉 = E0(t

′) + 〈Ψ(t′)|H0(V )|Ψ(t′)〉 . (27)

However, the inter-cluster hopping Hamiltonian H0(V ) only contains terms like c†iσcjσ where
the sites i and j belong to different clusters, say I and J . Hence, 〈Ψ(t′)|c†iσcjσ|Ψ(t′)〉 =

〈ΨI(t′I)| ⊗ 〈ΨJ(t′J)|c
†
iσcjσ|ΨJ(t′J)〉 ⊗ |ΨI(t′I)〉 = 〈ΨI(t′I)|c

†
iσ|ΨI(t′I)〉〈ΨJ(t′J)|cjσ|ΨJ(t′J)〉 = 0

as enforced by the conservation of the total particle number. This means that we are left with
E[|Ψ(t′)〉] = E0(t

′). As this implies that the optimal parameters t′opt do not at all depend on V ,
the result is trivial and useless, unfortunately. Even worse, the Hellmann-Feynman theorem [21]
tells us that

∂

∂t′
E[|Ψ(t′)〉] = ∂

∂t′
E0(t

′) =
∂

∂t′
〈Ψ(t′)|(H0(t

′)+H1)|Ψ(t′)〉 = 〈Ψ(t′)|
∂H0(t

′)

∂t′
|Ψ(t′)〉 . (28)

This means that, using the Ritz principle, the variational parameters should be determined such
that all one-particle intra-cluster correlation functions 〈c†c〉, in addition to the inter-cluster cor-
relation functions, vanish.
Concluding, optimizing cluster-perturbation theory cannot be done with the help of the Ritz
principle. We mention in passing that this also holds for its finite-temperature and mixed state
generalization [22, 23]

Ω[ρ] = Tr
(
ρ(H − µN + T ln ρ)

)
!
= min. , (29)

where the grand potential, expressed as a functional of the density matrix, is at a minimum for
the thermal density matrix ρ = exp(−β(H − µN))/Tr exp(−β(H − µN)). While this is an
extremely useful variational principle, it cannot be used here: a trial density matrix ρ(t′), defined
as the thermal density matrix of a reference system with a hopping matrix t′ that describes
decoupled clusters, is a simple product of individual cluster density matrices only. As for the
standard Ritz principle, this implies that inter-cluster one-particle correlations are neglected
altogether.
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3 Diagrammatic perturbation theory

3.1 S-matrix and Green’s function

As we have already seen, Green’s functions, as opposed to wave functions or density matrices,
can be used to couple isolated clusters. All-order perturbation theory in the inter-cluster hopping
V yields the exact Green’s function in the non-interacting (U = 0) case and an approximate
(CPT) Green’s function for U > 0. For the necessary optimization of the starting point, i.e. of
the intra-cluster one-particle parameters t′, we should therefore try to formulate a variational
principle based on Green’s functions, i.e. a principle of the form δΩ[G(ω)]/δG(ω)

!
= 0, and

try test Green’s functionsG′(ω) taken from the reference system. In fact, a variational principle
of this type can be constructed with the help of all-order perturbation theory in U [24, 25].
Vice versa, a systematic and general perturbation theory in U (and also in V ) requires putting
Green’s functions at the focus of the theory. Here, only a brief sketch is given, details can be
found in Refs. [25–27], for example. Our goal is to use diagrammatic perturbation theory as a
language that can be used to formulate a Green’s-function-based variational principle.
We decompose the (grand-canonical) HamiltonianH ≡ H−µN into a free partH0 = H0−µN
and the interaction H1 ≡ H−H0. Next we define, for 0 ≤ τ, τ ′ ≤ β, the so-called S-matrix as

S(τ, τ ′) = eH0τ e−H(τ−τ ′) e−H0τ ′ , (30)

One may interpret τ = it as an imaginary-time variable (where t is real). This Wick rotation
in the complex time plane has the formal advantage that the thermal density matrix, ∝ e−βH, is
just given by the time-evolution operator, e−iHt = e−Hτ at τ = β.
There are two main purposes of the S-matrix. First, it can be used to rewrite the partition
function in the following way:

Z = Tr e−βH = Tr
(
e−βH0eβH0e−βH

)
= Tr

(
e−βH0S(β, 0)

)
= Z0〈S(β, 0)〉(0) . (31)

The partition function of the interacting system is thereby given in terms of the partition function
of the free system, which is known, and a free thermal expectation value of the S-matrix. The
second main purpose is related to the imaginary-time Green’s function which, for−β < τ < β,
is defined via

Gijσ(τ) = −〈T ciσ(τ)c
†
jσ(0)〉 (32)

in terms of an annihilator and a creator with imaginary Heisenberg time dependence:

ciσ(τ) = eHτ ciσ e
−Hτ , c†jσ(τ) = eHτ c†jσ e

−Hτ . (33)

Furthermore, T is the (imaginary) time-ordering operator. With the help of the S-matrix, the
interacting time dependence can be transformed into a free time dependence, namely:

ciσ(τ) = S(0, τ) cI,iσ(τ)S(τ, 0) , c†jσ(τ) = S(0, τ) c†I,jσ(τ)S(τ, 0) . (34)
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Here, the index I (interaction picture) indicates that the time dependence is due to H0 only.
This time dependence is simple and can, again, be derived with the Baker-Campbell-Hausdorff
formula:

cI,iσ(τ) =
∑
j

(
e−(t−µ)τ

)
ij
cjσ , c†I,iσ(τ) =

∑
j

(
e+(t−µ)τ)

ij
c†jσ . (35)

Outside the imaginary-time interval−β < τ < β, the Green’s function is defined as the periodic
continuation: Gijσ(τ + k · 2β) = Gijσ(τ) for any integer k. This function has a discrete Fourier
representation:

Gijσ(τ) =
1

β

∞∑
n=−∞

Gijσ(iωn) e
−iωnτ , (36)

where the Fourier coefficients Gijσ(iωn) are defined at the so-called fermionic Matsubara fre-
quencies iωn = i(2n+ 1)π/β for integer n and can be computed from Gijσ(τ) as

Gijσ(iωn) =

∫ β

0

dτ Gijσ(τ) e
iωnτ . (37)

The Green’s function Gijσ(τ) is just a different representation of the Green’s function Gijσ(ω)

introduced with Eq. (11) as its Fourier coefficients are given by Gijσ(iωn) = Gijσ(ω)
∣∣
ω=iωn

.
The remaining problem consists in finding a much more suitable representation of the S-matrix.
From its definition, one straightforwardly derives the following equation of motion:

− ∂

∂τ
S(τ, τ ′) = H1,I(τ)S(τ, τ

′) . (38)

Here, the time dependence of H1,I(τ) is due to H0 only. A formal solution of this differential
equation with the initial condition S(τ, τ) = 1 can be derived easily using the time-ordering
operator T again:

S(τ, τ ′) = T exp

(
−
∫ τ

τ ′
dτ ′′H1,I(τ

′′)

)
. (39)

Note that, if all quantities were commuting, the solution of Eq. (38) would trivially be given by
Eq. (39) without T . The appearance of T can therefore be understood as necessary to enforce
commutativity.
Using this S-matrix representation, the partition function and the Green’s function can be writ-
ten as:

Z

Z0

=

〈
T exp

(
−
∫ β

0

dτ ′′H1,I(τ
′′)

)〉(0)

(40)

and

Gijσ(τ) = −

〈
T exp

(
−
∫ β
0
dτH1,I(τ)

)
cI,iσ(τ)c

†
I,jσ(0)

〉(0)
〈
T exp

(
−
∫ β
0
dτH1,I(τ)

)〉(0) . (41)

The important point is that the expectation values and time dependencies appearing here are
free and thus known. Therefore, expanding the exponentials in Eq. (40) and Eq. (41) provides
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Fig. 3: Diagrams for potential scattering. See text for discussion.

an expansion of the partition function and of the Green’s function in powers of the interaction
strength. The coefficients of this expansion are given as free expectation values of time-ordered
products of annihilators and creators with free time dependencies. In kth order, this is a k-
particle free correlation function that can be simplified by using Wick’s theorem. This is the
central theorem of diagrammatic perturbation theory and applies to free higher-order correlation
functions.
Consider the case of the partition function, as an example. At k-th order, the coefficient is given
by a sum of (2k)! terms, each of which factorizes into an k-fold product of terms of the form
〈T ciσ(τ)c†jσ(τ ′)〉(0) called propagators. Apart from a sign, a propagator is nothing but the free
Green’s function. The summation of the (2k)! terms is organized by means of a diagrammatic
technique where vertices are linked via propagators. Wick’s theorem and the details of the
technique can be found in Refs. [25–27], for example.

3.2 Scattering at the inter-cluster potential, diagrammatically

Here, it is sufficient to illustrate the technique. To this end, we first consider the simple and ex-
actly solvable system that is given by the Hamiltonian H0(t) = H0(t)− µN (see Eq. (2)). We
decompose the Hamiltonian into a free partH0(t

′) = H0(t
′)−µN (see Eq. (3)) and an “interac-

tion”H1 ≡ H0(V ) (see Eq. (4)). The “fully interacting” propagator, which we are interested in,
is −G0,ijσ(iωn) and is represented by an oriented line which starts at site j where the electron
is created (c†jσ) and ends at site i (see Fig. 3a). The free propagator −G′0,ijσ(iωn) is represented
by a dashed line (see Fig. 3b). Propagators carry a frequency iωn and a spin σ. A circle with
two links, one for an incoming and one for an outgoing propagator, is called a vertex and stands
for the “interaction” −Vij itself (see Fig. 3c). According to Wick’s theorem, the contribution of
order k to −G0,ijσ is obtained by drawing all topologically different diagrams where all links
at k vertices are connected by free propagators, except for two external links at the sites i and
j (see Fig. 3d). This contribution is calculated by performing the sums over internal variables
(such as k, l,m, n in Fig. 3d) and respecting frequency and spin conservation at each vertex.
These diagram rules can be derived strictly by expanding Eq. (41) and applying Wick’s theo-
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rem. Together with Eq. (40) this also leads to the important so-called linked-cluster theorem
which allows us to concentrate on connected diagrams only. The disconnected diagrams for the
Green’s function (i.e. with external links) exactly cancel diagrammatic contributions from the
denominator in Eq. (41). As concerns closed diagrams (no external links) contributing to the
partition function, Eq. (40), the sum of only the connected closed diagrams yields, apart from
a constant, lnZ, i.e. the grand potential. For the simple case of scattering at the inter-cluster
potential discussed at the moment, there is a single connected diagram at each order k only, and
thus the “interacting” Green’s function is given by

−G0,ijσ(iωn) = −G′0,ijσ(iωn) +
∑
kl

[−G′0,ikσ(iωn)] [−Vkl] [−G′0,kjσ(iωn)] + · · · (42)

or, using a matrix formulation and after elimination of the signs,

G0 = G
′
0 +G

′
0V G

′
0 +G

′
0V G

′
0V G

′
0 + · · ·

= G′0 +G
′
0V (G′0 +G

′
0V G

′
0 + · · · ) = G′0 +G′0V G0 . (43)

In this way we have simply re-derived Eq. (7) diagrammatically. This is not yet the CPT equa-
tion as the Hubbard interaction has been disregarded.

3.3 Diagram language for systems with Coulomb interaction

Next, let us consider the system given by the Hamiltonian H0(t) + H1, see Eqs. (2) and (9),
and treat the Hubbard (or Coulomb) term H1 as the interaction, as usual. Also in this case, the
free propagator is given by −G0 (Fig. 3a). To represent the interaction −U , we need a symbol
(red dotted line) with four links, two for outgoing and two for incoming propagators (Fig. 4a)
corresponding to the two creators and the two annihilators in the Hubbard interaction term.
Note that the interaction is local and labeled by a site index and that there is energy and spin
conservation at a vertex. A diagram contributing to the interacting propagator −Gijσ(iωn) at
order k consists of 2k+1 propagators fully connecting the k vertices among each other and with
the two external links at the sites i and j. Opposed to the potential-scattering problem discussed
above, there are many more diagrams at a given order k, namely (2k + 1)!, one of which, for
k = 3, is shown in Fig. 3b. The exact Green’s function G(iωn) is obtained by summing the
algebraic expressions corresponding to those diagrams and summing over all k. The detailed
rules necessary for the evaluation of diagrams (see Refs. [25–27]) are not needed here as we
do not intend to construct a diagrammatically defined approximation by summing a certain
subclass of diagrams. While this would be the standard procedure of many-body perturbation
theory, here we just want to speak diagrammatically.
One can identify so-called self-energy insertions in the diagrammatic series, i.e. parts of dia-
grams that have links to two external propagators. Examples are given in Fig. 4c where we
also distinguish between reducible and irreducible self-energy insertions. The reducible ones
can be split into two disconnected parts by removal of a single propagator line. The self-energy
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Fig. 4: Diagram language for systems with Hubbard interaction. See text for discussion.

Σijσ(iωn) is then defined diagrammatically as the sum over all irreducible self-energy inser-
tions, see Fig. 4d. With this we can derive Dyson’s equation

G(iωn) = G0(iωn) +G0(iωn)Σ(iωn)G(iωn) (44)

corresponding to Fig. 4e. The double line stands for the interacting propagator −G(iωn). Note
that the self-energy plays the same role for the Coulomb interacting system as V does for the
scattering problem.
As the first diagram in Fig. 4f shows, there are irreducible self-energy diagrams that contain
self-energy insertions. Diagrams without any self-energy insertion are called skeleton diagrams.
Skeleton diagrams can be dressed by replacing in the diagram the free propagators with inter-
acting propagators (double lines), see Fig. 4g. It is easy to see that the self-energy is given by the
sum of the skeleton diagrams only, provided that these are dressed, see Fig. 4h. Therewith, the
self-energy is given in terms of the interacting Green’s function,Σ = Σ[G]. It is only through
diagrammatic language that this very important functional relationship, called skeleton-diagram
expansion, can be defined rigorously. If combined with Dyson’s equation (44), it provides us
with a closed equation

G(iωn) =
1

G0(iωn)−1 −Σ[G](iωn)
(45)

the solution of which is the exact Green’s function. It is clear, however, that the functional
Σ[G] is extremely complicated and actually cannot be given in an explicit form, even for the
most simple models such as the Hubbard model, and even in cases like small isolated Hubbard
cluster, where a numerical computation of the self-energy and the Green’s function is easily
possible.
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3.4 Diagrammatic derivation of the CPT

Equipped with the diagrammatic language, let us come back to the central topic. We have
H = H0(t

′) + H0(V ) + H1 where the reference system H ′ = H0(t
′) + H1 is easily solvable

since it consists of decoupled small clusters, and where H0(V ) is the inter-cluster hopping.
Ideally, one would start from the solution ofH ′ and perform a perturbative treatment ofH0(V ).
This, however, is not possible (within the above-described standard perturbation theory) as the
starting point H ′ is an interacting system and, therefore, Wick’s theorem does not apply. On
the other hand, nothing prevents us from starting with H0(t

′) and treating both the inter-cluster
hopping and the Hubbard interaction, H0(V ) and H1, as the perturbation.
There are two ways to do this: (i) we start from the free (U = V = 0) propagator G′0 of H0(t

′)

and, in a first step, sum the diagrams of all orders in V but for U = 0 (see the first line in
Fig. 5a). One must merely sum a geometrical series, which can be done exactly. This step has
been discussed already in Sec. 3.2. In a subsequent step, the resulting propagatorG0 is dressed
by taking into account the Hubbard interaction to all orders (see second line in Fig. 5a). This
summation would yield the full Green’s functionG but obviously cannot be done in practice.
We therefore consider an alternative and reverse the order of the two steps: first, the free (U =

V = 0) propagator G′0 is renormalized by the electron-electron interaction U to all orders
but at V = 0 (first line in Fig. 5b). This yields the fully interacting cluster Green’s function
G′. While, of course, G′ cannot be computed by the extremely complicated summation of
individual U diagrams, it is nevertheless easily accessible via a direct (numerical) calculation if
the cluster size is sufficiently small (see Sec. 2.3). In the second step, the V = 0 propagatorG′

is renormalized due to inter-cluster potential scattering. Again, this is easily done by summing
a geometrical series but only yields an approximation GCPT to the exact Green’s function G.
In fact, as the second line in Fig. 5b demonstrates, this is just the cluster-perturbation theory,
see Eq. (10).
Note that the CPT equation (10) has been introduced in an ad hoc way. In contrast, the diagram
approach enables understanding of the CPT as an approximation that is given by summing a
certain subclass of diagrams. Fig. 5c displays a low-order self-energy diagram that is neglected
in this summation. This clearly shows that the CPT cannot be exact and suggests two different
routes for improvement, namely (i) taking into account missing diagrams and (ii) using the
freedom in the CPT construction to optimize the starting point. The first idea is related to the
attempt to perform a systematic perturbative expansion around the disconnected-cluster limit
and is notoriously complicated (as Wick’s theorem does not apply) [29].
Another ad hoc way to derive the CPT follows the idea of the so-called Hubbard-I approxima-
tion [5]: The main idea is to employ the Dyson equation (44) of the reference system to compute
the reference system’s self-energy,

Σ′(iωn) = G
′
0(iωn)

−1 −G′(iωn)−1 , (46)

and to consider this as an approximation for the self-energy of the original system: Σ(iωn) ≈
Σ′(iωn). The motivation for this step is that the self-energy, as opposed to the Green’s func-
tion, is a much more local object, as is well known at least for the weak-coupling regime from
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Fig. 5: Diagrammatic derivation of the CPT, see text for discussion and Ref. [28].

standard perturbation theory [30–32], and by the fact that the self-energy becomes purely local
in the limit of lattices with infinite spatial dimensions [33,34]. Furthermore, the idea is reminis-
cent of dynamical mean-field theory (DMFT) [33, 35, 36] where the self-energy of an impurity
model approximates the self-energy of the lattice model. Using Eq. (46) in Dyson’s equation
for the original model, we find

G(iωn) =
1

G0(iωn)−1 − (G′0(iωn)
−1 −G′(iωn)−1)

=
1

G′(iωn)−1 − V
, (47)

i.e., the CPT equation (10) is recovered. We note in passing that the Hubbard-I approach is
obtained is for Lc = 1 and with some ad hoc element of self-consistency [5].

This way to construct the CPT suggests to use, rather than the Ritz principle, a variational
principle of the form

δΩ[Σ]

δΣ(iωn)
= 0 , (48)

where the trial self-energy is taken from the reference system and varied by varying the param-
eters of the reference system. Ideally, this self-energy-functional approach should also cure the
different defects of the CPT, i.e. besides the arbitrariness of the CPT construction, the non-self-
consistent nature of the approach, and its inability to describe spontaneous symmetry breaking,
as well as different thermodynamical inconsistencies that show up in the computation of a ther-
modynamical potential from the Green’s function [25–27]. Furthermore, one may ask whether
both the CPT and the DMFT can be understood in a single unifying theoretical framework.
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4 Self-energy functional theory

4.1 Luttinger-Ward generating functional

The construction of a variational principle based on the self-energy is in fact possible with the
help of the so-called Luttinger-Ward functional [24] (see [37] for a pedagogical introduction).
This is a scalar functional Φ of the Green’s function G that was originally defined by all-order
perturbation theory (a construction that uses the path integral can be found in Ref. [38]). More
specifically, Φ[G] is defined as the sum of all closed, connected, and fully dressed skeleton
diagrams of any order k. Fig. 6 shows the lowest-order diagrams. Closed diagrams without
links to external propagators are diagrams contributing to the partition function, see Eq. (40).
The Luttinger-Ward series is given by dressed skeleton diagrams, i.e. diagrams without self-
energy insertions where the free propagators are replaced by the fully interacting ones. One
easily verifies that, due to dressing of the diagrams, some diagrams in the expansion of Z/Z0

are counted twice or more. This is done on purpose. The most important property of the
Luttinger-Ward functional constructed in this way is that its functional derivative just yields the
skeleton-diagram expansion of the self-energy:

δΦ[G]

δG(iωn)
=

1

β
Σ[G](iωn) . (49)

This can be verified, diagram by diagram: the functional derivative of a dressed skeleton just
corresponds to the removal of a dressed propagator and results in a dressed skeleton diagram
with two links for external propagators that contributes to the self-energy. When carefully
taking into account the coefficients of the two different expansions Eq. (40) and Eq. (41), one
easily derives Eq. (49). The equation is remarkable as it shows that the different components
of the self-energy Σijσ(iω) can be obtained from the scalar functional. In fact, the existence of
the Luttinger-Ward functional can also be proven by verifying a vanishing-curl condition as has
been done by Baym and Kadanoff [39, 40].
The value Φ of the Luttinger-Ward functional has no direct physical meaning. Summing all
closed diagrams (not only connected skeletons) yields, by construction, the partition function
Z/Z0. Summing connected diagrams only yields lnZ as is known from the linked-cluster
theorem [24, 25]. The sum of dressed connected skeletons, however, cannot provide the grand
potential ∝ lnZ because of the above-mentioned double counting.

= + + +Φ

Fig. 6: Diagrammatic construction of the Luttinger-Ward functional Φ[G]. Double lines stand
for fully interacting propagators, dashed lines for the Hubbard interaction.
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4.2 Self-energy functional

We will make use of Φ[G] by defining the following functional of the self-energy:

Ω[Σ] = Tr ln
1

G−10 −Σ
+ Φ[G[Σ]]− Tr(ΣG[Σ]) . (50)

Here, the frequency dependencies are suppressed in the notation and

TrA ≡ 1

β

∑
n

∑
iσ

eiωn0+Aiiσ(iωn) (51)

is used where 0+ is a positive infinitesimal. Furthermore, G[Σ] is the inverse of the functional
Σ[G], i.e. G[Σ[G]] = G. We assume that this inverse of the skeleton-diagram expansion of
the self-energy exists at least locally. The second part of the self-energy functional,

F [Σ] ≡ Φ[G[Σ]]− Tr(ΣG[Σ]) , (52)

is just the Legendre transform of the Luttinger-Ward functional. With Σ[G[Σ]] = Σ and
Eq. (49) we immediately have

δF [Σ]

δΣ
= − 1

β
G[Σ] . (53)

Therewith, we can also calculate the functional derivative of Ω[Σ]:

δΩ[Σ]

δΣ
=

1

β

(
1

G−10 −Σ
−G[Σ]

)
. (54)

The equation

G[Σ] =
1

G−10 −Σ
(55)

is a (highly non-linear) conditional equation for the self-energy of the system H = H0(t)+H1.
Inserting Σ = Σ[G] shows that it is (locally) equivalent to Eq. (45). It is satisfied by the exact
self-energy of the system. Therefore, solving Eq. (55) is equivalent to a search for the stationary
point of the self-energy functional:

δΩ[Σ]

δΣ
= 0 . (56)

This represents the dynamical variational principle we have been looking for. The exact self-
energy of the system makes the self-energy functional Ω[Σ], Eq. (50), stationary.
The definition of the self-energy functional given with Eq. (50) is a formal one only. The ar-
gument of the ln is not dimensionless, and furthermore, since G(iωn) ∝ 1/ωn ∝ 1/(2n + 1)

for large n, the sum over the Matsubara frequencies
∑

n ln(2n + 1) does not converge. This
problem can be solved, however, by replacing Ω[Σ] 7→ Ω[Σ]−Tr lnGreg with G−1reg,ijσ(iωn) =

δij(iωn − εreg) and taking the limit εreg → ∞ after all calculations are done. As the constant
Tr lnGreg does not depend on Σ, the variational principle is unaffected but now the Matsub-
ara sum over both logarithms is well defined and convergent. One can show [24, 25, 3] that,
if evaluated at the physical (exact) self-energy, the regularized Ω[Σ] − Tr lnGreg is just the
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grand potential of the system. This provides us with a physical interpretation of the self-energy
functional. In the following this regularization is always implicit.
As a remark, we note that at U = 0 the self-energy functional reduces to the expression Ω0 ≡
Tr lnG0 as becomes obvious from the diagrammatic definition of Φ[G] and of Σ since there
are simply no diagrams left at zeroth order in the interaction strength:

Φ[G] ≡ 0 , Σ(iωn) = 0 for U = 0 . (57)

If regularized properly, Ω0 7→ Ω0 − Tr lnGreg, this exactly yields the grand potential of the
non-interacting system.

4.3 Evaluation of the self-energy functional

The diagrammatic definition of the Luttinger-Ward functional (Fig. 6) uncovers another remark-
able property: since any diagram contributing to Φ consists of vertices and dressed propagators
only, the functional relation Φ[· · · ] is completely determined by the interaction U but does not
depend on t. Clearly, this universality also holds for its Legendre transform F [Σ]: two sys-
tems (at the same chemical potential µ and inverse temperature β) with the same interaction H1

but different one-particle parameters t and t′ are described by the same functional F [Σ]. In
contrast, the first part of the self-energy functional,

Ω[Σ] = Tr ln
1

G−10 −Σ
+ F [Σ] (58)

does depend on the hopping, namely via G−10 (iωn) = iωn + µ − t, but not on the interaction
strength U .
The universality property of F [Σ] is more important, however, as this functional is basically
unknown. The central idea of self-energy-functional theory is to compare the self-energy func-
tional of two systems, the original system with H = H0(t) +H1 and the reference system with
H ′ = H0(t

′) +H1, i.e. Eq. (58) and

Ω′[Σ] = Tr ln
1

G′0
−1 −Σ

+ F [Σ] . (59)

Due to its universality, one can eliminate the unknown functional F [Σ] by combining both
equations:

Ω[Σ] = Ω′[Σ] + Tr ln
1

G−10 −Σ
− Tr ln

1

G′0
−1 −Σ

. (60)

This equation is still exact. Since the functional dependence of Ω′[Σ] is also unknown in the
case of a simple reference system with decoupled clusters, it appears that this step amounts
to a mere shift of the problem. The great advantage of Eq. (60) becomes manifest, however,
when inserting the exact self-energy of the reference system Σt′(iωn) as a trial self-energy.
(We use the notationΣt′ for the exact self-energy of the system with hopping parameters t′ and
interaction H1.) In this case, the first term on the right-hand side of Eq. (60) just reduces to the
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Fig. 7: The construction of consistent approximations within the self-energy-functional theory.
The grand potential is considered as a functional of the self-energy that is stationary at the
physical (exact) self-energy Σt (filled red circles). The functional dependence of Ω[Σ] is not
accessible on the entire space of self-energies (Σ space). However, Ω[Σ] can be evaluated
exactly on a restricted subspace of trial self-energies Σt′ parametrized by a subset of one-
particle parameters t′ (solid red lines). These t′ define an exactly solvable reference system, i.e.
a manifold of systems with the same interaction part but a modified one-particle part given by
t′. Typically, the reference system consists of a set of decoupled clusters. A self-energy at which
the grand potential is stationary on this sub-manifold represents the approximate self-energy of
the original system and the grand potential at this self-energy represents the approximate grand
potential (open circle).

grand potential of the reference system Ω′, which can be computed easily if, as we assume, the
reference is amenable to an exact numerical solution. The same holds for the second and the
third term. We find:

Ω[Σt′ ] = Ω′ + Tr ln
1

G−10 −Σt′
− Tr ln

1

G′0
−1 −Σt′

. (61)

This is a remarkable result. It shows that an exact evaluation of the self-energy functional of a
non-trivial interacting system is possible, at least for trial self-energies that are taken from an
exactly solvable reference system with the same interaction part (see Fig. 7).
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4.4 The variational cluster approximation

We recall that the cluster perturbation theory approximates the self-energy of the original lattice-
fermion model by the self-energy of a reference system of disconnected clusters. As one may
choose the intra-cluster parameters of the reference system different from the corresponding
parameters of the original system, there is a certain arbitrariness in the CPT construction. Usu-
ally, one simply assumes that e.g. the intra-cluster nearest-neighbor hopping of the reference
system is the same as the physical hopping. There are, however, good reasons not to do so.
Symmetry breaking Weiss fields are one example, as already mentioned above. Another one
becomes obvious from Fig. 5c, where the CPT is seen to neglect the effect of the scattering
at the inter-cluster potential on the self-energy. Therefore, an enhanced intra-cluster hopping
could, at least partially, compensate for the missing feedback of the inter-cluster hopping on the
approximate self-energy.
With the self-energy-functional framework at hand, we can now remove the arbitrariness of the
CPT approach and determine the optimal self-energy from Eq. (61). This optimal self-energy is
the exact self-energy of an optimized reference system that is specified by a set of one-particle
(intra-cluster) parameters t′. Note that to derive Eq. (61) it was necessary to assume that the
interaction part H1 of the reference system cannot be optimized and must be the same as the
interaction of the original system. Therefore, the role of the reference system is to generate a
manifold of trial self-energies Σt′ that are parameterized by the one-particle parameters t′. As
the self-energy functional Eq. (58) can be evaluated exactly on this manifold via Eq. (61), the
optimal self-energyΣt′opt

is given as the solution of the SFT Euler equation

∂Ω[Σt′ ]

∂t′

∣∣∣∣∣
t′=t′opt

= 0 . (62)

For a cluster reference system, this constitutes the variational cluster approximation (VCA).
The VCA represents an approximation as it provides the stationary point of the self-energy
functional on a restricted manifold of trial self-energies only rather than on the entire self-energy
space (see Fig. 7). The latter could be defined as the set of the self-energies of all models with
the interaction part fixed at H1 but with a completely arbitrary one-particle part (that also may
connect the clusters). This space, of course, contains the exact self-energy Σt of our lattice
model H0(t)+H1 while the optimized VCA self-energyΣt′opt

is constrained to the manifold of
cluster trial self-energies. Approximations generated in this way have a number of advantageous
properties: first of all, although we have employed the language of perturbation theory, the VCA
is non-perturbative. Formally, the diagram series has not been cut at any level, no subclass of
diagrams is neglected, etc. The approximation rather results from a restricted domain of a self-
energy functional. Second, the VCA is an internally consistent approximation in the sense that
all observables derive from an explicit (though approximate) expression for a thermodynamical
potential, namely from the self-energy functional evaluated at the optimal self-energy Ω[Σt′opt

].
Third, the VCA can be improved in a systematic way by increasing the cluster size Lc, as one
has to approach the exact solution for Lc →∞. Here, the reference system is basically identical
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with the original system, and t is basically within the space of the variational parameters t′. One
may interpret 1/Lc as the small parameter that controls the quality of the approximation. It is
clear, however, that the numerical effort to solve Eq. (62) also increases with Lc. This increase
is even exponential if an exact-diagonalization solver is used to compute the cluster self-energy,
Green’s function, and grand potential that enter Eq. (61). Unfortunately, one cannot a priori
give a distance by which the optimal VCA self-energy differs from the exact self-energy. In
practice, the quality of the approximation must therefore be controlled by comparing the results
obtained for different cluster sizes Lc. For small clusters, also the cluster geometry and the
imposed cluster boundary conditions matter, and must be checked.
Although the VCA derives from a general variational principle, it is not variational in the sense
that the approximate VCA grand potential Ω[Σt′opt

] must always be larger than the exact grand
potentialΩ. As opposed to the Ritz principle and the state functionalE[|Ψ〉] or, at finite temper-
atures, the density-matrix functional Ω[ρ], the self-energy functional Ω[Σ] is not convex and
hence there is no reason to assume that the VCA provides an upper bound to Ω.
Concluding, the VCA must be seen as a cluster mean-field approximation that focusses on one-
particle correlations, the one-particle excitation spectrum (e.g. photoemission) and thermody-
namics. It treats short-range one-particle correlations within the cluster in an explicit way while
inter-cluster one-particle correlations are accounted for via Dyson’s equation. The feedback
of local and intra-cluster two-particle (and even higher) correlations on the one-particle self-
energy is explicitly and non-perturbatively taken into account while the feedback of non-local
two-particle, e.g. magnetic, correlations on the one-particle spectrum is neglected altogether.
This is typical for cluster mean-field theories [41] and should be kept in mind when study-
ing, e.g., systems close to a second-order phase transition, where non-local correlations play an
important role.

5 Implementation of the variational cluster approximation

Q-matrices

The bottleneck of a practical VCA calculation consists in the computation of the Green’s func-
tion of the reference system. Using an exact-diagonalization technique, the Green’s function for
an individual cluster can be obtained in its Lehmann representation, see Eq. (17). Let α = (i, σ)

be an index referring to the elements of the localized orbitals forming an orthonormal basis of
the one-particle Hilbert space. Therewith, the elements of the cluster Green’s function can be
written in the form

G′αβ(ω) =
∑
m

Q′αm
1

ω − ω′m
Q′
†
mβ . (63)

Here, m = (r, s) refers to a single-particle excitation between two energy eigenstates |s〉 and
|r〉 of the (grand-canonical) Hamiltonian of the reference system H ′ − µN , and ω′m = E ′r −E ′s
is the excitation energy. Q′αm are the elements of the so-called Q′-matrix [42], which is a
rectangular matrix with a small number of rows but a large number of columns (dimension of
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the one-particle Hilbert space × number of many-body excitations):

Q′αm = 〈r|cα|s〉
√

exp(−βE ′r) + exp(−βE ′s)
Z ′

, Z ′ =
∑
r

e−βE
′
r , (64)

as is readily read off from the Lehmann representation Eq. (17). One also verifies thatQ′Q′† =
1 6= Q′†Q′. Using the Q′-matrix, we can write the reference system’s Green’s function in a
compact form as

G′(ω) = Q′
1

ω −Λ′
Q′
†
, (65)

where Λ′ is the diagonal matrix with elements Λ′mn = ω′mδmn. With V = t − t′, the Green’s
function of the original system is obtained as:

G(ω) =
1

G′(ω)−1 − V
= G′(ω) +G′(ω)V G′(ω) + · · ·

= Q′
(

1

ω −Λ′
+

1

ω −Λ′
Q′
†
V Q′

1

ω −Λ′
+ · · ·

)
Q′
†
= Q′

1

ω −M
Q′
†
, (66)

where M = Λ′ +Q′†V Q′ is a (large) square Hermitian matrix that can be diagonalized by a
unitary transformation, M = SΛS†. Here, Λmn = ωmδmn with the poles ωm of G(ω). We
find

G(ω) = Q
1

ω −Λ
Q† (67)

with Q = Q′S. The representations Eq. (65) and Eq. (67) are particularly useful to evaluate
the self-energy functional Eq. (61) in practice. The trace contains a Matsubara-frequency sum-
mation which can be carried out analytically [43] such that one is left with a simple algebraic
expression [42],

Tr ln
1

G−10 −Σt′
−Tr ln

1

G′0
−1 −Σt′

= −
∑
m

1

β
ln(1+ e−βωm)+

∑
m

1

β
ln(1+ e−βω

′
m) , (68)

which involves the poles of G(ω) and G′(ω) only. Finally, the grand potential of the reference
system in Eq. (61) is easily computed as Ω′ = −(1/β) ln

∑
r e
−βE′

r .

Recipe for practical calculations

A typical VCA calculation is carried out as follows:

• Construct a reference system by tiling the original lattice into identical clusters.

• Choose a set of one-particle parameters t′ of the reference system and computeV = t−t′.

• Solve the problem for the reference system (U is fixed), i.e. compute the Green’s function
G′ and find the poles ω′m and the Q′-matrix.

• Get the poles ωm of the approximate Green’s function of the original system by diagonal-
ization of the matrixM = Λ′ +Q′†V Q.



Variational Cluster Approximation 9.23

• Calculate the value of the SFT grand potential via Eq. (61) and Eq. (68) and by calculating
the grand potential of the reference system Ω′ from the eigenvalues of H ′.

• Iterate this scheme for different t′, such that one can solve

∂Ω[Σt′ ]

∂t′

∣∣∣∣∣
t′=t′opt

!
= 0 (69)

for t′opt.

• Evaluate observables, such as Ω[Σt′opt
], G(ω) and static expectation values derived from

the SFT grand potential by differentiation, at the stationary point t′opt.

• Redo the calculations for different parameters of the original system, e.g. a different U ,
filling or β to scan the interesting parameter space.

Tips and tricks

For a given topology of the reference system, i.e. for a given cluster geometry, one may in
principle consider all one-particle parameters t′ as variational parameters. However, besides
an exponentially increasing Hilbert-space dimension, a larger cluster also implies an increas-
ing numerical complexity for the search of the stationary point since Ω[Σt′ ] is a function of
a multi-component variable t′. It is therefore advisable to restrict the search to a small num-
ber of physically important parameters. In most cases, a few variational parameters suggest
themselves.
An overall shift ∆ε′ of the on-site energies in the cluster (like the chemical potential), t′ii 7→
t′ii + ∆ε′, should be among the variational parameters to ensure thermodynamical consis-
tency with respect to the total particle number as has been pointed out in Ref. [44]. This
ensures that both ways to compute the total particle number, 〈N〉 = −∂Ω/∂µ and 〈N〉 =∑

iσ

∫
dz Aiiσ(z)/(e

βz + 1), must yield the same result. Analogously, in case of a (ferro- or
antiferro-) magnetic system, one should include a (homogeneous or staggered) Weiss field B′

in the set of variational parameters. For a paramagnetic system and for a system with man-
ifest particle-hole symmetry, however, symmetry considerations a priori fix those variational
parameters to B′ = 0 and ∆ε′ = 0, i.e. t′ii = tii. This can also be verified by a practical VCA
calculation.
For the setup of self-energy-functional theory it is inevitable that the original and the reference
system have the same interaction H1. Conversely, the one-particle part of the reference system
can be designed at will. One very interesting option in this context is to add additional fictitious
sites to the cluster. These bath sites have to be non-interacting (U = 0), contrary to the cor-
related sites (U > 0), which correspond to the physical sites (with the same U ) of the original
system. Adding the bath sites does not change the interaction part H1 of the Hamiltonian and
therefore leaves the Luttinger-Ward functional as well as its Legendre transform F [Σ] unaf-
fected. Bath sites can be coupled via one-particle hopping terms to the correlated sites in the
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cluster. This construction has the appealing advantage of increasing the space of variational pa-
rameters and thereby improving the quality of the approximation locally. Adding bath sites and
optimizing the additional associated parameters will improve the description of local temporal
correlations while increasing the cluster improves the theory with respect to non-local spatial
correlations.

If one decides to consider a reference system with bath sites, it is advisable to formally include
the same bath sites also in the original system. Here, of course, they are completely decoupled
from the correlated sites (the respective parts of the hopping matrix t have to be set to zero) such
that all physical quantities remain unchanged. The advantage of this trick is that t and t′ have
the same matrix dimension, and that the Hamiltonians H and H ′ operate on the same Hilbert
space. The inter-cluster hopping V = t− t′ includes the hopping terms between correlated and
bath sites in the reference system only.

Rather than employing the above-mentioned Q-matrix technique, one may also perform the
traces in Eq. (61), i.e. the trace of the spatial and orbital degrees of freedom and the implicit
Matsubara-frequency summation, numerically. This is recommended if the dimension of M ,
given by the number of poles ofG′ with non-vanishing spectral weight, becomes too large.

If a full diagonalization of the cluster problem is not feasible and Krylov-space methods shall
be applied, one has to make sure that the different elements G′ijσ(ω) have the same set of poles:
ω′m should be independent of i, j. This can be achieved by the band Lanczos method [45]. The
dimension of the matrixM is given by the number of iteration steps in the Lanczos procedure.
Typically, about 100 steps are sufficient for reasonably well converged results. This should be
checked regularly.

The SFT grand potential may exhibit more than a single stationary point. A minimal grand
potential among the grand potentials at the different stationary points distinguishes the thermo-
dynamically stable phase in most situations [46]. Often, the occurrence of several stationary
points is welcome from a physical point of view. For example, scanning a physical param-
eter, e.g. U , a second-order magnetic phase transition is characterized by a bifurcation of a
non-magnetic solution into a non-magnetic and a magnetic one (or even more magnetic ones).

There are different numerical strategies to determine a stationary point of the self-energy func-
tional, see Ref. [47] for examples. If there is only a single variational parameter to be optimized,
iterative bracketing of maxima and minima can be employed efficiently. In the case of more than
one variational parameter, the SFT grand potential usually exhibits a saddle point rather than a
minimum or maximum. A strategy that has been found to be useful for two or three parameters
is to assume (and verify) a certain characteristic of the saddle point and to apply iterated one-
dimensional optimizations. The downhill simplex method can be used for higher-dimensional
parameter spaces to find the local minima of |∂Ω[Σt′ ]/∂t

′|2. If there is more than one, only
those must be retained for which Ω[Σ(t′)] has a vanishing gradient.
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6 Selected results

The VCA is not restricted to the single-band Hubbard model but has also been applied to a va-
riety of multi-orbital systems. The necessary generalization to the multi-orbital case is straight-
forward. In this way, the VCA has contributed to the study of the correlated electronic structure
of real materials such as NiO [48], CoO and MnO [49], CrO2 [50], LaCoO3 [51], TiOCl [52],
TiN [53], and NiMnSb [54]. Here, however, we will focus on the single-band model and discuss
a few and very simple examples to illustrate the theory.

6.1 One-dimensional Hubbard model

In the first example [55], we will consider the one-dimensional Hubbard model at zero temper-
ature and half-filling with hopping t = 1 between nearest neighbors, see Fig. 8a. A tiling of the
one-dimensional lattice into “clusters” is particularly simple: Each cluster is a finite chain of Lc

sites. We treat the intra-cluster nearest-neighbor hopping t′ as the only variational parameter.
This is the most obvious choice. Nevertheless, one may numerically check that the optimal
on-site hopping t′ii,opt = tii = 0. The same holds for the hopping between second nearest
neighbors: t′2−nd,opt = 0. Again this is predicted by particle-hole symmetry. On the other hand,
if a third nearest-neighbor hopping is introduced as a variational parameter, it acquires a small
finite value at the stationary point. Interestingly, one also finds t′pbc,opt = 0 [2], where t′pbc is a
hopping parameter that links the two edge sites of the cluster with each other. t′pbc = t′ would be
a realization of periodic boundary conditions, but the calculation shows that open boundaries,
t′pbc,opt = 0, are preferred. Furthermore, one may also relax the constraint that the hopping t′ be
the same for all pairs of nearest neighbors. In this case one finds the strongest deviations close
to the edges of the reference systems [55].
Fig. 8b shows the dependence of the SFT grand potential Ω[Σt′ ] on the single variational pa-
rameter t′. Actually, (Ω + µ〈N〉)/L is plotted. At zero temperature and at the stationary point,
this is the (approximate) ground-state energy of the Hubbard model per site. There is a station-
ary point, a minimum in this case, with the optimal value for the intra-cluster hopping t′opt being
close to but different from the physical value t = 1 for strong Coulomb interaction U . Note that
the CPT is given by t′ = t and that there is a gain in binding energy due to the optimization of
t′, namely Ω(t′opt) < Ω(t) which implies that the VCA improves on the CPT result.
It is physically reasonable that in the case of a stronger interaction and thus more localized
electrons, switching off the inter-cluster hopping is less significant and must therefore be offset
to a lesser degree by an increase of the intra-cluster hopping. A considerably large deviation
from the physical hopping, t′opt > t, is only found for the weakly interacting system. However,
even a “strong” approximation of the self-energy (measured as a strong deviation of t′opt from t)
becomes irrelevant in the weak-coupling limit as the self-energy becomes small. With decreas-
ing U , the self-energy functional becomes flatter and flatter until at U = 0 the t′ dependence
is completely irrelevant. Note that not only the non-interacting limit but also the atomic limit
(t = 0) is exactly reproduced by the VCA. In the latter case, the reference system becomes
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Fig. 8: a) Original system: one-dimensional Hubbard model. Reference system: decoupled
clusters (for Lc = 2). b) SFT grand potential per site and shifted by µN as a function of
the intra-cluster nearest-neighbor hopping t′. VCA calculation (with Lc = 10) for the one-
dimensional Hubbard model at zero temperature, half-filling and different U as indicated. The
nearest-neighbor hopping t = 1 sets the energy scale. Arrows mark the stationary points. c)
VCA ground-state energy per site as a function of 1/Lc for U = 4 at the respective stationary
points compared with the corresponding results for an isolated cluster and the exact results
known from the Bethe ansatz (BA) [56]. (adapted from Ref. [55])

identical to the original system at t′ = 0.
Fig. 8c shows the VCA ground-state energy (per site) at a fixed interaction strength U = 4

as a function of the inverse cluster size 1/Lc. By extrapolation to 1/Lc = 0 one recovers the
exact Bethe-Ansatz result (BA) [56]. Furthermore, the VCA is seen to improve the ground-state
energy as compared to calculations done for an isolated Hubbard chain with open boundaries.
Convergence to the BA result is clearly faster within the VCA. Note that, as opposed to the
VCA, the direct cluster approach is not exact for U = 0.

6.2 Antiferromagnetism

With the second example [16], we return to our original motivation, see Fig. 2: one of the
main drawbacks of the CPT consists in its inability to describe spontaneous symmetry break-
ing. Consider SU(2) transformations in spin space and antiferromagnetic order, for example.
As the exact solution of a finite Hubbard cluster is necessarily spin-symmetric, i.e., invariant
under SU(2) transformations, and as the CPT equation proliferates this symmetry, the antifer-
romagnetic order parameter, the staggered magnetization m, must always be zero if there is



Variational Cluster Approximation 9.27

a single cluster

From the microscopic physics of a cluster 
to the macroscopic world of solids
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Fig. 9: SFT grand potential per site as a function of the strength of a fictitious staggered mag-
netic field B′. Calculation for the two-dimensional half-filled Hubbard model on the square
lattice at zero temperature and U = 8, t = 1. The reference system consists of disconnected
clusters with Lc = 10 sites each, see the inset for the cluster geometry. Arrows mark the two
equivalent stationary points. (adapted from Ref. [16])

no physically applied staggered magnetic field that would explicitly break the symmetry, i.e. if
B = 0. The VCA, on the other hand, in principle allows for a spontaneous SU(2) symmetry
breaking. Namely, treating an intra-cluster fictitious staggered magnetic field of strength B′

as a variational parameter offers the possibility for a symmetry-broken stationary point with
B′opt 6= 0. The reference-system Hamiltonian is given by

H ′ = H ′
∣∣
B′=0
−B′

∑
iσ

zi(ni↑ − ni↓) , (70)

where zi = +1 for sites on sublattice A and zi = −1 for sublattice B (yellow and blue sites in
the inset of Fig. 9)
The main part of Fig. 9 displays VCA results for the half-filled two-dimensional Hubbard model
on the square lattice at zero temperature. Decoupled clusters with Lc = 10 sites are considered
as a reference system, and the staggered field B′ is the only variational parameter considered.
There is a stationary point atB′ = 0 that corresponds to the paramagnetic phase and to the CPT.
In addition, however, there are two equivalent stationary points at finite B′ corresponding to a
phase with antiferromagnetic order. Comparing the ground-state energies of both the antiferro-
magnetic and the paramagnetic phase shows that the former is thermodynamically stable.
One should be aware, however, that the VCA, like any cluster mean-field approach, tends to
overestimate the tendency towards magnetic order. Furthermore, a finite-temperature calcula-
tion is expected to produce a finite order parameter for the two-dimensional but also for the one-
dimensional case, which would be at variance with the Mermin-Wagner theorem [57]. What is
missing physically in the VCA is the effect of long wavelength spin excitations. The VCA is
therefore restricted to cases where the physical properties are dominated by short-range corre-
lations on a scale accessible by an exactly solvable finite cluster.
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6.3 Mott metal-insulator transition

The third example [58] addresses a first-order (discontinuous) phase transition. This type of
phase transition can be studied conveniently within the SFT framework as there is an explicit
expression for a thermodynamical potential available from the very beginning. We again con-
sider the two-dimensional Hubbard model on the square lattice at half-filling and zero temper-
ature but disregard the antiferromagnetic phase and enforce a paramagnetic state by choosing
B′ = 0. The paramagnetic system is expected to undergo a transition from a correlated metal
at weak U to a Mott insulator at strong U . This Mott transition is first of all interesting from
a fundamental point of view as it is driven by electronic correlations opposed to other types of
metal-insulator transitions [59]. The Mott insulator is characterized by a gap of the order of
U in the single-particle excitation spectrum which is only weakly dependent on temperature.
One therefore expects that a possible metal-insulator quantum phase transition at zero temper-
ature is of relevance for the high-temperature state of the system as well, where it should give
rise to a smooth crossover between a more metallic and a more insulating state. The crossover
takes place at temperatures that may be well above the Néel temperature where the system is
paramagnetic. This is the motivation to ignore the magnetic phase for the zero-temperature
calculation.

Fig. 10 (right) shows the building block of the reference system. This is a cluster with Lc = 4

correlated sites (filled blue dots) but with four bath sites (open red dots) in addition, i.e. there
are ns = 2 local degrees of freedom (one additional bath site per correlated site). As mentioned
above, including bath sites in a VCA calculation improves the description of local correlations.
This is an important ingredient in understanding the Mott transition: a paradigmatic picture of
the Mott transition could be worked out in the limit of infinite spatial dimensions with the help
of the dynamical mean-field theory [33, 35]. In this limit the self-energy becomes a completely
local quantity, Σijσ(iωn) = δijΣiσ(iωn) [34], and therefore the local temporal degrees of free-
dom (ns) dominate the spatial ones (Lc). For two dimensions, the considered reference system
with Lc = 4 and ns = 2 is expected to represent a good compromise between the importance
of local and non-local correlations and to result in a reasonable approximation.

VCA calculations with the full set of variational parameters indicated in Fig. 10 (right) have
shown [58] that the hopping between the correlated and the bath sites V is the most important
parameter to be optimized while t′opt ≈ t and t′′opt ≈ 0 can safely be ignored, i.e. set to the a
priori plausible values t′opt = t and t′′opt = 0. The on-site energies of the correlated and the bath
sites are fixed by particle-hole symmetry anyway. This drastically simplifies the study, as the
SFT grand potential Ω[ΣV ] can be regarded as a function of a single variational parameter V .

Fig. 10 (left) displays the SFT grand potential, shifted by µN , per correlated site as a function
of V for different U . For weak interactions, U < Uc2 ≈ 6.35, there is a stationary point
(a minimum) at a comparatively large Vopt that describes a metallic phase (blue dots). The
metallic character of the phase can be inferred from the finite value of the imaginary part of
the local Green’s function ImGiiσ(iω) for ω → 0 (see Ref. [58]). Above the critical value Uc2,
no metallic solution can be found. There is, however, an insulating phase for strong U (red
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Fig. 10: Left: SFT grand potential per site as a function of the variational parameter V . VCA
calculation for the two-dimensional Hubbard model on the square lattice at zero temperature,
half-filling, and different U as indicated. The nearest-neighbor hopping t = 1 sets the energy
scale. Symbols: stationary points. Red: Mott insulator, green and blue: metal. Fat symbols:
thermodynamically stable phase. The first-order Mott transition is marked by an arrow. Right:
Sketch of the building block of the reference system. Blue filled dots: correlated sites with
U > 0. Red open dots: bath sites with U = 0. Calculations for t′ = t, t′′ = 0, arbitrary V .
(adapted from Ref. [58]).

dots). The respective stationary point (a minimum) of the SFT grand potential is found at a
comparatively low value of Vopt and can be traced with decreasing U down to another critical
value Uc1 ≈ 4.6. For U < Uc1, there is no insulating phase.

It is interesting to observe that in the regime Uc1 < U < Uc2 the metallic and the insulating
phase are coexisting, i.e. that there are two stationary points of the grand potential. There is
actually a third stationary point in the coexistence region, indicated by the green dots, where
the SFT grand potential is at a maximum. Note that any stationary point, minimum, maximum
or saddle point (in higher-dimensional parameter spaces), must be considered as an admissible
solution within the SFT. However, the grand potential of the third phase is always higher than
the grand potentials of the other phases. It therefore describes a physically irrelevant metastable
phase but mathematically explains why the other two phases cease to exist above (below) a
certain critical interaction Uc2 (Uc1).
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For a given U, the phase with the lowest grand potential is thermodynamically stable (see fat
symbols). This means that the system is a correlated metal for U < Uc and a Mott insulator
for U > Uc where the critical value for the Mott transition Uc ≈ 5.8 is given by the interaction
strength for which the metal and insulator have the same grand potential (the same ground-state
energy at zero temperature), see the arrow in Fig. 10. Therefore, at Uc the optimal hopping
parameter Vopt jumps between the large metallic and the small insulating value. Consequently,
the ground state and thus the self-energy of the reference system changes abruptly at Uc. This
leads to a discontinuous change of the SFT Green’s function as well as of all observables that
are computed as derivatives of the (optimized) SFT grand potential. The phase transition is of
first order or discontinuous. This is interesting since the Mott transition in the Hubbard model
on an infinite-dimensional, e.g. hyper-cubic, lattice is known [35] to be of second order or
continuous. The VCA calculation discussed here actually corrects a mean-field artifact that is
due to the neglect of non-local short-range antiferromagnetic correlations (see Ref. [58] for an
extended discussion). For a discussion of more recent developments see Ref. [60], for example.

7 Relation to other methods and conclusions

Concluding, it is an appealing idea to divide a correlated lattice-fermion problem into small
isolated clusters for which the problem can be solved easily and in a second step to employ
the decoupled-cluster solution to construct the solution for the original lattice model. This
construction must be approximate and has the spirit of a cluster mean-field theory, where the
intra-cluster correlations are treated in a much better and more explicit way than the inter-
cluster correlations. We have learned that this construction cannot be based on a technique
that uses many-body wave-functions, rather, one has to employ Green’s functions, namely the
single-particle Green’s function or, equivalently, the self-energy, as is done with the cluster-
perturbation theory.
The self-energy-functional theory conceptually improves the CPT in several respects: first, it
removes the arbitrariness that is inherent to the CPT regarding the choice of the cluster param-
eters. Second, it introduces an element of self-consistency or variational character by which
it becomes possible to study phases that possess a symmetry different from the symmetry of
the isolated cluster, i.e. one can address spontaneously symmetry-broken phases (collective
magnetism, superconductivity etc.). Third, the SFT provides us with an explicit, though ap-
proximate, expression for a thermodynamical potential from which all observables have to be
derived. This ensures that the approach is consistent in itself and obeys general thermodynami-
cal relations, an important point that is missing in the plain CPT as well.
The self-energy-functional theory should actually be seen as a theoretical frame that allows the
construction of different approximations. Each approximation is characterized by the choice of
a corresponding reference system. Typically, this consists of decoupled clusters with Lc corre-
lated sites each and an additional ns− 1 uncorrelated bath sites. Large clusters are necessary in
order to describe short-range correlations as well as possible, and a large number of local de-
grees of freedom ns is recommended to improve the description of local temporal correlations.



Variational Cluster Approximation 9.31

lo
ca

l d
eg

re
es

 o
f f

re
ed

om

cluster size

oo

L c

1 2

DIA cellular DIA

VCA

ns

oo DMFT

cellular DMFT

2
1
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structed within the self-energy-functional theory. See text for discussion.

There is the ubiquitous tradeoff between the quality of the approximation on the one hand and
the numerical effort on the other as the problem must be exactly solved for the isolated cluster.
Using an exact-diagonalization solver the effort increases roughly exponentially with Lc and
ns. The space of possible approximations spanned by Lc and ns is sketched in Fig. 11.
The most simple approximation is given by Lc = 1 and ns = 1. Here, one approximates the
self-energy of the lattice model by the self-energy of the atomic problem. This is in the spirit of
the Hubbard-I approximation [5]. For Lc > 1 we find the variational cluster approximation that
we have discussed at length here. Obviously, one would recover the exact solution of the lattice
model in the limit Lc →∞.
Choosing a “cluster” with a single correlated site only, Lc = 1, but introducing a number of
bath sites ns − 1 ≥ 1 specifies another approximation which is called dynamical impurity ap-
proximation (DIA). This is a true mean-field approximation as all non-local two-particle spatial
correlations are neglected in this case.
Obviously, an ideal embedding of a single site into the lattice or an ideal mean-field theory
is realized with an infinite number of bath sites ns → ∞. In this case, all local, temporal
correlations are treated exactly – as opposed to a static mean-field theory like the Hartree-
Fock approach. This optimal mean-field theory turns out to be identical with the well-known
dynamical mean-field theory (DMFT) [33, 35]. In fact, one immediately recognizes that the
reference system in this case is just the single-impurity Anderson model (if one starts out from
a single-band Hubbard model, for example). Within DMFT the parameters of this impurity
model are fixed by imposing the so-called DMFT self-consistency condition, stating that the
impurity Green’s function of the impurity model should be equal to the local Green’s function
of the lattice model. This is realized by setting up a self-consistency scheme that requires an
iterated solution of the impurity model. Within the SFT, on the other hand, the parameters of
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the reference impurity system are fixed by the SFT Euler equation which is the condition for the
stationarity of the SFT grand potential. In fact both the DMFT self-consistency equation and
the SFT Euler equation are basically equivalent in this case. From Eq. (58), we have

∂

∂t′
Ω[Σt′ ] =

1

β

∑
n,ijσ

(
1

G−10 (iωn)−Σ(iωn)
−G′(iωn)

)
ijσ

∂Σjiσ(iωn)

∂t′
= 0 , (71)

where G′ denotes the Green’s function of the reference system. As the self-energy of a single-
impurity Anderson model is local, Σijσ(iωn) = δijΣiσ(iωn) and non-zero on the correlated im-
purity site only. This SFT Euler equation is satisfied if the impurity Green’s function G′imp(iωn)

is equal to the (approximate) local Green’s function of the lattice model, i.e. if the local elements
of the bracket vanish. This is the DMFT self-consistency equation.
What happens if ns < ∞? For a small number of bath sites, an exact solution of the reference
system by means of exact-diagonalization techniques becomes feasible in practice. The result-
ing approximation, the DIA, differs from DMFT as the bracket in Eq. (71) will never vanish in
this case. This is easily seen by noting that the Green’s function of an ns <∞ impurity model
has a finite number of poles on the real frequency axis while the approximate lattice Green’s
function inherits its analytical structure from the non-interacting lattice Green’s function G0,
which, for an infinite lattice, may exhibit isolated poles but must have branch cuts as well. The
DIA is different and actually inferior compared with the DMFT but does not need an advanced
solver (note that solving the single-impurity Anderson model with ns =∞ is still a demanding
many-body problem). It has turned out, however, that with a few bath sites only, one often
has a rather reliable approach to study the thermodynamics of a lattice model (see Ref. [43],
for an example). This is also known from the exact-diagonalization approach to DMFT [61].
DMFT-ED considers the impurity model with a small ns, as is done in the DIA, but employs
another, actually more ad hoc condition to fix the parameters of the impurity model, namely one
minimizes a suitably defined distance between the two local elements of the Green’s function
in the DMFT self-consistency condition to satisfy this at least approximately. The approach is
able to yield similar results as the DIA in practice and is more easily implemented numerically
but lacks internal consistency.
The third example discussed in the previous section has shown that one can favorably make
use of approximations where a small number of bath degrees of freedom ns > 1 are combined
with a cluster approach Lc > 1. This approach is a VCA with additional bath sites and may
be termed “cellular DIA” (see Fig. 11) since it is related to the cellular DMFT [62, 63] in the
same way as the DIA is related to the DMFT. Note that with increasing cluster size Lc → ∞,
all approaches, the VCA, the cellular DIA as well as the cellular DMFT must recover the exact
solution of the lattice problem in principle.
Another prominent and widely used cluster mean-field theory is the dynamical cluster approxi-
mation (DCA) [64]. As compared to the cellular DMFT, this is a cluster extension of dynamical
mean-field theory that avoids one of the main drawbacks of various cluster approaches, namely
the artificial breaking of the translational symmetries. Already the CPT yields an approximate
Green’s function that merely reflects the translational symmetries of the “superlattice,” which
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periodically repeats the basic cluster, rather than the symmetries of the underlying physical
lattice. In contrast, the DCA provides a Green’s function and a self-energy with the correct
symmetries but, on the other hand, must tolerate that the self-energy is discontinuous as a func-
tion of k in reciprocal space. Here, we briefly mention that it is possible to re-derive the DCA
within in the framework of the SFT as well. This is carried out in detail in Ref. [14]. It is based
on the idea that, with a proper modification of the hopping parameters of the original lattice
model, t 7→ t̃, which becomes irrelevant for Lc → ∞, the DCA becomes equivalent to the
cellular DMFT. In a similar way [9] another cluster-mean-field variant, the periodized cellular
DMFT [65] can be re-derived within the SFT.
To summarize, the self-energy-functional approach not only recovers a number of well-known
mean-field and cluster mean-field concepts and provides a unified theoretical framework to
classify the different approaches but has also initiated the construction of new non-perturbative
and consistent approximations, the most prominent example of which is the variational clus-
ter approximation. The challenges for future developments are manifold; let us mention only
two directions here. The first consists in the generalization of the SFT to many-body lattice
models far away from thermal equilibrium [15]. This requires a reformulation of the theory
in terms of non-equilibrium Green’s functions but offers the exciting perspective of studying
the real-time dynamics of strongly correlated systems in a non-perturbative and consistent way.
Another equally important direction of future work consists in an extension of the theory to cor-
related lattice models with non-local and even long-ranged interactions. First promising steps
have already been made [8]. The restriction to local Hubbard-type interactions, inherent to all
of the approaches mentioned here (see Fig. 11), represents an eventually unacceptable model
assumption that must be abandoned.
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10.2 Karsten Held

1 Introduction

The theoretical description and understanding of strongly correlated systems is particularly
challenging since perturbation theory in terms of the Coulomb interaction is no longer pos-
sible and standard mean-field theory does not work. Also, bandstructure calculations in the
local-density approximation (LDA) [1], which had been so successful for the calculations of
many materials, do not work properly as electronic correlations are only rudimentarily taken
into account. A big step forward in this respect is dynamical mean-field theory (DMFT) [2–5],
which is a mean-field theory in the spatial coordinates but fully accounts for the local corre-
lations in time (quantum fluctuations). In comparison, standard Hartree-Fock is mean-field in
space and time. DMFT is non-perturbative since all Feynman diagrams are taken into account,
albeit only their local contribution to the self-energy. If one is dealing with well localized d- or
f -orbitals, these local DMFT correlations often provide the major part of the electronic correla-
tions, which not only give rise to mass renormalizations [3, 4], metal-insulator transitions [3, 4]
and magnetic ordering [6, 7], but also to unexpected new physics such as kinks [8, 9] or the
filling of the Mott-Hubbard gap with increasing temperature [10]. More aspects of DMFT are
discussed in other contributions to this Jülich Autumn School on DMFT at 25.

The question we would like to address here is: Can we do (or do we need to do) better than
DMFT? Indeed, going beyond DMFT is necessary since many of the most fascinating and least
understood physical phenomena such as quantum criticality and superconductivity originate
from non-local correlations – which are by construction beyond DMFT. And we can: first steps
to include non-local correlations beyond DMFT have been cluster approaches such as the dy-
namical cluster approximation (DCA) [11–13] and cluster DMFT (CDMFT) [12–14]. Here,
instead of considering a single site embedded in a mean-field (as in DMFT) one considers a
cluster of sites in a mean-field medium. Numerical limitations, however, restrict the DCA and
CDMFT calculations to about 100 sites. This allows for studying short-range correlations, par-
ticularly for two-dimensional lattices, but severely restricts the approach for three dimensions,
for multi-orbitals, and for long-range correlations.

Because of that, in recent years diagrammatic extensions of DMFT were at the focus of the
methodological development. An early such extension was the 1/d (d: dimension) approach
[15]; also, the combination of the non-local spin fermion self-energy with the local quantum
fluctuations of DMFT has been proposed [16]. Currently most actively pursued are diagram-
matic approaches based on the local two-particle vertex. The first such approach has been the
dynamical vertex approximation (DΓA) [17], followed by the dual fermion approach [18], the
one-particle irreducible approach (1PI) [19], and DMFT to functional renormalization group
(DMF2RG) [20].

The very idea of these approaches is to extend the DMFT concept of taking all (local) Feynman
diagrams for the one-particle irreducible vertex (i.e., the self-energy) to the next, i.e., two-
particle level. In these approaches, one calculates the local two-particle vertex, and from this,
non-local correlations beyond DMFT are obtained diagrammatically. Indeed, we understand
most (if not all) physical phenomena either on the one-particle level [e.g. the quasiparticle renor-
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Method Local two-particle vertex Feynman diagrams
DF [18] one-particle reducible vertex, here∗ Floc 2nd order, ladder

parquet
1PI [19] one-particle irreducible vertex Floc ladder
DMF2RG [20] one-particle irreducible vertex Floc RG flow
ladder DΓA [17] two-particle irreducible vertex in channel r Γrloc ladder
full DΓA [17] two-particle fully irreducible vertex Λloc parquet

Table 1: Summary of the different diagrammatic extensions of DMFT based on the two-particle
vertex. All methods are based on the local part of the two-particle vertex named in the table;
for a definition of the different vertex functions, see Section 2.1.
∗ Note that at the two-particle level every two-particle vertex is one-particle irreducible; third
or higher order vertices can be, however, one-particle reducible which has consequences for
the diagrammatics if truncated at the two-particle level, see [19].

malization and the Mott-Hubbard transition] or on the two-particle level [e.g. (para)magnons
and (quantum) critical fluctuations]. Non-local correlations and associated physics on this two-
particle level are included in these diagrammatic extensions of DMFT, which however still
include the local DMFT one-particle physics such as the formation of Hubbard bands and the
metal-insulator transition or, more precisely, a renormalized version thereof. The concept of
all these approaches is similar, but they differ in which two-particle vertex is taken and which
diagrams are constructed, see Table 1. Depending on the approach, Feynman diagrams are con-
structed from full Green function lines G(ν,k) or from the difference between G(ν,k) and the
local Green function Gloc(ν) [ν: (Matsubara) frequency; k: wave vector]. The DF, 1PI and
DMF2RG approach are also based on a generating functional integral.
In these lecture notes, we will concentrate on DΓA. Section 2.1 recapitulates the concept of
reducible and irreducible diagrams as well as the parquet and Bethe-Salpeter equation. On this
basis, we introduce in Section 2.2 the DΓA approach. In Section 3 we have chosen two ex-
emplary highlights that demonstrate what can be calculated by DΓA and related approaches.
These are the calculation of the critical exponents for the three dimensional Hubbard model
(Section 3.1) and the effect of long-range correlations on the Mott-Hubbard transition for the
two dimensional Hubbard model (Section 3.2): at zero temperature antiferromagnetic fluctua-
tions always open a gap at any interaction U > 0.

2 Feynman diagrammatics

2.1 Parquet equations

The very idea of DΓA is a resummation of Feynman diagrams, not in orders of the interaction
U as in perturbation theory but in terms of the locality of diagrams. In this sense, DMFT is the
first, one-particle level since it approximates the one-particle fully irreducible vertex, i.e., the
self-energy Σ, to be local, see Table 2.
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n = 1 DMFT: local self-energy
n = 2 DΓA: local fully irreducible two-particle vertex

⇒ non-local self-energy/correlations
· · ·
n→∞ exact solution

Table 2: DΓA generalizes the DMFT concept of the local self-energy (i.e., the local fully irre-
ducible one-particle vertex) to the fully irreducible n-particle vertex. It is hence a resummation
of Feynman diagrams in terms of their locality. On the right-hand side, the different levels of
approximation are indicated.

U

G0
G

Fig. 1: Basic objects of Feynman diagrams: from the non-interacting Green function G0 (left)
and the bare interaction U (middle) we construct all topologically distinct diagrams for calcu-
lating the interacting Green function G (right) .

For a better understanding of reducibility and irreducibility as well as of DΓA later on, let us
recall that in quantum field theory we calculate the interacting Green function G by drawing all
topologically distinct Feynman diagrams that consist of n interactions U and that are connected
by non-interacting Green function lines G0, keeping one incoming and one outgoing G0 line,
see Fig. 1. Each G0 line contributes a factor G0(ν,k) = 1/(ν + µ − εk) [where ν denotes the
(Matsubara) frequency, µ the chemical potential and εk the energy-momentum dispersion rela-
tion of the non-interacting problem] and each interaction (wiggled line) contributes a factor U .1

Here and in the following, we assume a one-band model for the sake of simplicity. For an intro-
duction to Feynman diagrams, more details, and how to evaluate Feynman diagrams including
the proper prefactor, we refer the reader to textbooks of quantum field theory such as [21]; a
more detailed presentation including DΓA can also be found in [22].

Dyson equation and self-energy

Instead of focusing on the Green function, we can consider a more compact object, the self-
energy Σ, which is related to G through the Dyson equation, see Fig. 2. The Dyson equation

1For a k-dependent, i.e. non-local interaction the factor U(k,k′,k′′,k′′′ = k+k′−k′′) would be k-dependent.
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Σ

Σ Σ Σ+= +

Σ ΣΣ+ +  ...

+=

Fig. 2: Dyson equation connecting the Green function and self-energy. The pair of scissors
indicates that these diagrams are one-particle reducible (i.e., cutting one G0 line separates the
Feynman diagram into two parts)

can be resolved for the interacting Green function:

G(ν,k) = [1/G0(ν,k)−Σ(ν,k)]−1. (1)

Since the geometric series of the the Dyson equation generates a series of Feynman diagrams,
we can only include a reduced subset of Feynman diagrams when evaluating the self-energy.
One obvious point is that the two outer “legs” (incoming and outgoing G0 lines) are explicitly
added when going from the self-energy to the Green function, see Fig. 2. Hence we have to “am-
putate” (omit) these outer “legs” for self-energy diagrams. More importantly, the self-energy
can only include one-particle irreducible diagrams. Here, one-particle (ir)reducible means that
by cutting one Green function line one can(not) separate the diagram into two parts. This is
since, otherwise, we would generate Feynman diagrams twice: any one-particle reducible dia-
gram can be constructed from two (or more) irreducible building blocks connected by one (or
more) single G0 lines. This is exactly what the Dyson equation does, see Fig. 2. For exam-
ple, in the last line, we have three irreducible self-energy blocks connected by two single G0

lines. This shows that, by construction, the self-energy has to include all one-particle irreducible
Feynman diagrams and no one-particle reducible diagrams. Since the self-energy has one (am-
putated) incoming leg, it is a one particle vertex. It is also one-particle irreducible as explained
above. Hence, the self-energy is the one-particle irreducible one-particle vertex. In Fig. 3 we
show some diagrams that are part of the self-energy, i.e., cutting one-line does not separate the
diagram into two parts, and some diagrams that are not.

Two-particle irreducibility

Let us now turn to the two-particle level. As illustrated in Fig. 4, the Feynman diagrams for
the susceptibility χ (or similarly for the two-particle Green function) [21] consist of (i) an
unconnected part (two G lines, as in the non-interacting case) and (ii) all connected Feynman
diagrams (coined vertex corrections). Mathematically this yields [β: inverse temperature; σ:
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Fig. 3: Left: some examples of (one-particle irreducible) self-energy diagrams. Right: Dia-
grams that do not contribute to the self-energy since they are one-particle reducible (cutting the
line indicated by the pair of scissors separates the diagram into two pieces).

spin]

χσσ′(νν ′ω; k,k′,q) =− β G(ν,k)G(ν + ω,k + q)δνν′ δ(k− k′) δσσ′ (2)

+G(ν,k)G(ν+ω,k+q)Fσσ′(νν ′ω; k,k′,q)G(ν ′,k′)G(ν ′+ω,k′+q).

Here F denotes the full, reducible vertex. In the following, let us introduce a short-hand notation
for the sake of simplicity, where 1 represents a momentum-frequency-spin coordinate 1 ≡
(k, ν, σ), 2 ≡ (k + q, ν + ω, σ), 3 ≡ (k′ + q, ν ′ + ω, σ′), and 4 ≡ (k′, ν ′, σ′). In this notation
we have

χ(1234) = −G(14)G(23)−G(11′)G(22′)F (1′2′3′4′)G(33′)G(4′4) , (3)

as visualized in Fig. 4. Since the Green function is diagonal in spin, momentum, and frequency,
i.e., G(11′) = G(11′) δ11′ , some indices are the same, which yields Eq. (2).
Let us now again introduce the concept of irreducibility, this time for the two-particle vertex.
In this case, we consider two-particle irreducibility.2 In analogy to the self-energy, we define
the fully irreducible vertex Λ, defined as the set of all Feynman diagrams that do not split into
two parts by cutting two G lines. Let us remark that here and in the following, we construct
the Feynman diagrams in terms of G instead of G0. This means that we have to exclude all
diagrams that contain a structure as generated by the Dyson equation in Fig. 2 since otherwise
these diagrams would be counted twice. The diagrams belonging to this reduced set with G
instead of G0 are called skeleton diagrams, see [21].
The reducible diagrams of F can be further classified according to how the Feynman diagram
separates when cutting two internal Green functions. Since F has four (“amputated”) legs to
the outside, there are actually three possibilities to split F into two parts by cutting two G lines.

2Note, that one-particle irreducibility is somehow trivial since one can show that there are no one-particle
irreducible diagrams for the two-particle vertex (in terms of the interacting G/skeleton diagrams).
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F−χ
2

1

3

4

2 2

1 1

3 3

4 4

2

1 4’

’ ’3

’
=  − 

Fig. 4: The susceptibility χ consists of two unconnected Green function G lines (aka “bubble”)
and vertex corrections F .
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Fig. 5: The full (reducible) vertex F consists of the fully irreducible vertex Λ and two-particle
reducible diagrams. These can be classified into three channels depending on which parts are
disconnected by cutting two Green function lines. These are commonly denoted as the particle-
hole reducible channel Φph separating 12 from 34, the transversal particle-hole reducible chan-
nel Φ ph separating 14 from 23, and the particle-particle reducible channel Φpp separating 13
from 24. Each two-particle reducible diagram is reducible in one (and only one) of these three
channels. The hatched blocks themselves can be irreducible, reducible in the same channel,∗ or
reducible in the other two channels (in this last case the full diagram remains however reducible
only in the scissors-indicated channel).
∗ Note, this is only possible for one hatched side, since otherwise the same diagram might be
counted twice.

That is, an external leg, say 1, stays connected with one out of the three remaining external legs
but is disconnected from the other two, see Fig. 5 for an illustration. One can show by means of
the diagrammatic topology that each diagram is either fully irreducible or reducible in exactly
one channel, so that

F (1234) = Λ(1234) + Φph(1234) + Φph(1234) + Φpp(1234). (4)

Bethe-Salpeter equation

We have defined the reducible diagrams Φr in channel r ∈ {ph, ph, pp} as a subset of Feynman
diagrams for F . The rest, i.e., F − Φr, is called the vertex Γr irreducible in r so that

F (1234) = Γr(1234) + Φr(1234) . (5)
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Fig. 6: Bethe-Salpeter equation for the particle-hole channel (ph, top) the transversal particle-
hole channel (ph, middle) and the particle-particle channel (pp, bottom).

In analogy to the Dyson equation, Fig. 2, the reducible vertices Φr in turn can be constructed
from Γr. One Γr can be connected by two G’s with another Γr (which makes this diagram
two-particle reducible in the channel r). This can be connected again by two G’s with a third
Γr, etc. (allowing us to cut the two G’s at two or more different positions). This gives rise to a
geometric ladder series, the so-called Bethe-Salpeter equation, see Fig. 6. Mathematically, these
Bethe-Salpeter equations read in the three channels (with Einstein’s summation convention):

F (1234) = Γph(1234) + F (122′1′)G(3′2′)G(1′4′)Γph(4′3′34) (6)

= Γph(1234) + F (2′233′)G(2′1′)G(3′4′)Γph(11′4′4) (7)

= Γpp(1234) + F (4′22′4)G(2′3′)G(1′4′)Γpp(13′31′). (8)

Parquet equations

Since an irreducible Γr diagram in a channel r is either fully irreducible (Λ) or reducible in one
of the two other channels r′ 6= r (Φr′), we can express Γr as [this also follows directly from
Eqs. (4) and (5)]:

Γr(1234) = Λ(1234) +
∑
r′ 6=r

Φr′(1234) . (9)

We can use this Eq. (9) to substitute the last Γr’s in Eq. (6) [or the Γr box in Fig. 6] by Λ and
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Fig. 7: Parquet equations. From the Bethe-Salpeter equations in the three channels we obtain
three corresponding equations connecting the reducible vertex F , the fully irreducible vertex Λ
and the reducible vertices Φr in the three channels r (first three lines). Together with the clas-
sification of F into Λ and the three Φr (last line) we have the four so-called parquet equations.

Φr’s. Bringing the first Γr on the left hand side, then yields

Φph(1234) = F (1234)− Γph(1234) (10)

= F (122′1′)G(3′2′)G(1′4′)Λ(4′3′34)+
∑
r′ 6=ph

F (122′1′)G(3′2′)G(1′4′)Φr′(4
′3′34)

and corresponding equations for the other two channels. The corresponding Feynman diagrams
are shown in Fig. 7. If the fully irreducible vertex Λ is known, these three equations together
with Eq. (4) allow us to calculate the four unknown vertex functions Φr and F , see Fig. 7.
This set of equations is called the parquet equations.3 The solution can be done numerically
by iterating these four parquet equations. Reflecting how we arrived at the parquet equations,
the reader will realize that the parquet equations are nothing but a classification of Feynman
diagrams into fully irreducible diagrams and diagrams reducible in the three channels r.

3Sometimes, only Eq. (5) is called the parquet equation and the equations of type Eq. (10) remain under the
name Bethe-Salpeter equations.
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Σ F +=   − −

Fig. 8: Equation of motion (Schwinger-Dyson equation) for calculating the self-energy Σ from
the bare interaction U , the reducible vertex F and the Green function lines G. The second and
third diagram on the right-hand side are the Hartree and Fock diagrams, respectively, which
are not included in the first term.

The thoughtful reader will have also noticed that the interacting Green function enters Eq. (10).
This G can be calculated by one additional layer of self consistency. If the reducible vertex F is
known, the self-energy follows from the Heisenberg equation of motion (also called Schwinger-
Dyson equation in this context). This is illustrated in Fig. 8 and mathematically reads

Σ(14) = −U(12′3′1′)G(1′4′)G(23′)G(2′3)F (4′234) +U(1234)G(23)−U(1432)G(23) (11)

That is, the numerical solution of the four parquet equations has to be supplemented by the
Schwinger-Dyson Eq. (11) and the Dyson Eq. (1), so that also G and Σ are calculated self-
consistently.
Let us also note that these general equations, while having a simple structure in the 1234

notation, can be further reduced for practical calculations: the Green functions are diagonal
G(3′2′) = G(3′3′) δ2′3′ , there is a severe restriction in spin, there is SU(2) symmetry and one
can decouple the equations into charge(spin) channels Γph↑↑ + (−)Γph↑↓. A detailed discussion
is beyond the scope of these lecture notes. For more details on the parquet equations see [23],
for a derivation of the equation of motion also see [24].

2.2 Dynamical vertex approximation (DΓA)

Hitherto, everything has been exact. If we know the exact fully irreducible vertex Λ, we can
calculate through the parquet equations, Fig. 7 [Eqs. (5) and (10)], the full vertex F ; from
this, through the Schwinger-Dyson equation of motion (11), the self-energy Σ; and through
the Dyson Eq. (1), the Green function G. With a new G we can (at fixed Λ) recalculate F ,
etc. until convergence. Likewise, if we know the exact irreducible vertex Γr in one channel
r, we can calculate F through the corresponding Bethe-Salpeter Eq. (6-8) and from this (self
consistently) obtain Σ and G.
But Λ (or Γr) still consists of an infinite set of Feynman diagrams that we usually do not know.
Since the parquet (or Bethe-Salpeter) equations generate many additional diagrams, there are,
however, many fewer (albeit still infinitely many) diagrams for Λ (or Γr) than for F . In the case
of Λ, the bare interaction U is included but the next term is already a diagram of fourth(!) order
in U (the so-called envelope diagram), see Fig. 9. There are no two-particle fully irreducible
diagrams of second or third order in U .
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Fig. 9: Lowest order Feynman diagrams for the fully irreducible vertex Λ.

One approach is hence to approximate Λ by the bare interaction U only, i.e., the first two terms
in Fig. 9. This is the so-called parquet approximation [23]. For strongly correlated electrons
this will not be enough. A deficiency is, for example, that the parquet approximation does not
yield Hubbard bands.

In DΓA, we hence take instead all Feynman diagrams for Λ but restrict ourselves to their local
contribution, Λloc. This approach is non-perturbative in the local interaction U . It is putting the
DMFT concept of locality to the next, i.e., to the two-particle, level. We can extend this con-
cept to the n-particle fully irreducible vertex, so that by increasing n systematically more and
more Feynman diagrammatic contributions are generated; and for n→∞ the exact solution is
recovered, see Table 2 above.

In practice, one has to truncate this scheme at some n, hitherto at the two-particle-vertex level
(n = 2). The local fully irreducible two-particle vertex Λ can be calculated by solving an
Anderson impurity model that has the same local U and the same Green function G. This is
because such an Anderson impurity model yields exactly the same (local) Feynman diagrams
Λloc. It is important to note that the locality for Λ is much better fulfilled than that for Σ. Even
in two dimensions, Λ is essentially k-independent, i.e., local. This has been demonstrated by
numerical calculations for the two-band Hubbard model, see [25]. In contrast, for the same set
of parameters Σ is strongly k-dependent, i.e., non-local. Also Γr and F are much less local
than Λ, see [25]. There might be parameter regions in two dimensions or one-dimensional
models where Λ also exhibits a sizable non-local contribution. One should keep in mind that
DΓA at the n = 2 level is still an approximation. This approximation includes however not
only DMFT but on top of that also non-local correlations on all length scales so that important
physical phenomena can be described, and even in two dimensions substituting Λ by its local
contribution Λloc is a good approximation, better than replacing Σ by its local contribution Σloc

as in DMFT.
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Fig. 10: Top: Local full vertex F in the magnetic (m) and charge or density (d) channel, i.e.,
F↑↑ ± F↑↓, as a function of the two incoming fermionic frequencies ν = (2n + 1)πT and
ν ′ = (2n′ + 1)πT at transferred bosonic frequency ω = 0 for the three dimensional Hubbard
model at U = 0.5, T = 1/26 (in units of nearest neighbor hopping 2

√
6t ≡ 1). Middle:

Corresponding particle-hole irreducible vertex Γph (two left panels) and particle-particle vertex
in the singlet (s) and triplet (t) spin combination. The transversal particle-hole channel follows
from Γph by (crossing) symmetry. Bottom: Fully irreducible vertex Λm(d) for the two spin
combinations. For all figures, the bare interaction U has been subtracted from the vertices
(reproduced from [26]).

When solving the Anderson impurity model numerically, one does not obtain Λloc directly but
first the local susceptibilities χloc (or the two-particle Green function). Going from here to Λloc

is possible as follows: from χloc and Gloc, we obtain the local reducible vertex Floc [via the
local version of Eq. (2)], from this in turn we get Γrloc [via inverting the local version of the
Bethe-Salpeter Eqs. (6-8)], Φrloc [via the local version of Eq. (5)], and finally Λloc [via the local
version of Eq. (4)].

Fig. 10 shows the reducible vertex F , the irreducible vertex in the particle-hole channel Γph
and the fully irreducible vertex Λ for the three-dimensional Hubbard model on a simple cubic
lattice. For more details on the calculation of Λloc, see [26] and [22]. Also note that Γrloc
diverges at an interaction strength U below the Mott-Hubbard metal-insulator transition, which
signals the breakdown of perturbation theory [27].
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Fig. 11: Flow diagram of the DΓA approach. Starting from a test Green function G (e.g.,
that of DMFT), the local susceptibility and local full vertex Floc is calculated by solving an
Anderson impurity model. To this end, the non-local Green function G0 of an Anderson impurity
is adjusted by Eq. (12) until this G0 impurity model has the given interacting G. From Floc in
turn, the inversion of the parquet and Bethe-Salpeter equations allow the calculation of the
local fully irreducible vertex Λloc. This is the input of the parquet equations for calculating the
non-local vertex F and through the equation of motion and the Dyson equation, the DΓA self-
energyΣ and Green functionG. In a self-consistent calculation a new local vertex is calculated
from G etc. until convergence.

2.2.1 Self consistency

After calculating Λloc, we can calculate the full vertex F through the parquet equations, Fig. 7;
and through the Schwinger-Dyson equation, Fig. 8, the non-local self-energy Σ and Green
function G, as discussed in Section 2.1. Hitherto, all DΓA calculations have stopped at this
point. That is, F and G are determined self-consistently but Λloc is not recalculated.

However, in principle, one can self-consistently iterate the approach. From the new G we can
calculate a new Gloc. From this and U we obtain a new vertex, etc. until convergence, see
Fig. 11. This self-consistency cycle is similar to that of the DMFT but now includes self-
consistency on the two-particle (Λ) level.

Please note that the Anderson impurity model has now to be calculated with the interacting
Gloc from DΓA, which is different from the Gloc of DMFT. As numerical approaches solve the
Anderson impurity model for a given non-interacting Green function G0, we need to adjust this
G0 until the Anderson impurity model’s Green function G agrees with the DΓA Gloc. This is
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Fig. 12: Self-energy Σii+1 between neighboring sites on a six-site Hubbard ring (see inset),
comparing DMFT (zero non-local Σii+1), DΓA and the exact solution. Parameters: U = 2t,
T = 0.1t with t being the nearest-neighbor hopping on the ring (reproduced from [29]).

possible by iterating G0 as follows:

[Gnew0 (ν)]−1 =
[
Gold0 (ν)

]−1
+ [Gloc(ν)]−1 −

[
Gold(ν)

]−1
, (12)

until convergence. Here, Gold0 and Gold denote the non-interacting and interacting Green func-
tion of the Anderson impurity model from the previous iteration. This G0-adjustment is indi-
cated in Fig. 11 by the secondary cycle.
Fig. 12 compares the DΓA self energies calculated this way, i.e., the DΓA full parquet solution,
with DMFT and the exact solution. The results are for a simple one-dimensional Hubbard
model with nearest neighbor hopping, six sites and periodic boundary conditions so that the
exact solution is still possible by an exact diagonalization of the Hamiltonian. This can be
considered as a simple model for a benzene molecule. The DΓA results have been obtained in a
“one-shot” calculation with the DMFTG as a starting point. The good agreement between DΓA
and the exact solution shows that DΓA can be employed for quantum chemistry calculations of
correlations in molecules, at least if there is a gap [HOMO-LUMO gap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)].
For molecules with degenerate ground states (i.e., a peak in the spectral function at the Fermi
level), the agreement is somewhat less impressive; note that one dimension is the worst possible
case for DΓA.
In Fig. 12, the first parquet DΓA results have been shown. However, most DΓA calculations
hitherto employed a simplified scheme based on ladder diagrams, see Fig. 13. These calcula-
tions neglect one of the three channels in the parquet equations: the particle-particle channel.
Both the particle-hole (ph) and the transversal particle-hole channel (ph) are taken into account.
These channels decouple for the spin and charge vertex and can hence be calculated by solving
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Fig. 13: Flow diagram of the DΓA ladder approach. Same as Fig. 11 but solving the Bethe-
Salpeter equation(s) with the local irreducible vertex Γrloc in (two) channel(s) r instead of the
parquet equations with the fully irreducible vertex Λ. Instead of the self-consistency, it is better
to employ a so-called Moriya λ-correction in this case.

the simpler Bethe-Salpeter equations instead of the full parquet equations. If one neglects non-
local contributions in one of the channels, it is better to restrict oneself to non-self-consistent
calculations since part of the neglected diagrams cancel with diagrams generated by the self
consistency. Instead one better does a “one shot” calculation mimicking the self-consistency by
a so-called λ correction, see [30] for details. Physically, neglecting the particle-particle chan-
nel is justified if non-local fluctuations of particle-particle type are not relevant. Whether this
is the case or not depends on the model and parameter range studied. Such particle-particle
fluctuations are, e.g., relevant in the vicinity of superconducting instabilities, where they need
to be considered. In the vicinity of antiferromagnetic order on the other hand, the two particle-
hole channels are the relevant ones (and only their magnetic spin combination). These describe
antiferromagnetic fluctuations, coined paramagnons in the paramagnetic phase above the an-
tiferromagnetic transition temperature. The DΓA results in the next section are for the half-
filled Hubbard model. Here we are not only away from any superconducting instability, but at
half-filling the interaction also suppresses particle-particle fluctuations. Hence, for the results
presented below using the ladder instead of the full parquet approximation is most reasonable.
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Fig. 14: Phase diagram of the Hubbard model on a cubic lattice with nearest neighbor hopping
2
√

6t ≡ 1. The dashed black lines show the DMFT Néel temperature TN and the DMFT
crossover region from a paramagnetic metal (PM) to a paramagnetic insulator (PI). Non-local
correlations reduce TN with good agreement between DΓA [31], DCA [32], lattice quantum
Monte Carlo (QMC) [33], as well as determinantal diagrammatic Monte Carlo (DDMC) before
[34] and after [35] our DΓA results. Note, for the lowest U value, Ref. [35] could only give
an upper bound for TN which according to DDMC could be much smaller as indicated by the
arrow.

3 Two highlights

3.1 Critical exponents of the Hubbard model

The Hubbard model is the prototypical model for strong electronic correlations. At half fill-
ing it shows an antiferromagnetic ordering at low enough temperatures T – for all interaction
strengths U > 0 if the lattice has perfect nesting. Fig. 14 shows the phase diagram of the half-
filled three-dimensional Hubbard model (all energies are in units of D = 2

√
6t ≡ 1, which

has the same standard deviation as a Bethe lattice with half bandwidth D). At weak interac-
tion strength, we have a Slater antiferromagnet which can be described by Hartree-Fock theory
yielding an exponential increase of the Néel temperature with U . At strong interactions, we
have preformed spins with a Heisenberg interaction J = 4t2/U yielding a Heisenberg antifer-
romagnet with TN ∼ J . In-between these limits, TN is maximal.
All of this can be described by DMFT. However, since the DMFT is mean-field with respect
to the spatial dimensions, it overestimates TN . This can be overcome by including non-local
correlations, i.e., spatial (here antiferromagnetic) fluctuations. These reduce TN . In this respect,
there is a good agreement between DΓA, DCA and lattice QMC, see Fig. 14. The biggest
deviations are observed for the smaller interaction strength. In principle, these differences might
originate from the fact that the DΓA calculations are not yet self-consistent and only use the
Bethe-Salpeter Eqs. (6) and (7) in the two particle-hole channels instead of the full parquet
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Fig. 15: Inverse antiferromagnetic spin susceptibility as a function of T for different interac-
tions U as obtained by DΓA (lower inset: DMFT), showing in the vicinity of the phase transi-
tion a χAF ∼ (T − TN)−2ν behavior, with a critical exponent ν ∼ 0.7 in agreement with the
three dimensional Heisenberg model [36]. (reproduced from [31] c© by the American Physical
Society).

equations (5) and (10). On the other hand, however, we observe that long-range correlations are
particularly important at weak coupling, cf. Section 3.2. Such long-ranged correlations cannot
be captured by the cluster extensions of DMFT or lattice QMC since these are restricted to
maximally ∼ 10 sites in all three directions. More recent and accurate DDMC calculations on
larger clusters [35] indeed show a smaller TN and, in contrast to DCA and lattice QMC, better
agree with DΓA, see Fig. 14.

Even more important are long-range correlations in the immediate vicinity of the phase tran-
sition and for calculating the critical exponents. Each finite cluster will eventually show a
mean-field exponent. In this respect, we could calculate for the first time the critical exponents
of the Hubbard model [31]. In Fig. 15 we show the antiferromagnetic spin susceptibility, which
shows a mean-field-like behavior χAF ∼ (T − TN)−1 at high temperature (and in DMFT).
In the vicinity of the phase transition, however, long-range correlations become important and
yield another critical exponent χAF ∼ (T − TN)−2×0.7, which agrees with that of the three
dimensional Heisenberg model [36] (as is to be expected from universality). In contrast, for
the Falikov-Kimball model, the critical exponents calculated by the related Dual-Fermion ap-
proach [37] agree with those of the Ising model.

Except for the immediate vicinity of the phase transition, DMFT nonetheless yields a reliable
description of the paramagnetic phase, at least for one-particle quantities such as the self-energy
and spectral function. The susceptibility [31] and entropy [34] show deviations in a larger T -
interval above TN .



10.18 Karsten Held

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0.0 0.5 1.0 1.5 2.0 2.5 3.0

T

U

DMFTCDMFT

DΓA

TN

3D

TN

DMFT

VCA

insulator

metal

X

TN

2D

BSS-QMC

Fig. 16: Temperature T vs. interaction U phase diagram of the two dimensional Hubbard model
on a square lattice with nearest-neighbor hopping (all energies are in units of D = 4t ≡ 1,
yielding the same standard deviation as for the 3D phase diagram). From local correlations
(DMFT [39]), via short-range correlations (CDMFT [40] and variational cluster approxima-
tion (VCA) [38]), to long-range correlations (DΓA [38] and BSSQMC [38]), the critical in-
teraction strength for the metal-insulator transition is reduced to Uc = 0. The light gray lines
denote the DMFT [32] and DΓA [31] TN (reproduced from [38]).

3.2 Fate of the false Mott-Hubbard transition in two dimensions

As a second example, we review results for the interplay between antiferromagnetic fluctuations
and the Mott-Hubbard transition in two dimensions. Even though the Hubbard model has been
studied for 50 years, astonishingly little is known exactly. In one dimension it can be solved by
the Bethe ansatz, and there is no Mott-Hubbard transition for the half-filled Hubbard model: for
any finite interaction it is insulating. In infinite dimensions, on the other hand, DMFT provides
for an exact (numerical) solution. It has been one of the big achievements of DMFT to clarify the
nature of the Mott-Hubbard transition, which is of first order at a finite interaction strength [3,4],
see Fig. 16. From cluster extensions of DMFT, it has been concluded that the Mott-Hubbard
transition is actually at somewhat smaller U values and the coexistence region where two so-
lutions can be stabilized is smaller, see Fig. 16. However, again, these cluster extensions are
restricted to short-range correlations. In particular at low temperatures, there are strong long-
range antiferromagnetic spin fluctuations, which for example at U = 0.5 and T = 0.01 exceed
300 lattice sites [38]. The physical origin are antiferromagnetic fluctuations emerging above
the antiferromagnetically ordered phase. In two dimensions, this antiferromagnetic phase is re-
stricted to T = 0 due to the Memin-Wagner theorem, but antiferromagnetic fluctuations remain
strong even beyond the immediate vicinity of the ordered phase (at T = 0). These long-range
antiferromagnetic spin fluctuations (paramagnons) give rise to pseudogap physics, where first
only part of the Fermi surface becomes gapped but at lower temperatures the entire Fermi sur-
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face is gapped so that we have an insulating phase for any U > 0. Fig. 16 shows the devel-
opment from local correlations (which only yield an insulating phase for relatively large U ) to
additional short-range correlations (which reduce the critical Uc for the Mott-Hubbard transi-
tion) to long-range correlations (which reduce Uc to zero). At large U , we have localized spins
that can be described by a spin model or the Mott-insulating phase of DMFT. At smaller U ,
we also have an insulator caused by antiferromagnetic spin fluctuations. These smoothly go
over into the T = 0 antiferromagnetic phase, which is of Slater type for small U . Since the
correlations are exceedingly long-ranged, the nature of the low-temperature gap is the same as
the Slater antiferromagnetic gap, even though there is no true antiferromagnetic order yet.

4 Conclusion and outlook

In recent years, we have seen the emergence of diagrammatic extensions of DMFT. All these
approaches have in common that they calculate a local vertex and construct diagrammatically
non-local correlations from this vertex. In regions of the phase diagram where non-local corre-
lations are short-range, results are similar as for cluster extensions of DMFT. However, the dia-
grammatic extensions also offer the opportunity to include long-range correlations on an equal
footing. This allowed us to study critical phenomena and to resign the Mott-Hubbard transition
in the two-dimensional Hubbard model to its fate (there is no Mott-Hubbard transition).
These were just the first steps. Indeed, the diagrammatic extensions offer a new opportunity
to address the hard problems of solid state physics, from superconductivity and quantum crit-
icality to quantum phenomena in nano- and heterostructures. Besides a better physical un-
derstanding by means of model systems, also realistic materials calculations are possible – by
AbinitioDΓA [41]. Taking the bare Coulomb interaction and all local vertex corrections as a
starting point, AbinitioDΓA includes DMFT, GW and non-local correlations beyond within a
common underlying framework. Both on the model level and for realistic materials calcula-
tions, there is plenty of physics to explore.
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1 Introduction

Correlated electron compounds exhibit very distinct behavior on different energy and length
scales. Collective phenomena emerge at scales far below the bare energy scales of the mi-
croscopic Hamiltonian. For example, in high-temperature superconductors one bridges three
orders of magnitude from the highest scale, the bare Coulomb interaction, via the intermediate
scale of short-range magnetic correlations, down to the lowest scale of d-wave superconductiv-
ity and other ordering phenomena (see Fig. 1). This diversity of scales is a major obstacle to a
direct numerical solution of microscopic models, since the most interesting phenomena emerge
only in large systems at low temperatures. It is also hard to tackle by conventional many-body
methods if one tries to treat all scales at once and within the same approximation, for example
by summing a subclass of Feynman diagrams. Perturbative approaches which do not separate
different scales are plagued by infrared divergences and are therefore often inapplicable even at
weak coupling.

It is thus natural to treat degrees of freedom with different energy or length scales step by step.
This is the main idea behind all renormalization group (RG) schemes. Using a functional in-
tegral representation this strategy can be implemented by integrating out degrees of freedom
(bosonic or fermionic fields) successively, following a suitable order of scales. One thus gener-
ates a one-parameter family of effective actions that interpolates smoothly between the bare ac-
tion of the system, as given by the microscopic Hamiltonian, and the final effective action from
which all physical properties can be extracted. The Green or vertex functions corresponding to
the effective action at scale Λ obey a hierarchy of differential flow equations. This hierarchy
is exact and involves the flow of functions of generally continuous variables. For these reasons
this approach is frequently referred to as “exact” or “functional” RG [1–3].

The exact hierarchy can be solved exactly only in special cases, where the underlying model
can also be solved exactly (and more easily) by other means. However, the functional RG is a
valuable source for devising powerful new approximation schemes, which can be obtained by
truncating the hierarchy and/or by a simplified parametrization of the Green or vertex functions.
These approximations have several distinctive advantages: i) they have a renormalization group
structure built in; that is, scales are handled successively and infrared singularities are thus
treated properly; ii) they can be applied directly to microscopic models, not only to effective
field theories that capture only some asymptotic behavior; iii) they are physically transparent;
for example, one can see directly how and why new correlations form upon lowering the scale;
iv) one can use different approximations at different scales. Small steps from a scale Λ to
a slightly smaller scale Λ′ are much easier to control than an integration over all degrees of
freedom in one shot.

This lecture provides a concise introduction to the functional RG in the context of interacting
Fermi systems. To illustrate the method at work, I review applications of the functional RG to
the two-dimensional Hubbard model. A more detailed presentation and many other applications
can be found in the recent review article Ref. [3]. In the last part I present the very recent idea [4]
of using the DMFT solution as a non-perturbative starting point for a functional RG flow.
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Fig. 1: Energy scales in cuprate high-temperature superconductors. Magnetic interactions and
superconductivity are generated from the kinetic energy and the Coulomb repulsion. Figure
taken from Ref. [3].

2 Functional RG for Fermi systems

Already in the 1970s, various RG methods were used to deal with infrared singularities arising
in one-dimensional Fermi systems [5]. Renormalization group approaches dealing with inter-
acting fermions in higher dimensions were developed much later. Due to the extended (not
point-like) geometry of the Fermi surface singularity in dimensions d > 1, the renormaliza-
tion group flow cannot be reduced to a small number of running couplings, even if irrelevant
interactions are discarded. Aiming at a mathematical control of interacting Fermi systems,
Feldman and Trubowitz [6], and independently Benfatto and Gallavotti [7], formulated a rig-
orous fermionic version of Wilson’s momentum-shell RG [8] for interacting fermions in di-
mensions d > 1. Important rigorous results for two-dimensional systems have indeed been
obtained [9, 10]. An essential message from these results is that no hitherto unknown instabil-
ities or non-perturbative effects occur in Fermi systems with sufficiently weak interactions, at
least in the absence of special features such as van Hove singularities at the Fermi level.
The Wilsonian RG for interacting Fermi systems was popularized among physicists by Shankar
[11] and Polchinski [12], who presented some of the main ideas in a pedagogical style. In
particular, they discussed an intuitive RG perspective of Fermi liquid theory.
The Wilsonian RG is not only useful for a rigorous understanding of interacting fermion sys-
tems. A specific variant of Wilson’s RG known as exact or functional RG turned out to provide a
valuable framework for computational purposes. Approximations derived from exact functional
flow equations play an increasingly important role in the theory of interacting Fermi systems [3].
Exact flow equations describe the evolution of a generating functional for all many-particle cor-
relation or vertex functions as a function of a flow parameter Λ, usually a cutoff. They can be
easily derived from a functional integral representation.
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For computational purposes, the exact flow equation for the effective action ΓΛ, first derived
in the context of bosonic field theories by Wetterich [13], turned out to be most convenient.
The effective action is the generating functional for one-particle irreducible vertex functions,
which are obtained by taking derivatives with respect to the source fields. The flow parameter Λ
describes a regularization of the bare action, which regularizes infrared divergencies in pertur-
bation theory. The regularization is removed at the end of the flow, say for Λ → 0. The initial
regulator (for Λ = Λ0) can be chosen such that ΓΛ0 is given by the bare action. The flow of ΓΛ

then provides a smooth interpolation between the bare action of the system and the final effec-
tive action Γ , from which any desired information can be extracted. This flow is determined by
an exact functional differential equation [13]. Expanding in the fields one obtains a hierarchy
of flow equations for the one-particle irreducible vertex functions.
The expression functional RG stems from the feature that the exact flow equations describe
the flow of a functional or (equivalently) of a hierarchy of functions. An important difference
compared to Wilson’s original formulation is that a complete set of source fields is kept in the
flowing generating functionals, not only those corresponding to scales below Λ. Hence, the full
information on the properties of the system remains accessible, not only the low energy or long
wavelength behavior.
In the remainder of this section, I present the exact flow equations and their expansion in the
source fields. The first subsection summarizes the standard functional integral formalism as
described, for example, in the excellent textbook by Negele and Orland [14].

2.1 Generating functionals

A system of interacting fermions can be represented by Grassmann fields ψ, ψ̄, and an action
of the form

S[ψ, ψ̄] = −(ψ̄, G−1
0 ψ) + V [ψ, ψ̄] , (1)

where V [ψ, ψ̄] is an arbitrary many-body interaction, and G0 is the propagator of the non-
interacting system. The bracket (., .) is a shorthand notation for the sum

∑
K ψ̄K (G−1

0 ψ)K ,
where (G−1

0 ψ)K =
∑

K′ G
−1
0 (K,K ′)ψK′ . The Grassmann field index K collects the quantum

numbers of a suitable single-particle basis set and the Matsubara frequency. The K-sums in-
clude integrals over continuous variables, and normalization factors such as temperature and
volume. In particular, for spin-1/2 fermions with a single-particle basis labeled by momentum k

and spin orientation σ, one has K = (k0,k, σ), where k0 is the fermionic Matsubara frequency.
If the bare part of the action is translation and spin-rotation invariant, the bare propagator has
the diagonal and spin-independent form G0(K,K ′) = δKK′G0(K) with

G0(K) =
1

ik0 − ξk
, (2)

where ξk = εk−µ is the single-particle energy relative to the chemical potential. A two-particle
interaction has the general form

V [ψ, ψ̄] =
1

4

∑
K1,K2,K′

1,K
′
2

V (K ′1, K
′
2;K1, K2) ψ̄K′

1
ψ̄K′

2
ψK2ψK1 . (3)
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The generating functional

G[η, η̄] = − log

∫ ∏
K

dψKdψ̄K e
−S[ψ,ψ̄] e(η̄,ψ)+(ψ̄,η) , (4)

yields connected m-particle Green functions via derivatives with respect to the source fields,
that is,

G(2m)(K1, . . . , Km;K ′1, . . . , K
′
m) = −〈ψK1 . . . ψKmψ̄K′

m
. . . ψ̄K′

1
〉c

= (−1)m
∂m

∂η̄K1 . . . ∂η̄Km

∂m

∂ηK′
m
. . . ∂ηK′

1

G[η, η̄]

∣∣∣∣
η=η̄=0

, (5)

where 〈. . .〉c is the connected average of the product of Grassmann variables between the brack-
ets. The one-particle Green function G(2) is the propagator of the interacting system, which is
usually denoted without the superscript as G.
Legendre transforming G[η, η̄] yields the effective action

Γ [ψ, ψ̄] = (η̄, ψ) + (ψ̄, η) + G[η, η̄] , (6)

where ψ = −∂G/∂η̄ and ψ̄ = ∂G/∂η . The effective action is the generating functional for
one-particle irreducible vertex functions,

Γ (2m)(K ′1, . . . , K
′
m;K1, . . . , Km) =

∂2mΓ [ψ, ψ̄]

∂ψ̄K′
1
. . . ∂ψ̄K′

m
∂ψKm . . . ∂ψK1

∣∣∣∣∣
ψ,ψ̄=0

. (7)

The Legendre correspondence between the functionals G and Γ yields relations between the
Green functions G(2m) and the vertex functions Γ (2m). In particular,

Γ (2) = G−1 = G−1
0 −Σ , (8)

where Σ is the self-energy. The two-particle Green function is related to the two-particle vertex
by

G(4)(K1, K2;K ′1, K
′
2) =

∑
P1,P2,P ′

1,P
′
2

G(K1, P
′
1)G(K2, P

′
2)

× Γ (4)(P ′1, P
′
2;P1, P2)G(P1, K

′
1)G(P2, K

′
2) . (9)

Generally, the m-particle Green functions are obtained by adding all trees that can be formed
with vertex functions of equal or lower order and G-lines [14].
The effective action obeys the reciprocity relations

∂Γ

∂ψ
= −η̄ , ∂Γ

∂ψ̄
= η . (10)

The second functional derivatives of G and Γ with respect to the fields are also reciprocal. We
define the matrices of second derivatives at finite fields

G(2)[η, η̄] =


− ∂2G
∂η̄K∂ηK′

∂2G
∂η̄K∂η̄K′

∂2G
∂ηK∂ηK′

− ∂2G
∂ηK∂η̄K′

 = −
(
〈ψKψ̄K′〉 〈ψKψK′〉
〈ψ̄Kψ̄K′〉 〈ψ̄KψK′〉

)
, (11)
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Fig. 2: Momentum space region around the Fermi surface excluded by a sharp momentum cutoff
in a two-dimensional lattice fermion system. Figure taken from Ref. [3].

and

Γ(2)[ψ, ψ̄] =


∂2Γ

∂ψ̄K′∂ψK

∂2Γ

∂ψ̄K′∂ψ̄K
∂2Γ

∂ψK′∂ψK

∂2Γ

∂ψK′∂ψ̄K

 , (12)

where the matrix elements in the second matrix of the last equation are just a more conventient
notation for those in the first matrix. The reciprocity relation for the second derivatives reads

Γ(2)[ψ, ψ̄] =
(
G(2)[η, η̄]

)−1
. (13)

Note that anomalous components are involved as long as the source fields are finite. Only at
η = η̄ = 0 and ψ = ψ̄ = 0, and in the absence of U(1) charge symmetry breaking one has the
simple relation Γ (2) = G−1.

2.2 Exact flow equation

We now endow the bare propagator G0 with a dependence on a flow parameter Λ. Usually Λ
is a cutoff suppressing contributions from fields with a single-particle energy or a Matsubara
frequency below the scale Λ in the functional integral. For example, in a translation invariant
system this may be done by modifying G0(K) to

GΛ
0 (K) =

ΘΛ(k)

ik0 − ξk
, (14)

where ΘΛ(k) is a function that vanishes for |ξk| � Λ and tends to one for |ξk| � Λ. In this
way the infrared singularity of the propagator at k0 = 0 and ξk = 0 is cut off at the scale Λ. The
simplest choice for ΘΛ is a step function, ΘΛ(k) = Θ(|ξk| − Λ), such that momenta in a shell
around the Fermi surface are strictly excluded (see Fig. 2).



Functional RG and DMFT 11.7

In the first applications of the functional RG to interacting Fermi systems a momentum cutoff
was used, but later a frequency cutoff became more popular, since the latter does not interfere
with Fermi surface shifts, and particle-hole excitations with a small momentum transfer are
captured smoothly by the flow [15]. Moreover, a frequency cutoff can also be used in systems
without translation invariance, such as systems with impurities [16].
The generating functionals constructed with GΛ

0 instead of G0 depend on the flow parameter
and will be denoted by GΛ[η, η̄] and ΓΛ[ψ, ψ̄]. The original functionals G and Γ are recovered
in the limit Λ → 0. The evolution of ΓΛ[ψ, ψ̄] as a function of Λ is described by an exact
functional flow equation,

d

dΛ
ΓΛ[ψ, ψ̄] = −

(
ψ̄, ∂ΛQ

Λ
0ψ
)
− 1

2
Tr
[(
∂ΛQΛ

0

) (
Γ(2)Λ[ψ, ψ̄]

)−1
]
, (15)

where

QΛ
0 =

(
QΛ

0 (K,K ′) 0

0 −QΛ
0 (K ′, K)

)
(16)

with QΛ
0 = (GΛ

0 )−1, and Γ(2)Λ[ψ, ψ̄] is the matrix of second derivatives of ΓΛ at finite fields,

Γ(2)Λ[ψ, ψ̄] =


∂2ΓΛ

∂ψ̄K∂ψK′

∂2ΓΛ

∂ψ̄K∂ψ̄K′

∂2ΓΛ

∂ψK∂ψK′

∂2ΓΛ

∂ψK∂ψ̄K′

 . (17)

The trace on the right hand side of the flow equations includes a sum over the Grassmann field
index K. Note that the inversion of Γ(2)Λ[ψ, ψ̄] in Eq. (15) is not merely an inversion of a 2× 2

matrix, since it involves also the additional matrix structure coming from the dependence on
the Grassmann field indices K and K ′. A derivation of the functional flow equation (15) is
presented in Appendix A.
Alternative definitions of the effective action ΓΛ, differing by interaction-independent terms,
have also been used. A frequently used variant is [1]

ΓΛ
R [ψ, ψ̄] = ΓΛ[ψ, ψ̄] + (ψ̄, RΛψ) , (18)

where RΛ = QΛ
0 −Q0. The additional quadratic term cancels the first term in the flow equation

(15) for ΓΛ, and one obtains the equivalent flow equation

d

dΛ
ΓΛ
R [ψ, ψ̄] = −1

2
Tr

[(
∂ΛRΛ

) (
Γ

(2)Λ
R [ψ, ψ̄] + RΛ

)−1
]
, (19)

where RΛ = diag
(
RΛ(K,K ′),−RΛ(K ′, K)

)
. The functional ΓΛ

R and its anologue for bosonic
fields is known as effective average action in the literature [1]. Both ΓΛ

R and ΓΛ tend to the
same effective action Γ in the limit Λ→ 0, where RΛ vanishes.
Choosing the initial cutoffΛ0 such thatGΛ0

0 is identically zero, all contributions to the functional
integral are suppressed. For a sharp momentum cutoff this is achieved by choosing Λ0 larger
than maxk |ξk|, while for a frequency cutoff one has to start with Λ0 = ∞ to eliminate all
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modes. At the initial scale Λ0, one then has the simple initial condition ΓΛ0
R [ψ, ψ̄] = S[ψ, ψ̄],

while

ΓΛ0 [ψ, ψ̄] = −(ψ̄, QΛ0
0 ψ) + V [ψ, ψ̄] = SΛ0 [ψ, ψ̄] = S[ψ, ψ̄]− (ψ̄, RΛψ) . (20)

Hence, ΓΛ
R interpolates smoothly between the (unregularized) bare action S and the final effec-

tive action Γ , while ΓΛ interpolates between the regularized bare action SΛ0 and Γ . The initial
“regularization” with QΛ0

0 = ∞ amounts to a complete suppression of all contributions to the
functional integral, not just a regularization of divergent contributions.

2.3 Expansion in the fields

Expanding the functional flow equation (15) for the effective action in powers of the fields
yields a hierarchy of flow equations for the m-particle vertex functions. To expand the inverse
of Γ(2)Λ[ψ, ψ̄], we split

Γ(2)Λ[ψ, ψ̄] = (GΛ)−1 − Σ̃Λ[ψ, ψ̄] , (21)

where

GΛ =
(

Γ(2)Λ[ψ, ψ̄]
∣∣
ψ=ψ̄=0

)−1

=

(
GΛ(K,K ′) 0

0 −GΛ(K ′, K)

)
, (22)

and Σ̃Λ[ψ, ψ̄] contains all contributions which are at least quadratic in the fields. Now the
inverse of Γ(2)Λ[ψ, ψ̄] can be expanded in a geometric series,(

Γ(2)Λ[ψ, ψ̄]
)−1

=
(
1−GΛΣ̃Λ[ψ, ψ̄]

)−1
GΛ

=
[
1 + GΛΣ̃Λ[ψ, ψ̄] + (GΛΣ̃Λ[ψ, ψ̄])2 + . . .

]
GΛ . (23)

Inserting this into the functional flow equation yields

d

dΛ
ΓΛ[ψ, ψ̄] =− Tr

[
(∂ΛQ

Λ
0 )GΛ

]
−
(
ψ̄, ∂ΛQ

Λ
0ψ
)

+
1

2
Tr
[
SΛ(Σ̃Λ[ψ, ψ̄] + Σ̃Λ[ψ, ψ̄]GΛΣ̃Λ[ψ, ψ̄] + . . . )

]
, (24)

with the single scale propagator

SΛ = −GΛ
(
∂ΛQΛ

0

)
GΛ =

d

dΛ
GΛ
∣∣
ΣΛ fixed

. (25)

The latter usually has its main support at the scale Λ. For example, for a sharp momentum
cutoff acting on ξk as in Eq. (14), SΛ has a delta-peak at |ξk| = Λ and vanishes elsewhere.
Expanding ΓΛ[ψ, ψ̄] and Σ̃Λ[ψ, ψ̄] in powers of ψ and ψ̄, and comparing coefficients in Eq. (24),
one obtains the flow equations for the self-energy ΣΛ = QΛ

0 − Γ (2)Λ, the two-particle vertex
Γ (4)Λ, and all other m-particle vertices. The first three equations of this hierarchy are repre-
sented diagrammatically in Fig. 3. Note that only one-particle irreducible one-loop diagrams
contribute, and internal lines are dressed by the self-energy. Contributions with several loops
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Fig. 3: Diagrammatic representation of the flow equations for the self-energy, the two-particle
vertex, and the three-particle vertex. Lines with a dash correspond to the single-scale propaga-
tor SΛ, and the other lines to the full propagator GΛ. Figure taken from Ref. [3].

are generated only indirectly upon inserting the flow of higher order vertices into lower order
flow equations. The flow equation for the self-energy has the simple form

d

dΛ
ΣΛ(K ′, K) =

∑
P,P ′

SΛ(P, P ′)Γ (4)Λ(K ′, P ′;K,P ) . (26)

The flow equation for the two-particle vertex reads

d

dΛ
Γ (4)Λ(K ′1, K

′
2;K1, K2) = −

∑
P1,P ′

1

∑
P2,P ′

2

GΛ(P1, P
′
1)SΛ(P2, P

′
2)

×
{
Γ (4)Λ(K ′1, K

′
2;P1, P2)Γ (4)Λ(P ′1, P

′
2;K1, K2)

−
[
Γ (4)Λ(K ′1, P

′
2;K1, P1)Γ (4)Λ(P ′1, K

′
2;P2, K2) + (P1 ↔ P2, P

′
1 ↔ P ′2)

]
+
[
Γ (4)Λ(K ′2, P

′
2;K1, P1)Γ (4)Λ(P ′1, K

′
1;P2, K2) + (P1 ↔ P2, P

′
1 ↔ P ′2)

]}
−
∑
P,P ′

SΛ(P, P ′)Γ (6)Λ(K ′1, K
′
2, P

′;K1, K2, P ) . (27)

There are several contributions that are quadratic in Γ (4)Λ, corresponding to the particle-particle,
direct particle-hole, and crossed particle-hole channel, respectively.
The one-particle irreducibility is a convenient feature of flow equations derived from the ef-
fective action ΓΛ[ψ, ψ̄]. Flow equations derived from other functionals, such as the Polchinski
equations [17] and their Wick ordered variant [9], contain also one-particle reducible contribu-
tions.
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t

t’

U

Fig. 4: Hubbard model with nearest and next-to-nearest neighbor hopping on a square lattice.

The full hierarchy of flow equations does not close at any finite order, since the flow of each
Γ (2m)Λ receives a contribution from a tadpole diagram with Γ (2m+2)Λ. Exact solutions of the
flow equation hierarchy are possible only for relatively simple models, such as the Luttinger
model [18], the reduced BCS model [19], or other mean-field models [20, 21], which can
also be solved more directly by other methods. Usually the hierarchy of flow equations has
to be truncated by neglecting effective interactions of higher order, and by using a simplified
parametrization of the functional dependence of the remaining interactions on momenta, fre-
quencies, et cetera. Truncations of the hierarchy at some finite order can be justified in case
of sufficiently weak interactions, or if higher order terms are suppressed due to small phase
space volumina [22]. Geometrical phase space restrictions are typically stronger in multi-loop
integrals. A simplified parametrization of effective interactions can be obtained by neglecting
dependences which become irrelevant in the low-energy limit.

3 Two-dimensional Hubbard model

Shortly after the discovery of high-temperature superconductivity in several cuprate compounds,
Anderson [23] pointed out that the essential physics of the electrons in the copper-oxide planes
of these materials could be described by the two-dimensional Hubbard model. The model
describes tight-binding electrons with inter-site hopping amplitudes tij and a local repulsion
U > 0, as specified by the Hamiltonian (see also Fig. 4)

H =
∑
i,j

∑
σ

tij c
†
iσcjσ + U

∑
j

nj↑nj↓ . (28)

Here c†iσ and ciσ are creation and annihilation operators for spin-1/2 fermions with spin orienta-
tion σ on a lattice site i, and njσ = c†jσcjσ. The number of lattice sites will be denoted by L. A
hopping amplitude −t between nearest neighbors and an amplitude −t′ between next-nearest
neighbors on a square lattice leads to the dispersion relation

εk = −2t(cos kx + cos ky)− 4t′(cos kx cos ky) (29)
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Fig. 5: Schematic shape of the gap function ∆k with dx2−y2-wave symmetry, for k tracing the
Fermi surface.

for single-particle states. This dispersion relation has saddle points at k = (0, π) and (π, 0),
which entail logarithmic van Hove singularities in the non-interacting density of states at the
energy εvH = 4t′.
In agreement with the generic phase diagram of the cuprates, the Hubbard model exhibits anti-
ferromagnetic order at half-filling, and has been expected to become a d-wave superconductor
away from half-filling in two dimensions for quite some time [24]. The exchange of antifer-
romagnetic spin fluctuations has been proposed as a plausible mechanism leading to d-wave
pairing [25–27]. In this picture, the BCS effective interaction Vkk′ is roughly proportional to
the spin correlation function χs(k−k′). Close to half-filling, χs(q) has a pronounced maximum
at or near the antiferromagnetic wave vector (π, π). As a consequence, the BCS gap equation

∆k = −
∫

d2k′

(2π)2
Vkk′

∆k′

2Ek′
(30)

with Ek = (ξ2
k + |∆k|2)1/2 has a solution with dx2−y2-wave symmetry such that the gap ∆k

has maximal modulus but opposite sign near the points (π, 0) and (0, π) in the Brillouin zone
[24], as illustrated in Fig. 5. This intuitive argument has been corroborated by a self-consistent
perturbative solution of the two-dimensional Hubbard model within the so-called fluctuation-
exchange approximation [28, 29].
The spin-fluctuation mechanism for pairing might be spoiled by other contributions to the BCS
interactions and also by spin density wave instabilities. It turned out to be very hard to detect
superconductivity in the Hubbard model by exact numerical computation [24, 30] as a conse-
quence of finite size and/or temperature limitations. Fortunately, the tendency toward antiferro-
magnetism and d-wave pairing is already captured by the two-dimensional Hubbard model at
weak coupling. Conventional perturbation theory breaks down for densities close to half-filling,
since competing infrared divergences appear as a consequence of Fermi surface nesting and van
Hove singularities. A controlled and unbiased treatment of these divergences is achieved by a
renormalization group analysis, which takes into account the particle-particle and particle-hole
channels on equal footing.
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Early RG studies of the two-dimensional Hubbard model started with simple scaling approaches,
very shortly after the discovery of high-Tc superconductivity [31–33]. These studies focused on
dominant scattering processes between the van Hove points in k-space, for which a small num-
ber of running couplings could be defined and computed on a one-loop level. Spin-density and
superconducting instabilities were identified from divergences of the corresponding correlation
functions.
A complete treatment of all scattering processes in the Brillouin zone is more complicated since
the effective interactions cannot be parametrized accurately by a small number of variables,
even if irrelevant momentum and energy dependences are neglected. The tangential momentum
dependence of effective interactions along the Fermi surface is strong and important in the low-
energy limit. Hence, one has to deal with the renormalization of functions. This problem is
treated most naturally by the functional RG.

3.1 Stability analysis at weak coupling

To detect instabilities in the weak-coupling limit, one can truncate the infinite hierarchy of
flow equations at second order in the effective two-particle interaction and discard all vertices
of higher order, and also self-energy corrections. The flow of the two-particle vertex is then
fully determined by the first contribution in the second line of Fig. 3. In the absence of self-
energy corrections, the internal lines are given by the bare propagatorGΛ

0 and its scale derivative
SΛ0 = d

dΛ
GΛ

0 .
Due to translation invariance on the lattice, GΛ

0 is diagonal in the momentum representation,
that is, GΛ

0 (K,K ′) = δKK′GΛ
0 (K), where K = (k, σ) with k = (k0,k). Hence, the truncated

(without Γ (6)Λ) flow equation (27) for the two-particle vertex can be written as
d

dΛ
ΓΛ(K ′1, K

′
2;K1, K2) = − 1

βL

∑
P,P ′

d

dΛ

[
GΛ

0 (P )GΛ
0 (P ′)

]
×

[ 1

2
ΓΛ(K ′1, K

′
2;P, P ′)ΓΛ(P, P ′;K1, K2)

−ΓΛ(K ′1, P
′;K1, P )ΓΛ(P,K ′2;P ′, K2)

+ΓΛ(K ′2, P
′;K1, P )ΓΛ(P,K ′1;P ′, K2)

]
. (31)

Here and in the following, we denote the two-particle vertex as ΓΛ, and we now write tempera-
ture (β = 1/T ) and volume factors explicitly. The three terms on the right-hand side correspond
to the particle-particle (PP), the direct particle-hole (PH) and the crossed particle-hole (PH’)
channel, respectively, see Fig. 6.
Due to spin rotation invariance, the spin structure of the two-particle vertex is relatively simple.
One can express the vertex by a single function V Λ depending only on momenta and Matsubara
frequencies [22],

ΓΛ(K ′1, K
′
2;K1, K2) = V Λ(k′1, k

′
2; k1, k2) δσ1σ1′δσ2σ2′ − V Λ(k′2, k

′
1; k1, k2) δσ1σ2′δσ2σ1′ . (32)

Alternatively, one may decompose the vertex in singlet and triplet components [34],

ΓΛ(K ′1, K
′
2;K1, K2) = ΓΛ

s (k′1, k
′
2; k1, k2)Sσ′

1,σ
′
2;σ1,σ2 + ΓΛ

t (k′1, k
′
2; k1, k2)Tσ′

1,σ
′
2;σ1,σ2 , (33)
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Fig. 6: One-loop flow equation for the two-particle vertex ΓΛ with the particle-particle channel
(PP) and the two particle-hole channels (PH and PH’) written explicitly.

where

Sσ′
1,σ

′
2;σ1,σ2 = 1

2

(
δσ1σ′

1
δσ2σ′

2
− δσ1σ′

2
δσ2σ′

1

)
,

Tσ′
1,σ

′
2;σ1,σ2 = 1

2

(
δσ1σ′

1
δσ2σ′

2
+ δσ1σ′

2
δσ2σ′

1

)
. (34)

Of course, one can easily compute ΓΛ
s and ΓΛ

t from V Λ and vice versa [21]. The singlet vertex
is symmetric, and the triplet vertex is antisymmetric under exchanges k1 ↔ k2 or k′1 ↔ k′2.
We now outline the steps made to cast the one-loop flow equations in a form amenable to a
numerical solution. To be specific, we use the singlet-triplet decomposition of the vertex and a
momentum cutoff. Carrying out the spin sum in the flow equation one obtains

∂ΛΓ
Λ
α (k′1, k

′
2; k1, k2) =−

∑
i=s,t

∑
j=s,t

[
CPP
αijβ

PP
ij (k′1, k

′
2; k1, k2)

+ CPH
αijβ

PH
ij (k′1, k

′
2; k1, k2) + CPH′

αij β
PH′

ij (k′1, k
′
2; k1, k2)

]
(35)

for α = s, t, where CPP
αij etc. are simple numerical coefficients [34] and

βPP
ij (k′1, k

′
2; k1, k2) =

1

2βL

∑
k,k′

∂Λ
[
GΛ

0 (k)GΛ
0 (k′)

]
ΓΛ
i (k′1, k

′
2; k, k′)ΓΛ

j (k, k′; k1, k2) ,

βPH
ij (k′1, k

′
2; k1, k2) = − 1

βL

∑
k,k′

∂Λ
[
GΛ

0 (k)GΛ
0 (k′)

]
ΓΛ
i (k′1, k; k1, k

′)ΓΛ
j (k′, k′2; k, k2) ,

βPH′

ij (k′1, k
′
2; k1, k2) = −βPH

ij (k′2, k
′
1; k1, k2) . (36)

It is clearly impossible to solve the flow equations with the full energy and momentum depen-
dence of the vertex function, since ΓΛ has three independent energy and momentum variables.
However, the flow equations can be simplified considerably by ignoring dependences which
are irrelevant (in the RG sense) in the low-energy limit, that is, the energy dependence and the
momentum dependence normal to the Fermi surface [3, 11].
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Neglecting the energy dependence, we approximate

ΓΛ
α (k′1, k

′
2; k1, k2) ≈ ΓΛ

α (k′1,k
′
2; k1,k2) . (37)

Choosing an energy independent cutoff function ΘΛ(k) as in Eq. (14), the Matsubara sums on
the right hand side of the flow equations can be performed analytically, yielding

∂ΛΓ
Λ
α (k′1,k

′
2; k1,k2) =−

∑
i=s,t

∑
j=s,t

[
CPP
αijβ

PP
ij (k′1,k

′
2; k1,k2)

+ CPH
αijβ

PH
ij (k′1,k

′
2; k1,k2) + CPH′

αij β
PH′

ij (k′1,k
′
2; k1,k2)

]
(38)

for α = s, t, where the β-functions are now energy independent and read

βPP
ij (k′1,k

′
2; k1,k2) =

1

2L

∑
k,k′

∂Λ
[
ΘΛ(k)ΘΛ(k′)

]
× f(−ξk)− f(ξk′)

ξk + ξk′
ΓΛ
i (k′1,k

′
2; k,k′)ΓΛ

j (k,k′; k1,k2) ,

βPH
ij (k′1,k

′
2; k1,k2) =− 1

L

∑
k,k′

∂Λ
[
ΘΛ(k)ΘΛ(k′)

]
× f(ξk)− f(ξk′)

ξk − ξk′
ΓΛ
i (k′1,k; k1,k

′)ΓΛ
j (k′,k′2; k,k2) ,

βPH′

ij (k′1,k
′
2; k1,k2) =− βPH

ij (k′2,k
′
1; k1,k2) , (39)

with the Fermi function f(ξ) =
[
eβξ + 1

]−1. Note that momentum conservation implies that k

and k′ are related by k+k′ = k1 +k2 in the particle-particle channel and by k+k′1 = k′+k1 in
the direct particle-hole channel. Hence, only one independent momentum variable needs to be
summed. For a sharp momentum cutoffΘΛ(k) = Θ(|ξk|−Λ) one has ∂ΛΘΛ(k) = −δ(|ξk|−Λ),
so that the two-dimensional momentum integral can be reduced to a one-dimensional integral.
The flow equation can be solved only if the momentum dependence of the vertex function is
simplified. At least for weak coupling (in practice also for moderate ones), the vertex function
acquires strong momentum dependences only for momenta close to the Fermi surface. Note
that for the Hubbard model the bare vertex function ΓΛ0 does not depend on momentum at all.
Weak coupling instabilities are signalled by divergencies of the vertex function ΓΛ, which are
driven by momenta close to the Fermi surface. Hence, we will focus on the flow of the vertex
function with momenta close to the Fermi surface. For arbitrary momenta, we approximate the
vertex by

ΓΛ
α (k′1,k

′
2; k1,k2) ≈ ΓΛ

α (k′F1,kF1 + kF2 − k′F1; kF1,kF2) (40)

where kF1 etc. are projections of k1 etc. on the Fermi surface (see Fig. 7). Strong momen-
tum dependences of the effective vertex are built up only by contributions with intermediate
momenta k and k′ (on the right hand side of the flow equations) which are close to the Fermi
surface, because for such momenta the ratios f(∓ξk)−f(ξk′ )

ξk±ξk′
in Eq. (39) can be big. Hence, for

the most important momenta, the error made by the projection is relatively small (even if Λ
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Fig. 7: (a) Flow of the singlet component of the two-particle vertex ΓΛ
s as a function of Λ for

several choices of the Fermi momenta kF1, kF2 and k′F1, which are labeled according to the
projection in the figure on the right. The model parameters are U = t and t′ = 0, the chemical
potential is µ = −0.02t, and the temperature is zero. (b) Left: Flow of the ratio of interacting
and non-interacting susceptibilities, χΛ/χΛ0 , for the same parameters as in (a). Right: Ground
state phase diagram for t′ = 0 and µ ≤ 0 (at and below half-filling), as obtained from divergent
susceptibilities. Figures taken from Ref. [34].

is not small), because these momenta are close to their projected counterparts. The projected
vertex function can be parameterized by three angles φ1, φ2, φ3 associated with kF1, kF2 and
k′F1, respectively, i.e.

ΓΛ
α (k′F1,kF1 + kF2 − k′F1; kF1,kF2) = ΓΛ

α (φ1, φ2, φ3) (41)

The angular dependence turns out to be strong for small Λ and cannot be neglected. The re-
maining tangential momentum dependence is discretized (see again Fig. 7). Equivalently, one
can view this parametrization as a discretization of momentum dependences corresponding to a
partition of the Brillouin zone in ”patches” or ”sectors” [35, 36].
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The flow of the two-particle vertex in the ground state of the two-dimensional Hubbard model
has been computed for many different model parameters t′/t and U/t (t just fixes the absolute
energy scale) and densities near half-filling [35, 34, 36, 37]. In all cases the vertex develops a
strong momentum dependence for small Λ with divergences for several momenta at some crit-
ical scale Λc > 0, which vanishes exponentially for U → 0. To see which physical instability
is associated with the diverging vertex function, several susceptibilities have been computed,
in particular commensurate and incommensurate spin susceptibilities χS(q) with q = (π, π),
q = (π − δ, π) and q = (1− δ)(π, π), where δ is a function of density [38]; the commensurate
charge susceptibility χC((π, π)); and singlet pair susceptibilities with s-wave and d-wave form
factors. Some of these susceptibilities diverge together with the vertex function at the scale Λc.
Depending on the choice of U , t′ and µ, the strongest divergence is found either for the com-
mensurate or incommensurate spin susceptibility, or for the pairing susceptibility with dx2−y2
symmetry.

Fig. 7 shows a typical result for the flow of the two-particle interactions and susceptibilities in
the ground state of the two-dimensional Hubbard model, as obtained from the Wick ordered
version of the functional RG [34]. Within the lowest order truncation for the two-particle ver-
tex, the results obtained from different functional RG versions do not deviate significantly from
each other. Only the singlet part of the vertex is plotted, for various choices of two incoming
momenta and one outgoing momentum on the Fermi surface. The triplet part of the vertex flows
generally more weakly than the singlet part. Note the threshold at Λ = 2|µ| below which the
amplitudes for various scattering processes, especially umklapp scattering, renormalize only
very slowly. The flow of the antiferromagnetic spin susceptibility is cut off at the same scale.
The infinite slope singularity in some of the flows at scale Λ = |µ| is due to the van Hove sin-
gularity being crossed at that scale. The pairing susceptibility with dx2−y2-symmetry diverges
at the scale Λc, at which also the two-particle interaction diverges in the Cooper channel.

Following the flow of the vertex function and susceptibilities, one can see that those interaction
processes which enhance the antiferromagnetic spin susceptibility (especially umklapp scat-
tering) also build up an attractive interaction in the dx2−y2 pairing channel. This confirms the
spin-fluctuation route to d-wave superconductivity. Running the flow for various choices of µ/t
and U/t one obtains an educated guess for the ground state phase diagram from the dominant
divergences of the vertex and susceptibilities.

The static approximation of the vertex with a discretized momentum dependence as described
above is sufficient for a weak coupling stability analysis. However, near the scale Λc, where
the vertex diverges, this crude parametrization does not capture the momentum and energy
dependence of the emerging singularities, and the power-counting argument invoked for its
justification breaks down. Recently, an improved parametrization of the two-particle vertex
based on an additive decomposition in charge, magnetic, and pairing channels has been estab-
lished [15,39,40]. In this channel decomposition, singular momentum and energy dependences
are isolated in a single bosonic momentum and energy variable, corresponding to a sum or
difference of fermionic variables, which can then be parametrized much more accurately.
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3.2 Spontaneous symmetry breaking

Within the one-loop truncation the effective two-particle interaction ΓΛ always diverges in some
momentum channels at a finite energy scale Λc, even for a small bare interaction U . Hence, one
is always running into a strong coupling problem in the low-energy limit. The one-loop trunca-
tion breaks down, and also the simplified parametrization of the two-particle vertex described
above cannot be justified in the presence of singular momentum and energy dependences.

If the vertex function diverges only in the Cooper channel, driven by the particle-particle con-
tribution to the flow, the strong coupling problem emerging in the low-energy region can be
controlled by exploiting Λc as a small parameter [41]. The formation of a superconducting
ground state can then be described essentially by a BCS theory with renormalized input param-
eters. In the Hubbard model, the pure Cooper channel instability is always realized for µ 6= εvH

at sufficiently small U . In that regime, one can safely infer superconductivity with a d-wave
order parameter from the divergence of the one-loop pairing susceptibility. At finite tempera-
ture, the off-diagonal long-range order will of course turn into the quasi long-range order of a
Kosterlitz-Thouless phase.

In general, the one-loop calculation can produce divergences of the vertex function in various
momentum channels, with large contributions from both particle-particle and particle-hole di-
agrams. This can happen even in the weak coupling limit U → 0, namely when the chemical
potential approaches the van Hove singularity. In that case, different possible instabilities can
compete in a complicated way. Besides spin density wave and pairing instabilities, one has
to deal with ferromagnetism (at moderate |t′/t| in the Hubbard model) [42–44] and a d-wave
Pomeranchuk instability of the Fermi surface [45] as alternative or coexisting candidates.

A complete theory of the effective strong coupling problem emerging from strong particle-
particle and particle-hole fluctuations has not yet been achieved. For weak bare coupling, one
may again try to exploit the smallness of the scale Λc where strong fluctuations appear to con-
struct a tractable effective low-energy theory. Spontaneous symmetry breaking can be handled
within the functional RG framework by adding an infinitesimal symmetry breaking term at the
beginning of the flow, which is then promoted to a finite order parameter at the scale Λc [19,20].
The calculations are complicated by the appearance of anomalous interaction vertices, and, in
case of continous symmetries, by singularities associated with Goldstone modes. Nevertheless,
fermionic functional RG flows with spontaneous symmetry breaking were computed for the
superconducting ground state of the attractive [46, 47] and repulsive [48] Hubbard model. In
systems with a metastable phase, e.g., near a first order transition, a shift of the initial conditions
by a counter term is needed to drive the flow into the stable symmetry broken phase [49]. Order
parameter fluctuations are most conveniently treated by introducing appropriate bosonic fields,
as first discussed for antiferromagnetic order in the half-filled Hubbard model [50].

In case of competing order parameters, such as antiferromagnetism and d-wave superconductiv-
ity near half-filling, a full RG treatment of spontaneous symmetry-breaking and order parameter
fluctuations is a rather ambitious long-term goal [51]. As a simpler alternative one may ne-
glect low-energy fluctuations and combine the RG with a mean-field (MF) theory of symmetry-
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Fig. 8: Amplitudes of antiferromagnetic and superconducting gap functions in the ground state
of the two-dimensional Hubbard model as a function of density, for U/t = 3 and t′/t = −0.15.
Results from a coupled solution of the magnetic and superconducting gap equations with partial
coexistence of orders are compared to purely magnetic and purely superconducting solutions.
The amplitudes are plotted in units of t. Figure taken from Ref. [53].

breaking [52,53]. In such a RG+MF approach, the one-loop flow is stopped at a scale ΛMF that
is small compared to the band width but still safely above the scale Λc where the two-particle
vertex diverges. At this point the vertex has already developed a pronounced momentum depen-
dence, reflecting in particular magnetic and superconducting correlations. The integration over
the remaining modes, below ΛMF, is treated in a mean-field approximation allowing, in partic-
ular, antiferromagnetic and superconducting order, where the effective interactions entering the
mean-field equations are extracted from ΓΛMF . At zero temperature, this approach should yield
a decent approximation for the order parameters, since order parameter fluctuations usually do
not play a crucial role for the gross features of the ground state. Results obtained for the ampli-
tudes of the antiferromagnetic and superconducting gap functions in the ground state of the 2D
Hubbard model, as obtained from a functional RG + MF calculation [53], are shown in Fig. 8.
The amplitudes are defined as the maxima ∆AF = maxk∆

AF
k and ∆SC = maxk∆

SC
k of the gap

functions. There is an extended region of coexistence of magnetic and superconducting order,
which occurs naturally due to pairing of electrons near the reconstructed Fermi surface (pock-
ets) in the antiferromagnetic state. In Fig. 9, the momentum dependence of the gap functions
is shown for four distinct densities at and below half-filling. The superconducting gap function
has the expected d-wave symmetry, while the antiferromagnetic gap has s-wave symmetry with
a relatively weak momentum dependence.

4 Leap to strong coupling: DMFT as a booster rocket

A truncation of the functional RG hierarchy of flow equations can be justified only for weak
interactions, with the exception of mean-field models where phase space restrictions suppress
higher order contributions [19]. Although bare interactions are usually two-particle interac-
tions, m-particle effective interactions with m > 2 are generated by the flow and affect the
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effective two-particle interaction and the self-energy. For example, an effective three-particle
interaction Γ (6)Λ is generated by a contribution of third order in the two-particle vertex Γ (4)Λ,
which then feeds back into the flow of Γ (4)Λ, as can be seen in Fig. 3. For strong bare inter-
actions, these contributions from effective interactions beyond the two-particle level become
important already at relatively high energy scales, that is, at scales well above the critical scales
for instabilities.

For systems with short-range interactions such as the Hubbard model, the correlations at high
and intermediate energy scales are well described by the dynamical mean-field theory (DMFT)
and its quantum cluster extensions, since long-range correlations emerge only at low energy
scales [54]. In particular, the DMFT captures non-perturbative phenomena such as the Mott-
Hubbard metal-insulator transition, which is a consequence of strong local correlations [55].

The DMFT is based on a local approximation for the fermionic self-energy, which is exact in
the limit of infinite lattice dimensionality [56]. In that limit, irreducible m-particle vertices
are local, too. It is thus natural to use the DMFT solution as a starting point, and include
non-local correlations subsequently by expanding around the DMFT vertices and self-energy
[57]. Several such extensions of the DMFT, involving various types of resummed perturbation
expansions for non-local corrections, have already been proposed [58–60].

Most recently, it was shown that the DMFT can be used as a non-perturbative starting point for
a functional RG flow [4]. The DMFT vertices and self-energy set the initial condition of the
flow. In the remainder of this section, I will describe the fusion of DMFT and functional RG
to the non-perturbative DMF2RG, and discuss first results for the two-dimensional Hubbard
model.
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4.1 Dynamical mean-field theory

The DMFT was developed in two steps. First, it was shown that models of interacting lattice
fermions have a non-trivial infinite dimensionality d → ∞ limit [56], where local correlations
survive, while non-local contributions to one-particle irreducible quantities such as the self-
energy vanish [56, 61]. Second, it was shown that a lattice fermion system with a local self-
energy can be mapped to a quantum impurity problem with a self-consistency condition [62,
63]. The resulting equations are a dynamical variant of the static Weiss mean-field theory for
magnets [62] – hence the name “dynamical mean-field theory” commonly used since 1995.
For the Hubbard model, the DMFT equations can be derived on the back of an envelope as
follows. The propagatorG is related to the bare propagatorG0 and the self-energyΣ by Dyson’s
equation, G−1(k0,k) = G−1

0 (k0,k)−Σ(k0). Non-local (in real space) contributions to the self-
energy are discarded in the DMFT, so thatΣ(k) depends only on frequency. This approximation
becomes exact in the limit d → ∞ [56, 61]. In a one-particle irreducible skeleton expansion,
the local part of the self-energy is a functional of the local propagator

Gloc(k0) =

∫
k

G(k0,k) , (42)

where
∫

k
=
∫

ddk
(2π)d

. The same skeleton expansion yields the self-energy of the purely local
action

Sloc[ψ, ψ̄] = −
∑
k0,σ

ψ̄k0,σG−1
0 (k0)ψk0,σ + U

∫ β

0

dτ ψ̄↑(τ)ψ↑(τ)ψ̄↓(τ)ψ↓(τ) , (43)

where τ denotes imaginary time and ψσ(τ) and ψ̄σ(τ) are the Fourier transforms of ψk0,σ and
ψ̄k0,σ, respectively. The dynamical Weiss field G−1

0 is determined by the self-consistency condi-
tion requiring that the local propagator and the self-energy of the lattice electrons coincide with
the propagator and the self-energy of Sloc, that is,

G−1
loc(k0) = G−1

0 (k0)−Σ(k0) . (44)

The main difficulty is to compute the self-energy as a functional of G0 from the action Sloc. In-
troducing an auxiliary bath of non-interacting conduction electrons, this problem can be mapped
to a well-known quantum impurity problem, the single-impurity Anderson model [62, 63], for
which efficient non-perturbative numerical algorithms exist. Once a self-consistent G0 has been
determined, one can also compute DMFT vertices from Sloc [64].

4.2 From infinite to finite dimensions

We now set up a flow which starts from the local self-energy and local vertices as given by the
DMFT, and builds up non-local correlations successively [4]. Without truncations, the exact
non-local quantities would be obtained at the end of the flow. There is no double-counting of
contributions. One way of defining such a flow, which is associated with an intuitive picture, is
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Fig. 10: Illustration of the flow from a DMFT solution to the solution of the d-dimensional (here
d = 2) lattice system. Figure taken from Ref. [4].

to flow from infinite dimensions, where the DMFT is exact, to the actual dimensionality of the
system.
To be specific, let us consider a d-dimensional hypercubic lattice with nearest neighbor hopping,
supplemented by d̄ additional auxiliary dimensions with d̄→∞. The flow equations derived in
Sec. 2 are valid for an arbitrary scale dependence of the bare propagator. To flow from infinite
to d dimensions, we introduce scale dependent hopping amplitudes in the physical and auxiliary
directions, denoted by tΛ and t̄Λ, respectively. The initial hopping amplitudes are tΛ0 = 0 and
t̄Λ0 = (d/d̄)1/2 t. The scaling with d̄−1/2 is required for a proper limit d̄ → ∞ [56]. At the
end of the flow, for Λ→ 0, the hopping amplitude in the auxiliary dimensions are switched off,
t̄Λ→0 = 0, while the real hopping amplitude is turned on, tΛ→0 = t.
The corresponding scale dependent bare propagator has the form

GΛ
0 (k0,k, k̄) =

1

ik0 + µ− εΛk − ε̄Λk̄
, (45)

with the scale dependent dispersion relations

εΛk = −2tΛ (cos k1 + · · ·+ cos kd) ,

ε̄Λk̄ = −2t̄Λ
(
cos k̄1 + · · ·+ cos k̄d̄

)
. (46)

For d̄ → ∞, only the part of the propagator which is local in the auxiliary dimensions con-
tributes to the self-energy and vertices. That local part is given by a k̄-integration,

GΛ
0 (k0,k) =

∫
k̄

GΛ
0 (k0,k, k̄) =

∫
dε̄

ρ̄Λ(ε̄)

ik0 + µ− εΛk − ε̄
, (47)

where ρ̄Λ(ε̄) is the density of states for ε̄Λ
k̄

. The latter is a normalized Gaussian distribution with
a width that shrinks to zero for Λ→ 0, so that GΛ→0

0 (k0,k) = (ik0 + µ− εk)−1.
GΛ

0 defines a flow that interpolates smoothly between the DMFT solution for the infinite di-
mensional model at Λ0 and the solution of the d-dimensional system for Λ → 0, as illustrated
schematically in Fig. 10. The flow equations derived in Sec. 2 apply without any modification.
However, the initial condition for the flow is not given by bare quantities, but by the self-energy
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Fig. 11: Truncation of flow equations in DMF2RG applied to the 2D Hubbard model.

and vertices as obtained from the DMFT, that is, ΣΛ0 = ΣDMFT and Γ (2m)Λ0 = Γ
(2m)
DMFT. Hence,

non-perturbative local correlations effects, such as the Mott-Hubbard transition, are built in al-
ready at the starting point. The DMFT thus becomes a “booster rocket” for the flow.
The infinite dimensionality limit served as a guide to develop the idea of setting up a flow that
starts with the DMFT. However, the DMFT is usually applied as an approximation for a finite
dimensional system, without introducing extra dimensions. In the same spirit, one can also
define a flow with the DMFT as a starting point, while staying entirely in the d-dimensional
physical space. A particularly simple choice for the scale dependence of the bare propagator is
given by [4] [

GΛ
0 (k0,k)

]−1
= ΛG−1

0 (k0) + (1− Λ)G−1
0 (k0,k) , (48)

with Λ0 = 1. This choice is very simple but certainly not optimal. In particular, it does not
regularize infrared singularities. Better choices obeying additional requirements besides the
correct boundary conditions can be constructed on demand.

4.3 Application to the 2D Hubbard model

Since the DMF2RG has been proposed very recently, there is only one concrete application, for
the two-dimensional Hubbard model with pure nearest neighbor hopping at half-filling [4]. Due
to perfect nesting, the ground state is antiferromagnetically ordered for any U > 0 in that case.
In that first application, relativly crude approximations were made to compute the flow. The
calculation was done directly in two dimensions, with the DMFT solution as starting point, and
the flow was defined byGΛ

0 as in Eq. (48). The flow was truncated by discarding Γ (6)Λ, such that
ΓΛ = Γ (4)Λ and ΣΛ are determined by a closed system of one-loop flow equations, see Fig. 11,
with the DMFT self-energy ΣDMFT and two-particle vertex ΓDMFT as initial condition. The
rationale behind this truncation is that the strongest local correlations are already included by the
DMFT starting point, and that the effect of three-particle correlations on non-local correlations
can be expected to be less important. Clearly, this needs to be checked in the future. The
frequency dependence of the vertex was parametrized by using a channel decomposition as
in Refs. [15, 40] with only one important frequency dependence in each channel. The latter
can be discretized accurately, as can the frequency dependence of the self-energy. However,
the channel decomposition does not capture certain structures appearing in the DMFT vertex
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at strong coupling [64], which limited the calculations to interaction strengths below the Mott
insulator regime. The momentum dependence was discretized with a few patches.

A result for the self-energy of the half-filled 2D Hubbard model obtained from the DMF2RG

as described above is shown in Fig. 12, and compared to the DMFT solution. The discretization
of momentum space is shown in the inset. A relatively high temperature T = 0.4t was chosen
so that the flow could be carried out until Λ = 0 without running into divergences associated
with the antiferromagnetic instability. The DMF2RG result deviates significantly from the mo-
mentum independent DMFT solution only at the lowest Matsubara frequencies. There, a pro-
nounced momentum dependence emerges. The trend of a large enhancement of the self-energy
at momenta near (π, 0) and (0, π), related to a pseudogap formation, agrees with results from
cluster extensions of the DMFT [65]. The results also agree qualitatively with those obtained
from a plain one-loop functional RG calculation, confirming that a weak coupling expansion
is still reasonable at moderate coupling strengths as U = 4t. Clearly, qualitative differences
between weak-coupling truncations of the functional RG and the non-perturbative DMF2RG

are to be expected at interaction strengths comparable to the band width and beyond. To apply
the DMF2RG at large U , a suitable parametrization of the complex frequency and momentum
dependence of the two-particle vertex at strong coupling needs to be developed.
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5 Conclusion

The functional RG has become a valuable source of new approximation schemes for interact-
ing Fermi systems [3]. The method is based on an exact flow equation, which describes the
flow of the effective action as a function of a suitable flow parameter. From the final effec-
tive action, at the end of the flow, any desired information about the system can be obtained.
Approximations are constructed by truncating the effective action. In many cases, rather sim-
ple truncations turned out to capture rather complex many-body phenomena. Compared to the
traditional resummations of perturbation theory, these approximations have the advantage that
infrared singularities are treated properly due to the built-in RG structure. Unlike other RG
methods, approximations derived in the functional RG framework can be applied directly to
microscopic models, not only to renormalizable effective field theories. Remarkably, the func-
tional RG reviewed here as a computational tool is very similar to RG approaches used by
mathematicians to derive general rigorous results for interacting Fermi systems.
Applications of the functional RG to the two-dimensional Hubbard model have improved our
understanding of its instabilities. In particular, the existence of d-wave superconductivity in that
model was conclusively established.
With the very recent fusion of DMFT and functional RG [4], where the DMFT is used as a
non-perturbative starting point for the functional RG flow, a promising route has been opened
to capture all aspects of strongly interacting Fermi systems, such as the 2D Hubbard model at
large U , over all energy scales in one framework.
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Appendix

A Derivation of functional flow equation

Here we describe the derivation of the functional flow equation (15) for the effective action
ΓΛ. Introducing a scale-dependent bare propagator GΛ

0 = (QΛ
0 )−1 in the functional integral

representation (4) of the generating functional for connected Green functions, one can write

e−G
Λ[η,η̄] =

∫ ∏
K

dψKdψ̄K e
(ψ̄,QΛ0 ψ) e−V [ψ,ψ̄] e(η̄,ψ)+(ψ̄,η) . (49)

Taking a Λ-derivative on both sides yields

−(∂ΛGΛ[η, η̄]) e−G
Λ[η,η̄] =

∫ ∏
K

dψKdψ̄K (ψ̄, ∂ΛQ
Λ
0ψ) e(ψ̄,QΛ0 ψ) e−V [ψ,ψ̄] e(η̄,ψ)+(ψ̄,η)

= −(∂η, ∂ΛQ
Λ
0 ∂η̄) e

−GΛ[η,η̄] , (50)

which leads directly to a flow equation for GΛ,

d

dΛ
GΛ[η, η̄] =

(
∂GΛ
∂η

,
dQΛ

0

dΛ

∂GΛ
∂η̄

)
+ Tr

(
dQΛ

0

dΛ

∂2GΛ
∂η̄∂η

)
. (51)

The effective action is the Legendre transform

ΓΛ[ψ, ψ̄] = GΛ[ηΛ, η̄Λ] + (ψ̄, ηΛ) + (η̄Λ, ψ) . (52)

Note that ηΛ and η̄Λ are Λ-dependent functions of ψ and ψ̄, so that

d

dΛ
ΓΛ[ψ, ψ̄] =

d

dΛ
GΛ[ηΛ, η̄Λ] + (ψ̄, ∂Λη

Λ) + (∂Λη̄
Λ, ψ) . (53)

The total derivative acts also on the Λ-dependence of ηΛ and η̄Λ. Using the relations ∂GΛ/∂η̄ =

−ψ , and ∂GΛ/∂η = ψ̄, all terms arising from the Λ-dependence of ηΛ and η̄Λ cancel, yielding

d

dΛ
ΓΛ[ψ, ψ̄] =

d

dΛ
GΛ[ηΛ, η̄Λ]

∣∣∣∣
ηΛ,η̄Λ fixed

. (54)

The flow equation (15) for ΓΛ now follows directly from Eq. (51) and the reciprocity relation
Γ(2)Λ[ψ, ψ̄] =

(
G(2)Λ[ηΛ, η̄Λ]

)−1.
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1 Introduction

In Chapters 1 and 3, it was discussed how the limit of infinite lattice dimension d → ∞ [1]
leads to drastic simplifications for many-body theory, which describes interacting electrons in
their ground state or in thermodynamic equilibrium. In particular, Hubbard-type models in the
thermodynamic limit are mapped exactly onto effective single-site problems with a local self-
energy, which in turn may be represented as self-consistent single-impurity Anderson models
that can be solved numerically. For systems in dimension d = 1, 2, 3 this approach corresponds
to a mean-field approximation, i.e. to dynamical mean-field theory (DMFT) [2], which can be
further improved by including corrections for finite dimensions, see e.g., Chapters 9 and 10.
DMFT can also be applied to nonequilibrium problems, i.e., the single-band Hubbard model
with time-dependent hopping amplitudes and interaction parameter,

HHubbard(t) =
∑
ijσ

tij(t) c
†
iσcjσ + U(t)

∑
i

(ni↑ − 1
2
)(ni↓ − 1

2
) . (1)

Due to recent experimental advances, theoretical methods to study such systems are of great
interest. Correlated materials can be excited and their relaxation monitored using pump-probe
spectroscopy with femtosecond laser pulses [3,4]. In a suitable gauge, the electric field couples
to the band energies via the time-dependent vector potential according to the Peierls substitu-
tion [5],

tij(t) = tij exp

(
−ie

~

∫ Rj

Ri

dr ·A(r, t)

)
. (2)

However, after a few hundred femtoseconds the electronic degrees of freedom will typically
have relaxed and their coupling to the slower vibrational lattice degrees of freedom will come
into play. From a quite different perspective, it is also possible to study the real-time behavior of
many-body states using ultracold atomic gases in optical lattices, which can be kept in excellent
isolation from the environment and for which kinetic and interaction energies can be controlled
very precisely for many hundreds of microseconds [6, 7].
In general, many-body theory for nonequilibrium is numerically even more demanding than
for equilibrium. For systems in equilibrium, the main task is to evaluate expectation values
(such as Green functions) for a grand-canonical density matrix (such as a thermal state for
an interacting Hamiltonian or possibly its ground state). In nonequilibrium, additionally, the
time evolution under a time-dependent Hamiltonian must be taken into account. However,
using nonequilibrium Green functions according to the Keldysh formalism, the limit of infi-
nite lattice dimensions provides similar benefits as in the equilibrium case, i.e., the problem is
again reduced to a single site by integrating out the rest of the lattice, although the remaining
nonequilibrium impurity problem is more complicated than in equilibrium. The nonequilib-
rium DMFT approach was first developed and applied for the Falicov-Kimball model [8–15]
(following an earlier incomplete attempt in Ref. [16]). Since then, many more applications and
extensions have appeared, including for time-resolved spectroscopy [17–19], abrupt and slow
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changes in parameters [20–26], response to DC and AC fields and pulses [27–43], antiferromag-
netic phases [44–47], coupling to phonons [48, 49], inhomogeneous systems [50], extensions
for lower dimensions [51–53], and dynamics of lattice bosons [54]. A recent review of the
nonequilibrium DMFT and its applications can be found in Ref. [55].
Below, the main ingredients for nonequilibrium DMFT are discussed. First, nonequilibrium
Green functions are defined according to the Keldysh formalism (Sec. 2). Then, the mapping
of a Hubbard model to a single-site problem with a dynamic bath is discussed (Sec. 3). Finally,
some aspects of the single-band Hubbard model in nonequilibrium (Sec. 4) are reviewed. We
follow mostly the setup and notation of Refs. [55] and [26].

2 Nonequilibrium Green functions

2.1 Time contour

We consider the time evolution of a quantum many-body system with density matrix ρ(t) that
starts at time t = 0 from thermal equilibrium, i.e., from a grand-canonical Gibbs state of the
Hamiltonian H(0),

ρ(0) =
1

Z
e−βH(0), (3)

i.e., the classical superposition of all eigenstates of the Hamiltonian depending on their Boltz-
mann weights. Here β = 1/(kBT ) is the inverse temperature, kB = 1, H(t) = H(t) − µN(t),
with µ the chemical potential, N(t) the particle number operator, and Z = Tr e−βH(0) the equi-
librium partition function. At time t = 0 the Hamiltonian changes, either continuously or
abruptly, e.g., by switching on an electric field. The time-dependent Schrödinger equation then
determines the evolution of the wave function, which is continuous in t. For a density matrix,
this yields the von Neumann equation (~ = 1) and its formal solution,

i
d

dt
ρ(t) = [H(t), ρ(t)] , ρ(t) = U(t, 0) ρ(0)U(0, t) . (4)

Our goal is to obtain the time-dependent expectation value of a (time-independent) Schrödinger
operator A,

〈A〉t = Tr[ρ(t)A] . (5)

The propagator obeys d
dt
U(t, t′) = −iH(t)U(t, t′), hence it is unitary, U(t, t′)U(t, t′)† =

U(t, t′)U(t′, t) = 1, and fulfills U(t, t′)U(t′, t′′) = U(t, t′′). Because H(t) and H(t′) do not in
general commute at different times, the formal solution of the differential equation for U(t, t′)

is

U(t, t′) =


T exp

(
−i
∫ t

t′
dt̄H(t̄)

)
for t > t′ ,

T̄ exp

(
−i
∫ t

t′
dt̄H(t̄)

)
for t < t′ ,

(6)
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Re t

Im t

t

t'

tmax

1

2

3C

C

C

−i β

Fig. 1: The integration along the L-shaped integration contour C runs along C1 from 0 to tmax

on the real axis, goes back along C2, and proceeds along C3 to −iβ. In the figure, the times
t ∈ C2 and t′ ∈ C1 are located such that t >C t′, i.e., t is later than t′ in the sense of contour
ordering.

where T and T̄ denote time-ordering and anti-time-ordering operators, respectively; i.e., T re-
orders the operators H(t̄) that occur in the expansion of the exponential such that the time
arguments t̄ increase from right to left (and from left to right for T̄). The density matrix ρ(t) in
the time-dependent expectation value (5) then involves one exponential with a forward integra-
tion along the time axis due to U(t, t′), one with a backwards integration due to U(t′, t), and in
between sits exp(−βH(0)) representing the initial state, the exponent of which can be rewritten
as an integral with respect to t from 0 to −iβ of H(0). The time ordering of operators H(t̄)

in (5) thus involves three parts, C1: 0 . . . tmax, C2: tmax . . . 0, and C3: 0 . . . − iβ (where tmax is
the maximal time of interest)

〈A〉t =
1

Z
Tr[U(−iβ, 0)U(0, t)AU(t, 0)]

=
Tr TC A(t) exp[−i

∫
C
dt̄H(t̄)]

Tr TC exp[−i
∫
C
dt̄H(t̄)]

. (7)

The integrals in the last expression are now along an L-shaped contourC that runs alongC1, C2,
and then C3; TC is the contour-ordering operator that arranges operators on C in the direction
of the arrows in Fig. 1. The time argument t that has been attached to A(t) merely indicates
the time at which the (Schrödinger) operator A must be inserted in the contour time ordering.
In the denominator of (7), no operator is inserted and hence the contributions from C1 and C2

cancel, yielding the partition function. The time parametrization along a contour allows to carry
over many techniques from equilibrium many-body theory [56] (such as Feynman diagrams
etc.), although it does not mean that integrations are actually performed in the complex plane.
Rather, the contributions of the contour parts C1, C2, C3 are evaluated separately. In particular,
the following definitions for contour integrals, contour convolutions, time derivative, contour
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theta and delta functions are useful:

g(t ∈ C) =


g+(t) if t ∈ [0, tmax] on C1,

g−(t) if t ∈ [0, tmax] on C2,

g|(−iτ) if t = −iτ on C3, τ ∈ [0, β],

(8)

∫
C

dt g(t) =

∫ tmax

0

dt g+(t)−
∫ tmax

0

dt g−(t)− i
∫ β

0

dτ g|(−iτ) , (9)

[a ∗ b](t, t′) =

∫
C

dt̄ a(t, t̄)b(t̄, t′) , (10)

∂tg(t) =

∂tg(t±) t ∈ C1,2

i∂τg(−iτ) t = −iτ ∈ C3

, (11)

θC(t, t′) =

1 for t >C t
′ ,

0 otherwise,
(12)

δC(t, t′) = ∂tθC(t, t′) , (13)∫
C

dt̄ δC(t, t̄)g(t̄) = g(t) . (14)

Here t >C t
′ means that t appears later on the contour (as shown in Fig. 1).

The representation of time-dependent expectation values (7), in particular for nonequilibrium
Green functions, is called the Keldysh formalism and is based on Refs. [57–59]. Modern intro-
ductions to the subject are can be found, e.g., in Refs. [60–62], of which in particular [62] is
very detailed, pedagogical, and complete. Note that, depending on the physical situation, other
time contours are used in the literature. In particular, the so-called Keldysh contour that extends
C1 and C2 to −∞ without C3 is useful to describe transport and nonequilibrium steady states
with currents. However, for lattice models like (1) without reservoirs, the L-shaped contour
is best suited, as it requires no further assumptions on the form of the nonequilibrium state,
switching-on of interactions, etc. Further discussions of various contour shapes can be found,
e.g., in Refs. [61–63].

2.2 Contour Green functions

The study of single-particle Green functions is a standard method to characterize the spectrum
and state in many-particle systems. For later use the action S is defined for a given Hamiltonian
as

S = −i
∫
C

dtH(t) , (15)

so that 〈A〉t is now written as 〈A(t)〉S = Tr[TC exp(S)A(t)]/ZS with ZS = Tr[TC exp(S)]. If
there is no ambiguity we will omit the subscript S. The definition of the time-ordering operator
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is changed to

TCA(t)B(t′) =

 AB if t >C t
′,

±BA if t <C t
′,

(16)

where the negative sign is used only if both A and B contain an odd number of fermionic
annihilation or creation operators. Furthermore, if t and t′ are equal and on the same branch of
the contour, TC performs a normal ordering by convention, moving all creators to the left.
Single-particle contour Green functions for fermions are then defined as contour-ordered ex-
pectation values in analogy to the equilibrium case,

G(t, t′) = −i〈c(t)c†(t′)〉 = − i

Z
Tr
[
TC
{

exp(S)c (t)c†(t′)
}]
, (17)

where the basis state indices (e.g., site, spin, and orbital indices) have been omitted on the
fermionic creation and annihilation operators for now, so all Green function should be regarded
as matrices in these indices. The time arguments t and t′ can each lie on one of the three
parts of the contour so that G has nine entries with different physical meanings. A subscript
a, b = 1, 2, 3 on Gab(t, t

′) then expresses whether a time argument is on the upper (1), lower
(2), or imaginary (3) part of the contour C. There is some redundancy because one can shift
the operator with the largest real-time argument between C1 and C2 because the time evolution
along these paths cancels on its right. It follows that

G11(t, t′) = G12(t, t′) for t ≤ t′, (18a)

G11(t, t′) = G21(t, t′) for t > t′, (18b)

G22(t, t′) = G21(t, t′) for t < t′, (18c)

G22(t, t′) = G12(t, t′) for t ≥ t′, (18d)

G13(t, τ ′) = G23(t, τ ′), (18e)

G31(τ, t′) = G32(τ, t′). (18f)

It is then customary to define the following independent components: retarded (GR), advanced
(GA), Keldysh (GK), left-mixing (G¬), right-mixing (G ¬), and Matsubara (GM ) Green func-
tion. For t and t′ from C1 or C2, τ from C3, and Tτ the imaginary-time ordering operator, they
are given by

GR(t, t′) = 1
2
(G11 −G12 +G21 −G22) = −iθ(t− t′)〈{c(t), c†(t′)}〉, (19a)

GA(t, t′) = 1
2
(G11 +G12 −G21 −G22) = iθ(t′ − t)〈{c(t), c†(t′)}〉, (19b)

GK(t, t′) = 1
2
(G11 +G12 +G21 +G22) = − i〈[c(t), c†(t′)]〉, (19c)

G¬(t, τ ′) = 1
2
(G13 +G23) = i〈c†(τ ′)c(t)〉, (19d)

G ¬(τ, t′) = 1
2
(G31 +G32) = −i〈c(τ)c†(t′)〉, (19e)

GM(τ, τ ′) = −iG33 = −〈Tτ c(τ)c†(τ ′)〉. (19f)
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Furthermore, the so-called lesser and greater Green functions are defined as

G<(t, t′) = G12 = i〈c†(t′)c(t)〉 , G>(t, t′) = G21 = −i〈c(t)c†(t′)〉 . (20)

They fulfill G< = 1
2
(GK − GR + GA) and G> = 1

2
(GK + GR − GA). Hermitian conjugation

entails the relations

G<,>,K(t, t′)∗ = −G<,>,K(t′, t) , (21a)

GR(t, t′)∗ = GA(t′, t) , (21b)

G¬(t, τ)∗ = G ¬(β − τ, t) . (21c)

The Matsubara Green function is translationally invariant, as H does not depend on τ , i.e.,
GM(τ, τ ′) = GM(τ − τ ′). It is also real and antiperiodic, GM(τ) = −GM(τ + β), so it can be
Fourier transformed to Matsubara frequencies as in equilibrium. Finally, the following bound-
ary conditions hold because the trace is cyclic,

G(0+, t) = −G(−iβ, t) , G(t, 0+) = −G(t,−iβ) . (22)

Here and throughout, G(t, t′) (without superscript denoting a component) is a contour Green
function for which the time arguments can be on any one of C1, C2, C3. By contrast, a Green
function with superscript contains (real or imaginary) time arguments for which the contour
part need not be specified. A convolution of contour functions f ∗ g involves contributions of
several components. The procedures that separate the components of f ∗ g and express them in
terms of the components of f and g are called Langreth rules [64]. They are discussed in detail,
e.g., in Ref. [62].

2.3 Equilibrium case

For a time-independent Hamiltonian the formalism reduces of course to that for the equilibrium
case [56], and only dependencies on time differences remain. In particular, the single-particle
spectral function that characterizes the excitation spectrum is given in terms of Fourier trans-
forms as

A(ω) = − 1

π
ImGR(ω) =

1

π
ImGA(ω) . (23)

In equilibrium, all components of G can be recovered from it,

G(t, t′) = −i
∫
dω eiω(t′−t)A(ω) [θC(t, t′)− f(ω)], (24)

where f(ω) = 1/(eβω + 1) is the Fermi function.
In nonequilibrium, one can introduce average and relative times, tav = (t + t′)/2, trel = t − t′,
in terms of which a partial Fourier transformation leads to the definition

A(ω, tav) = − 1

π
Im
∫
dtrel e

iωtrel GR(t, t′) , (25)

which satisfies the sum rule
∫
dω A(ω, tav) = 1.
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2.4 Noninteracting case

Consider now the simplest case of noninteracting fermions with a single time-dependent energy
band, H0(t) =

∑
k[εk(t) − µ] c†kck. The time derivative of the corresponding noninteracting

contour Green function G0,k(t, t′) = −i〈TCck(t)c†k(t′)〉 yields the equations of motion[
i∂t + µ− εk(t)

]
G0,k(t, t′) = δC(t, t′), (26a)

G0,k(t, t′)
[
− i
←−
∂ t′ + µ− εk(t′)

]
= δC(t, t′). (26b)

Here we let the derivative
←−
∂ t′ act to the left, i.e., f(t)

←−
∂ t = ∂tf(t), which makes the equations

more symmetric. The inverse of G0,k is then defined as the following differential operator,

G−1
0,k(t, t′) =

[
i∂t + µ− εk(t)

]
δC(t, t′) . (27)

The equations of motion thus correspond to the convolutions,

G−1
0,k ∗G0,k = G0,k ∗G−1

0,k = δC . (28)

Together with (22), either of these gives the unique solution [8],

G0,k(t, t′) = −i[θC(t, t′)− f(εk(0)− µ)]e
−i

t∫
t′
dt̄ [εk(t̄)−µ]

. (29)

2.5 Self-energy

For an interacting Hamiltonian H(t), one usually has to resort to approximations to obtain the
Green function G, e.g., by using perturbation expansions in terms of Feynman diagrams [62].
The self-energy Σ(t, t′) is then defined as a contour function (with boundary conditions as
in (22)) in terms of one-particle irreducible diagrams, which are the same as those for finite-
temperature equilibrium perturbation theory, but with the imaginary-time integrations in the
diagram rules being replaced by time-contour integrations. The full Green function is then
given in terms of the noninteracting Green function and self-energy insertions (on the contour),
G = G0 + G0 ∗ Σ ∗ G0 + G0 ∗ Σ ∗ G0 ∗ Σ ∗ G0 + · · · . The Dyson equation therefore reads

G = G0 +G0 ∗Σ ∗G = G0 +G ∗Σ ∗G0 . (30)

After convoluting these equations with G−1
0 from either side this becomes

[G−1
0 −Σ] ∗G = G ∗ [G−1

0 −Σ] = δC . (31)

This suggests the definition G−1 = G−1
0 − Σ, which is reminiscent of the equilibrium Dyson

equation [56]. However, in the present case the equations forG, even ifΣ is known, correspond
to integral-differential equations along the contour. Their form will be discussed in more detail
in the next section.



Correlated Electron Dynamics and Nonequilibrium DMFT 12.9

3 Nonequilibrium DMFT

The hallmark of DMFT, whether in equilibrium or nonequilibrium, is its formulation in terms of
a dynamical effective single-site problem in the thermodynamic limit. The numerical solution
of this single-site problem then provides the self-energy (and thus Green functions), often in
a nonperturbative way. In this section, we show (following Ref. [26]) how the nonequilibrium
DMFT equations are obtained in the limit of infinite lattice dimensions by means of the so-called
cavity method, which was already employed in the equilibrium case in Ref. [2]. Alternatively,
one can base the derivation on the identical diagrammatic skeleton expansions for the self-
energies of the single-impurity Anderson model (SIAM) and the Hubbard model in infinite
dimensions [9, 55].

3.1 Cavity method

We start from the Hubbard Hamiltonian (1) and, in the spirit of the cavity method, pick out one
single site with the purpose of tracing out the remaining lattice. The action is thus split into

S = −i
∫
C

dtH(t) = S0 +∆S + S(0), (32)

with

S0 = −i
∫
C

dt

[
U(t)

(
n0↑(t)− 1

2

) (
n0↓(t)− 1

2

)
− µ

∑
σ

n0σ(t)

]
, (33)

∆S = −i
∫
C

dt

[∑
i6=0,σ

tσi0(t) c†iσ(t)c0σ(t) + H.c.

]
,

S(0) = −i
∫
C

dtH(0)(t). (34)

Here H(0)(t) is the Hamiltonian H(t) with the cavity site 0 removed. The effective single-site
action for this site 0 will consist of S0 for the local Hamiltonian at site 0 and a connection into
the effective environment that comes from integrating out ∆S + S(0). Splitting the trace for the
states at site 0 and the other sites, the partition function takes the form

ZS = Tr0

[
TC
{

exp(S0)Trrest
(
exp(∆S + S(0))

)}]
= ZS(0)Tr0

[
TC
{

exp(S0 + S̃)
}]

, ZS(0) = Trrest
(
TC
{

exp
(
S(0)

)})
. (35a)

Here S̃ is the effective action connecting the cavity site and the environment:

exp(S̃) =
∞∑
n=0

1

n!
〈(∆S)n〉S(0) , 〈A(t)〉S(0) ≡

Trrest
(
TC
{

exp
(
S(0)

)
A(t)

})
ZS(0)

(36)

Note that here ∆S contains operators at site 0 that are not traced over; since they anticommute
with those at other sites, the correct sign and time ordering must be kept when tracing over



12.10 Marcus Kollar

the latter. From the definition of ∆S, we see that only terms with an equal number of c†iσ, cjσ
with i, j 6= 0 contribute, i.e., only terms with even powers of ∆S. After some combinatorial
considerations and reorderings, the result is [26]

exp(S̃) =
∞∑
n=0

1

(2n)!
〈(∆S)2n〉S(0) =

∞∑
n=0

∫
C

dt1 · · ·
∫
C

dt′n
∑
i1,...,jn
σ1,...,σ′n

(−i)n

× t0i1(t1) . . . tjn0(t′n)

n!2
G

(0)
i1σ1,...,jnσ′n

(t1, . . . , t
′
n) c†0σ1(t1) . . . c0σ′n

(t′n) , (37)

with the n-particle contour-ordered Green function for the rest of the lattice (without site 0)
defined as

G
(0)
i1σ1,...,jnσ′n

(t1, . . . , t
′
n) = (−i)n〈ci1σ1(t1) . . . c†jnσ′n(t′n)〉S(0) . (38)

Next, the right-hand side of (37) must be re-exponentiated using connected (with respect to the
interaction inH(0)(t)) contour-ordered Green functions G(0),c [26]. The result is

S̃ = −i
∞∑
n=1

∑
σ1...σ′n

∫
C

dt1 . . .

∫
C

dt′n Λσ1...σ′n(t1, . . . , t
′
n) c†0σ1(t1) . . . c0σ′n

(t′n), (39)

where we defined the nth-order hybridization functions

Λσ1...σ′n(t1, . . . , t
′
n) ≡ (−i)n−1

n!2

∑
i1,...,jn

t0i1(t1) · · · tjn0(t′n) G
(0),c
i1σ1,...,jnσ′n

(t1, . . . , t
′
n), (40)

which involve connected cavity Green functions G(0),c that are obtained with S(0) only.
The effective action and its partition function, which only involve the degrees of freedom at the
cavity site 0, are thus given by

Seff = S0 + S̃, Zeff =
Z

ZS(0)

= Tr0 (TC {exp(Seff)}) . (41)

No approximation has been made yet, but of course the higher-order hybridization functions (40)
are not easily accessible in general and also couple to correspondingly complicated cavity
source terms. In this formulation, the limit of infinite dimensions lets only the hybridization
functions with n = 1 contribute, leading to a quadratic coupling between cavity and environ-
ment, which we now discuss.

3.2 DMFT action for an infinite-dimensional lattice

As in equilibrium [2], the hybridization functions (40) simplify drastically in the limit d→∞.
As a consequence of the quantum scaling [1] tij ∝Z

− 1
2

ij , where Zij is the number of sites j con-
nected to site i by hopping of type tij , only first-order terms (i.e., one-particle Green functions)
contribute to the effective action. These power counting arguments are entirely analogous to
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the equilibrium case. For the case of nearest-neighbor hopping on a hypercubic lattice, they
proceed as follows.
The contributions to (40) from nth order Green functions contain lattice summations that yield
a factor d2n, 2n factors of hopping amplitudes t0i ∝ d−1/2 giving d−n, and a factor from the
connected Green functions. The latter connects 2n nearest neighbors of 0, with the shortest path
between them requiring 2 lattice steps, of which at least 2n− 1 are needed, and in the best case
(when all sites are different) this gives a factor (

√
d)2(2n−1) = d2n−1. Hence

Λσ1...σ′n(t1, . . . , t
′
n) ∝

∑
i1,...,jn︸ ︷︷ ︸
∝ d2n

t0i1(t1) . . . tjn0(t′n)︸ ︷︷ ︸
∝(
√
d)−2n

G
(0),c
(i1σ1),...,(jnσ′n)(t1, . . . , t

′
n)︸ ︷︷ ︸

∝(
√
d)−2(2n−1)

∝ 1

dn−1
, (42)

so that for d→∞ only the quadratic term n = 1 survives. Furthermore, Λ is spin-diagonal as
(1) does not contain spin-flip terms. Dropping the index 0 of the cavity site, the DMFT action
is therefore

Sloc = −i
∫
C

dt

[
U(t)

(
n↑(t)− 1

2

) (
n↓(t)− 1

2

)
− µ

∑
σ

nσ(t)

]

− i
∫
C

dt1

∫
C

dt2
∑
σ

Λσ(t1, t2) c†σ(t1)cσ(t2). (43)

It remains to determine the hybridization Λ defined as

Λσ(t, t′) =
∑
i,j

t0i(t)G
(0),c
ijσ (t, t′) tj0(t′) , (44)

such that the action indeed describes the original interacting lattice system. This requires linking
the Green function G(0),c

ijσ to local quantities (using the self-energy, which turns out to be local).
Physically, the hybridization characterizes the “dynamical mean-field”, i.e., the effective host
into and out of which the particles on the impurity site can move.
Comparing the nonequilibrium DMFT action (43) with the equilibrium case, we note of course
the appearance of time-contour integrals and ordering. Furthermore, the action is not time-
translationally invariant because Λ depends explicitly on t and t′. This complicates the task of
numerically obtaining G from S for a given Λ.

3.3 Local self-energy

The local nature of the self-energy in infinite dimensions can be obtained from the cavity method
itself, as we now describe. It enters into the lattice and impurity Dyson equations, which deter-
mine the corresponding lattice and impurity Green functions. In general, the self-energy is also
needed to obtain the self-consistency relation for Λ. For brevity, we now drop the spin indices.
The hopping tij(t) is again arbitrary.
We consider the full lattice Green function Gij(t, t

′) =−i〈ci(t)c
†
j(t
′)〉S on the one hand and the

impurity Green functionG(t, t′) = G00(t, t′) on the other. Their inverses are given byG−1
lat (t, t′)
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and G−1(t, t′) respectively,∑
l

∫
C

dt1(G−1
lat )il(t, t1)Glj(t1, t

′) = δijδC(t, t′) , (45a)∫
C

dt1G
−1(t, t1)G(t1, t

′) = δC(t, t′) . (45b)

The corresponding impurity and lattice self-energies are then determined by the relations

(G−1
lat )ij(t, t

′) = [δij(i∂t + µ)− tij(t)] δC(t, t′)− (Σlat)ij(t, t
′) , (46)

G−1(t, t′) = (i∂t + µ)δC(t, t′)− Λ(t, t′)−Σ(t, t′) . (47)

Taking functional derivatives of Gij(t, t
′) with respect to the annihilation and creation operators

at site 0 (and hopping matrix elements that connect them) provides the relations [26]

Gij(t, t
′) = G

(0),c
ij (t, t′)+

∫
C

dt1

∫
C

dt2
∑
lm

G
(0),c
il (t, t1) tl0(t1)G(t1, t2) t0m(t2)G

(0),c
mj (t2, t

′). (48)

G0j(t, t
′) =

∫
C

dt1
∑
i

G(t, t1) t0i(t1)G
(0),c
ij (t1, t

′) , j 6= 0 . (49)

Putting (49) into (48) then gives us

G
(0),c
ij (t, t′) = Gij(t, t

′)−
∫
C

dt1

∫
C

dt2Gi0(t, t1)G−1(t1, t2)G0j(t2, t
′) , (50)

which we recognize as an analogue of the relation in equilibrium (i.e., Eq. (36) in Ref. [2]):
G

(0),c
ij (iωn) = Gij(iωn)−Gi0(iωn)G0j(iωn)/G(iωn). Furthermore, a conjugated equation sim-

ilar to (49) can be derived for Gi0(t, t′) and summed,∑
i

t0i(t)Gi0(t, t′) =

∫
C

dt1Λ(t, t1)G(t1, t
′) , (51)

while (49) itself can be rewritten as∫
C

dt1G
−1(t, t1)G0j(t1, t

′) =
∑
i

t0i(t)G
(0),c
ij (t, t′) , j 6= 0 . (52)

Summing over (50), these equations can be used to obtain∑
i

t0i(t)Gij(t, t
′) =

∫
C

dt1[G−1(t, t1) + Λ(t, t1)]G0j(t1, t
′) , j 6= 0 . (53)

Finally, we decompose

δ0j δC(t, t′) =
∑
l

∫
C

dt1(G−1
lat )0l(t, t1)Glj(t1, t

′) (54)

= (i∂t + µ)G0j(t, t
′)−

∑
l

t0l(t)Glj(t, t
′)−

∫
C

dt1
∑
l

(Σlat)0l(t, t1)Glj(t1, t
′) ,
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and use (51) and (53) to arrive at∫
C

dt1Σ(t, t1)G0j(t1, t
′) =

∫
C

dt1
∑
l

(Σlat)0l(t, t1)Glj(t1, t
′). (55)

Here the cavity site 0 can be replaced by an arbitrary i (for a translationally invariant system),∫
C

dt1Σ(t, t1)Gij(t1, t
′) =

∫
C

dt1
∑
l

(Σlat)il(t, t1)Glj(t1, t
′) . (56)

Acting on this equation with the inverse of the lattice Green function from the right shows that
indeed

(Σlat)ij(t, t
′) = δijΣ(t, t′) (57)

i.e., the lattice self-energy is local in the limit of infinite dimensions and given by the impurity
self-energy.

3.4 Self-consistency condition

The DMFT self-consistency condition then corresponds to the Dyson equations for the lattice
and impurity Green function. For the lattice Green function it is given by∫

C

dt1
∑
l

[
[δil (i∂t + µ)− til(t)] δC(t, t1)−Σ(t, t1)

]
Glj(t1, t

′) = δij δC(t, t′) , (58)

while for the impurity Green function,∫
C

dt1

[
(i∂t + µ) δC(t, t1)− Λ(t, t1)−Σ(t, t1)

]
G(t1, t

′) = δC(t, t′) . (59)

SupposeG has been obtained for givenΛ. Then in principle a newΣ can be found from (59) and
a newG follows from (58), and then again a newΛ from (59). For the actual strategies regarding
the nontrivial numerical solution of the Dyson equations (including Fourier transformation to
momentum space) we refer to Refs. [9, 33, 65] as well as [55] and references therein.

3.5 Bethe lattice

As in equilibrium, (44) can directly be evaluated for nearest-neighbor hopping on a Bethe lattice
with Z →∞ nearest neighbors, tij = v/

√
Z , and semielliptic density of states,

ρ(ε) =

√
4v2 − ε2

2πv2
. (60)

For neighboring sites i, j of the cavity site 0, G(0),c
ij (t, t′) is nonzero only for i = j, since there is

no path from i to j other than through the removed cavity site 0. Furthermore, for Z →∞ we
have G(0),c

iσ (t, t′) = Gσ(t, t′). The quantum scaling ensures that the summation over all nearest
neighbors of 0 stays finite. This yields the action (43) with the hybridization [66, 24],

Λσ(t, t′) = v(t)Gσ(t, t′) v(t′) , (61)

i.e., after obtaining a new G from S for given hybridization Λ, the new Λ can be obtained at
once. The self-energy is nevertheless needed to calculate lattice quantities (such as the lattice
Green function or momentum distribution).
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3.6 Numerical methods

Several methods have been developed to calculate the contour Green function G(t, t′) from the
single-site DMFT action (43) for given hybridization Λ(t, t′) [55]. Generally speaking, these
methods are more involved as contour functions on the different branches must be obtained, and
not only the initial many-body state (3) must be represented but also its time evolution during
which small errors may grow substantially. The methods in the following list all have parameter
regimes for which they are well-controlled and therefore accurate, and checking them against
each other provides an important benchmark.

Many-body perturbation theory

Diagrammatic perturbation theory [62] is limited to either sufficiently small or large interaction.
For weak coupling the self-energy is expanded in terms of Feynman diagrams to a certain finite
order in U ; see, e.g., Refs. [11, 67, 21, 34, 68, 38, 44, 36, 46]. The Green function lines can be
taken as bare or interacting Green functions (as in the equilibrium case [2]), although it is not
a priori clear which choice is more accurate for a given problem. Strong-coupling perturba-
tion theory is based on a representation in terms of auxiliary particles or an expansion in the
hybridization [21, 55]; see, e.g., Refs. [33, 40, 45, 41, 50, 48, 47, 49]. For both small and strong
coupling the perturbation expansions are asymptotic in the sense that they will be more accurate
if the controlling parameter is smaller. For long times, however, it is never a priori clear up to
which time they will remain accurate.

Continuous-time quantum Monte Carlo (CT-QMC)

CT-QMC [69–71] also comes in two versions, an interaction and hybridization expansion.
Feynman diagrams are generated and sampled stochastically with appropriate weights. In ad-
dition to the fermionic sign problem, the imaginary exponents that appear in the contour Green
function lead to a dynamic sign problem, so that only comparatively short times can be studied
reliably (see, Refs. [20, 21] and Sec. 4). Also, for finite temperatures, an initial thermal state
becomes more costly to obtain at low temperatures.

Hamiltonian-based methods

A single-impurity Anderson model (SIAM) with time-dependent couplings and bath energies
yields the same nonequilibrium action as (43) with a specific hybridization Λ(t, t′) upon inte-
grating out the bath. In order to use such a time-dependent SIAM representation this hybridiza-
tion function must be matched with that obtained from the DMFT self-consistency condition
(e.g. (61)), as discussed in detail in [26]. Then, the time evolution of the SIAM Hamiltonian
may be obtained by exact diagonalization methods. In general, the accessible time is limited
because many bath sites are needed to represent both the correlations in the initial state (which
typically decrease with time) and the build-up of correlations in the time-evolved state [26].
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Falicov-Kimball model

In the Falicov-Kimball model [72], only one electron species hops between lattice sites while
the other is immobile. As in the equilibrium case, it has played an important role for the de-
velopment of nonequilibrium DMFT [9–11, 13, 15, 18, 19, 29] because it reduces to a quadratic
action that is partially solvable. However, its nonequilibrium (and equilibrium) properties are
quite different from that of the Hubbard model.

4 Correlated electrons in nonequilibrium

As mentioned in Sec. 1, many aspects of correlated electrons in nonequilibrium have been
studied with DMFT. Here we discuss only one of the simplest situations, namely an abrupt
change in the Hubbard interaction U .

4.1 Relaxation and thermalization

The evolution of a quantum many-body system in real time raises interesting questions about
the connection to equilibrium statistical mechanics. Suppose that an isolated system undergoes
some experimental protocol with a Hamiltonian H(t) that no longer changes after a certain
time t1. How does the system behave at large times (during which H(t ≥ t1) = const)? Does
it relax to the equilibrium state that is predicted by statistical mechanics for this Hamiltonian
H(t1) for the average energy E = Tr[ρ(t1)H(t1)]? If it does, the system is said to thermalize.
However, the density matrix ρ(t) in (4), when regarded in the eigenbasis of H(t1), will contain
many oscillating components that by themselves will in general not converge. Rather, expec-
tation values (such as Green functions or other short-range correlation functions) will relax to
stationary values because they average over many states and degrees of freedom.
In general, the coupling of the system to an environment is needed to prepare a mixed state such
as the canonical or grand-canonical Gibbs ensemble (3). This is used in the usual derivation of
the Gibbs state in statistical mechanics, based on Boltzmann’s concept of entropy S = kB lnΩ.
The system is coupled to a much larger external thermostat, and the number of available states
for the system at energy E is then proportional to the numberΩ of microstates of the thermostat
at energy E − E, where E is the fixed total energy of system plus thermostat. Expanding Ω in
the vicinity of E one finds that the probability for the system to have energy E is proportional
to e−E/(kBT ), where T = ∂S/∂E is the temperature of the thermostat.
On the other hand, during the time evolution of an isolated system there is no environment to
assist with the thermalization, i.e., the system must in some sense act as its own environment.
A priori it is not obvious how the details of the initial state (or ρ(t1) in the above example)
should be irrelevant in the long-time limit so that only a dependence on the average energy
remains. The so-called eigenstate thermalization hypothesis [73–76] proposes that this is due to
the fact that the expectation value of an observable A in an energy eigenstates with energy En
usually depends only on the eigenenergy En and not on the details of the eigenstate |n〉. This
property can be observed for many generic many-body systems and short-range observables A,
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although it is difficult to give precise criteria for its validity. From this property it follows at once
that, after relaxation, thermal expectation values are attained for such observables. Integrable
systems, on the other hand, are characterized by a large number of conserved quantities. These
lead to a dependence of expectation values not only on En but also on the individual eigenstates
|n〉. As a consequence, integrable systems usually do not thermalize, a behavior that has also
been observed experimentally with cold atoms [77]. Nevertheless, a statistical prediction can
often be made using generalized Gibbs ensembles (GGEs), which take the conserved constants
of motion (in addition to the Hamiltonian) into account [78, 79, 75]; for reviews see [76, 80]. In
general, however, there is still much debate how to even define thermalization or integrability
properly for quantum many-body systems in general.

4.2 Interaction quench in the Hubbard model

One of the simplest situations that can be studied in this context is a so-called quench, i,e., a
sudden switch of Hamiltonians. Here the quench is performed in the Hubbard model (1) at
half-filling in the paramagnetic phase with semielliptic density of states (60) with bandwidth
4v ≡ 4. The system is prepared in the zero-temperature ground state of the noninteracting
Hamiltonian, i.e., U(t < 0) = 0. At t = 0 the Hubbard interaction is switched to a finite value,
U(t ≥ 0) = U . The Green function is obtained with CT-QMC (weak-coupling expansion)
from the action (43), and the selfconsistency condition (61) applies [20,21]. The noninteracting
initial state makes things simpler because the imaginary branch of the contour does not enter
the CT-QMC calculation.
In Fig. 2 the momentum distribution n(εk, t) = 〈c†kσ(t)ckσ〉 is plotted as a function of the band
energy ε ≡ εk for different final values of U . The the initial Fermi sea evolves from a step
function into a continuous function of ε. Fig. 3 shows the jump in the momentum distribution
at the Fermi surface and the double occupation as a function of time. Three different param-
eter regimes can be observed: small and large values of U , separated by a sharp crossover or
transition near the intermediate scale U ≈ 3.2 = U dyn

c . Near U dyn
c , the momentum distribution

relaxes quickly to the thermal distribution for all energies ε (solid blue line in Fig. 2b, obtained
from a grand-canonical DMFT equilibrium calculation for the temperature that gives the same
total energy E). Relaxation to thermal values is also found for dynamical observables like the
retarded Green functionGR(t+s, t) (as a function of time difference s) and the two-time optical
conductivity σ(t, t + s) [21]. For quenches close to Uc, the system hence thermalizes on short
timescales.
For quenches to small or large values of U (away from Uc), thermalization is nevertheless ex-
pected on general grounds but cannot be observed on the short time scales that are available
with CT-QMC. Away from Uc, the relaxation does not reach a thermal state quickly but in-
stead passes through metastable states on intermediate time scales. For quenches to weak
coupling, U ≤ 3, the double occupation d(t) relaxes from its initial uncorrelated value d(0)

= 1/4 almost to its thermal value dth, whereas the Fermi surface discontinuity ∆n(t) remains
finite for t ≤ 5. This behavior is called prethermalization and was predicted for a quenched
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Fig. 2: Momentum distribution n(ε, t) after an interaction quench in the Hubbard model with
bandwidth 4 in DMFT [20, 21], starting from the noninteracting ground state (U = 0) to inter-
action (a) U = 2, (b) U = 3.3, (c) U = 5. The blue line in (b) is the equilibrium expectation
value for the momentum distribution at the same total energy (temperature T = 0.84) as the
time-evolved state.

Fig. 2: Momentum distribution n(ε, t) after an interaction quench in the Hubbard model with
bandwidth 4 in DMFT [20, 21], starting from the noninteracting ground state (U = 0) to inter-
action (a) U = 2, (b) U = 3.3, (c) U = 5. The blue line in (b) is the equilibrium expectation
value for the momentum distribution at the same total energy (temperature T = 0.84) as the
time-evolved state.
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Fig. 3: Double occupation d(t) and Fermi surface discontinuity ∆n after interaction quenches
to U ≤ 3 (left panels) and U ≥ 3.5 (right panels) [20]. Horizontal arrows: thermal values
of the double occupation. Horizontal dashed lines in the lower left panel are the expected
prethermalization plateaus [81].

Fermi liquid [81] on the basis of a weak-coupling calculation. Characteristically, the kinetic
and interaction energy thermalize on time scales 1/U2 while the Fermi surface discontinuity
only reaches a plateau that is located ∆nstat = 1 − 2Z, where Z is the quasiparticle weight
in equilibrium at zero temperature. During this early phase the quasiparticles are formed, and
during their subsequent scattering the momentum occupations are further redistributed. The
weak-coupling result for the transient [81] towards the prethermalization plateau describes the
DMFT data well for U . 1.5 [20], even though at the larger U values the timescales 1/U2 and
1/U4 are no longer well separated. A weakly interacting system may be regarded as nearly in-
tegrable, and indeed prethermalization plateaus after an interaction quench are quite generally
predicted correctly by a generalized Gibbs ensemble that is built from approximate constants
of motion [82]. Physically, the subsequent crossover from the prethermalization plateau to the
thermal state is expected due to the scattering of quasiparticles, which can be described by a
kinetic equation [83]. Note also that a short-time prethermalization regime has been observed
for interaction quenches in the one- and two-dimensional Hubbard model [84, 85, 52], albeit
with a less pronounced plateau in the momentum distribution.
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For quenches to strong coupling (U ≥ 3.3 in Fig. 3b,d), the relaxation shows so-called ‘collapse-
and-revival’ oscillations with the approximate periodicity 2π/U , which are due to the exact peri-
odicity of the propagator e−iHt without hopping [6]. For large values of U , both d(t) and n(ε, t)

oscillate around nonthermal values. Strong-coupling perturbation theory [20] shows that the
mean value of d(t) for these oscillations is dstat = d(0)−∆dwith∆d= (1/2U)〈Hkin/L〉t=0. By
contrast, the thermal value is obtained as dth = d(0)+(1/U)〈Hkin/L〉0 from a high-temperature
expansion. Hence, during the initial stage of the relaxation the double occupation relaxes only
halfway towards dth. Although longer times cannot be accessed with the weak-coupling CT-
QMC method, a relaxation to the thermal state is expected after the oscillations have decayed,
as in the case of a pump-excited Mott insulator [33]. In general, this crossover will set in only
on times scales that are exponentially large in the interaction U [86].
The rapid thermalization at U ≈ U dyn

c occurs at the border between the delayed thermalization
either due to weak-coupling prethermalization plateaus or strong-coupling oscillations around
nonthermal values. Indeed, no finite width was detected for the width of this crossover re-
gion, so that the behavior at U dyn

c might signal a dynamical phase transition. A similarly strong
dependence on the quenched interaction was observed in Heisenberg chains [87] and the one-
dimensional Hubbard model [84]. Several possible origins for nonequilibrium phase transitions
of this type have been proposed [88–91]. For the DMFT data, the corresponding equilibrium
temperature Teff after the quench is much higher than the critical endpoint of the Mott metal-
insulator transition in equilibrium (Tc ≈ 0.055 [2], but Teff = 0.84 for U = 3.3). Interestingly, a
good approximation for the critical interaction, U dyn

c ≈ 3.4, is obtained from a time-dependent
variational theory using the Gutzwiller approximation [92, 93]. Variational results also sug-
gest that the difference in Uc for equilibrium and nonequilibrium is due to the rapid change
in interaction and corresponding high excitation energy: if the Hubbard interaction is instead
changed very slowly, this lessens the effective temperature and the dynamical critical value Uc
approaches that of the equilibrium transition [94].
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13.2 Ján Minár

1 Introduction

Angle resolved photoemission (ARPES) and bremsstrahlung isochromat spectroscopy (ARBIS)
have developed over several decades into the experimental techniques for directly determining
the elecronic struture of any new material [1, 2]. These experimental techniques allow to mea-
sure the dispersion of occupied bands as well as unoccupied bands and therefore reveal the
electronic structure around the Fermi level with a high amount of accuracy. In particular, in
recent years many improvements on the experimental side have lead to an increase of the res-
olution of ARPES down to the meV-regime. These improvements are primarily due to the use
of synchrotron radiation, and laser sources, and to developments on the detector side (e.g. spin
resolution). More details on the foundations of ARPES can be found in the lecture of M. Sing.

On the theory side, about 50 years ago photoemission theory appeared to be an intractable
many-body problem [3–7]. The first and most simple version of a one-electron approximation
for the photocurrent was given by Berglund and Spicer [8], the so called three-step model of
photoemission. In the framework of this model the photoemission process is divided into three
independent steps: the excitation of the photoelectron, its transport through the crystal and
its escape into the vacuum. Self-energy corrections, which represent, among others, damping
processes and energetic shifts in the quasi-particle spectrum, are completely neglected. This
means that the initial and final states in the photoemission process are assumed to be Bloch-
states with an infinite lifetime. It should be mentioned that the assumption of an infinite electron
lifetime does not allow for transitions into evanescent bandgap states, e.g. states that decay
exponentially into the solid. Similarly, the assumption of an infinite lifetime for the initial state
does in practice not allow to calculate photoemission spectra that involve surface states. To
overcome the deficiencies of the three-step model, a dynamic approach has been suggested first
for the final state by Liebsch [9] and Spanjaard et al. [10]. Later-on multiple scattering effects
were properly included for both initial and final states by Pendry and coworkers [11,12] in order
to treat self-energy corrections on an equal footing. Pendry’s one-step approach to ARPES [11,
13] led to a numerically solvable scheme by replacing the retarded one-electron Green function
for the initial state by the one-particle Green function determined within density functional
theory (DFT) [14]. Within this scheme, electronic correlation effects are typically considered in
photoemission theory making use in practice of the local (spin) density approximation (L(S)DA)
[15, 16]. Life-time effects in the initial state are accounted for by an imaginary potential term
V0ii which is added to the single-particle cell potential. The final state is constructed within
the formalism for spin-polarized low-energy electron diffraction (SPLEED) as a so-called time-
reversed SPLEED state [13,17]. The finite imaginary part V0f i effectively simulates the inelastic
mean free path (IMFP). As a consquence the amplitude of the high-energy photoelectron state
inside the solid can be neglected beyond a certain distance from the surface [11].

After the one-step model had been established in the seventies, it was extended in many aspects.
For example, the quantitative analysis of spin-orbit induced dichroic phenomena was worked
out by several groups [17–24]. Furthermore, the so called full-potential formulation of photoe-
mission was developed in order to achieve an accurate description of spectroscopic data even
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for complex surface systems [17, 23, 25]. The treatment of disordered systems was worked out
by Durham et al. [26, 20]. Nowadays, the one-step model allows for photocurrent calculations
for photon energies ranging from a few eV to more than 10 keV [27–34], for finite tempera-
tures and for arbitrarily ordered [35] and disordered systems [36], and considering in addition
strong correlation effects within the dynamical mean-field theory (DMFT) [37–42]. The aim of
this lecture is to present these recent developments in the theory of photoemission. The main
emphasis will be given to its LSDA+DMFT extention and to the relativelly new techniques of
soft- and hard x-ray angle resolved photoemission (HARPES).
The LSDA+DMFT implementation within the multiple-scattering Korringa-Kohn-Rostoker
(KKR) method [37, 43] is reviewed in Sec. 2. In section 3.2, we briefly review the one-step
model of photomeission. The second part of this lecture is devoted to calculations of angle-
resolved photoemission within the one-step model including more or less all relevant spec-
troscopy issues like matrix elements and surface effects. Recent technical developments allow
one to perform calculations for ordered as well as for chemically disordered systems including
electronic correlation effects. This topic is presented in Sec. 4. Finally, several aspects of soft
and hard x-ray photoemission, which are relatively new experimental methods, are discussed in
Sec. 5.

2 Combination of the LSDA+DMFT with the KKR method

In the following section we shortly review a fully self-consistent (with respect to charge density
and self-energy) LSDA+DMFT implementation within the full-potential fully relativistic mul-
tiple scattering Korringa Kohn Rostoker method [37]. This method is used to solve the multiple
scattering formalism for semi-infinite solids which in turn is a basis of the one-step model of
photomeission as presented in next section. The KKR offers a number of advantages compared
to other band structure methods due to the fact that the KKR represents the electronic structure
by the corresponding single-particle Green’s function (For a recent review of the KKR method
see [44] and references therein). This allows one to combine the KKR method with the DMFT
straightforwardly. Another important consequence is the possible use of the Dyson equation
which relates the Green’s function of a perturbed system with the Green’s function of the cor-
responding unperturbed reference system. Using the Dyson equation allows in particular to
calculate the properties of low dimensional systems like, e.g., semi-infinite 2D-surfaces, nano-
structures or embedded 3D- or 2D- systems without using an artificial super cell construction.
Finally, the KKR Green’s function method allows one to deal with substitutional disordered
alloys in combination with the coherent potential approximation (CPA) [45].
The central idea of the KKR-based implementation of the LSDA+DMFT is to account for the
general non-local, site-diagonal, complex and energy-dependent self-energy ΣDMFT already
when calculating the basis functions, i.e., when solving the single-site Schrödinger (or Dirac)
equation. This allows one to exploit directly all advantageous features of the KKR Green’s
function method when performing LSDA+DMFT calculations and consequently to account for
correlation effects for a wide range of systems.
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There are nowadays various approaches available to combine the LSDA with the DMFT method
[46,47]. In contrast to the KKR-scheme, the corresponding LSDA problem is in general solved
variationally using a given basis set (e.g. LMTO) as a first step. The corresponding local Green’s
function is determined by the spectral representation of the Kohn-Sham Hamiltonian. Solv-
ing subsequently the DMFT problem, the resulting local self-energy ΣDMFT and local Green’s
function can in turn be used to calculate a new charge density and an effective LSDA potential.
However, in order to combine coherently the LSDA with the DMFT method (in the spirit of
spectral density functional theory [48]) one has to solve self-consistently the following Dyson
equation

G(~r, ~r ′, E) = G0(~r, ~r
′, E)

+

∫
d3r′′

∫
d3r′′′G0(~r, ~r

′′, E)
(
Veff(~r

′′)δ(~r ′′ − ~r ′′′) +Σ(~r ′′, ~r ′′′, E)
)
G(~r ′′′, ~r ′, E), (1)

where G0(~r, ~r
′′, E) is the free electron Green’s function. The potential Veff(~r) denotes the

(effective) potential. Within the relativistic version of spin DFT used here this is usually defined
as Veff(~r) = [V eff(~r) + βσBeff(~r)] where V eff(~r) denotes the spin-independent potential, and
Beff(~r) is the magnetic field [49]. Correspondingly, the matrices β and αk used below are the
standard Dirac matrices with β = σz ⊗ 12 and αk = σx ⊗ σk (k = x, y, z) in terms of the 2× 2

Pauli-matrices σk.
A very efficient way of solving Eq. (1) is offered by the multiple scattering KKR method.
Having decomposed the system into atomic regions (Wigner-Seitz-cells) and considering that
ΣDMFT is an on-site quantity, the equation can be solved using the standard KKR formalism.
This implies that one first has to solve the single-site scattering problem to obtain the wave
function Ψ(~r) and the corresponding single-site scattering t-matrix inside an atomic cell. In the
relativistic spin density functional theory [50, 51] the corresponding single-site Dirac equation
reads [

~
i
c ~α · ~∇+ βmc2 + Veff(~r) +

∫
d3r′Σ(~r, ~r ′, E)

]
Ψ(~r) = EΨ(~r) . (2)

Here, the Ψ(~r) are energy-dependent four-component spinor functions for energy E. To be able
to solve Eq. (2) one makes the following ansatz for the wave function Ψ =

∑
Λ ΨΛ, with the

combined relativistic quantum number Λ = (κ, µ), where κ and µ are the spin-orbit and mag-
netic quantum numbers, respectively. In addition, in the spirit of the DMFT one has to project
Σ(~r, ~r ′, E) onto the localized set of orbitals φnΛ(~r). The corresponding matrix ΣΛΛ′(E) is ob-
tained as an output from the DMFT solver. In practice, ΣΛΛ′(E) is used only for correlated d-
or f -orbitals. It is worth notin that even in the case of the spherical muffin-tin or atomic-sphere
approximation to the potential, the full-potential-like coupled Eqs. (2) have to be solved. This
implies that the full-potential version of the KKR has to be used. After having solved the set of
coupled equations for the wave functions Ψ(~r) one gets the corresponding single-site tmatrix by
standard matching to the Hankel and Bessel functions as free-electron solutions. When solving
the single-site problem, obviously the entire complexity of the underlying complex non-local
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potential within LSDA+DMFT is accounted for. Accordingly, the resulting regular and irreg-
ular scattering wave functions ZΛ(~r, E) and JΛ(~r, E) as well as the corresponding single-site
t-matrix carry all information of the underlying LSDA+DMFT Hamiltonian. This means that in
contrast to other LSDA+DMFT implementations, the effect of the self-energy is also reflected
in the wave functions Ψ . This becomes important, for example, in a total energy calculation and
for the photoemission matrix elements (see Sec. 3.2).
With the single-site t matrix available the next step of the KKR calculation is to solve the
multiple scattering problem. This task can be done by using the scattering path operator τ [52]
and it is independent from the DMFT. For a finite system this can be done straightforwardly
by inverting the so called KKR-matrix, τ(E) = [t(E)−1 −G

0
(E)]−1 with the double underline

indicating matrices with respect to site and spin-angular (Λ) character. Dealing with a three-
dimensional periodic system this equation can also be solved exactly by Fourier transformation.
As a result the retarded site-diagonal Green’s function G(~r, ~r ′, E) can be written as [53, 45]

G(~r, ~r ′, E) =
∑
Λ,Λ′

ZΛ(~r, E)τ
nn
Λ,Λ′(E)Z

×
Λ′(~r

′, E)

−
∑
Λ

{ZΛ(~r, E)J×Λ (~r
′, E)Θ(~r ′ − ~r)

+ JΛ(~r, E)Z
×
Λ (~r

′, E)Θ(~r − ~r ′)} , (3)

where ~r (~r ′) lies in the atomic cell n representing cell-centered coordinates and × indicates
a so-called left-hand side solution [54]. With the Green’s function G(~r, ~r ′, E) available all
properties of interest, e.g., the charge density, can be calculated straightforwardly and in this
way the calculated Green’s function G includes all effects of the self-energy ΣDMFT.
The definition of the Green’s function and the expressions given above are not restricted to
real energies E but also hold for arbitrary complex energies z. The fact that G(~r, ~r ′, E) is
analytical [55] allows, in particular, to perform the energy integration for the charge density on
a contour in the complex energy plane [56] with typically around 30 energy mesh points. On
the other hand the self-energy ΣDMFT is often calculated for a mesh of Matsubara frequencies.
This implies that it is necessary to use analytical continuation techniques to transform ΣDMFT

from Matsubara frequencies ω onto the KKR complex energy contour. It is worth noting that in
general ΣDMFT is not Hermitian and for low-symmetry systems one has to consider right- and
left-handed solutions of (2) when constructing the Green’s function G(~r, ~r ′, E) [54].
In order to construct the bath Green’s function needed as the input of the DMFT solver, the
localized Green’s function is calculated by projecting the Green’s function given by Eq. (3)
onto the correlated atomic orbitals φΛ(~r)

GΛΛ′(E) =

∫
d3r

∫
d3r ′φΛ(~r)G(~r, ~r

′, E)φΛ′(~r
′) . (4)

A natural choice for the projection functions φΛ(~r) are the regular single-site solutions of the
Kohn-Sham-Dirac equations that are normalized to 1 and also are used to represent the self
energy Σ. For transition-metal systems, only the d-d sub-block of the Gnn(E) is considered,
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Fig. 1: Left: Schematic overview of the KKR-based LSDA+DMFT scheme. Right: Illustration
of the energy paths involved. The blue semicircle is the complex energy path (with complex
energies z) used by KKR to calculate the charge density. After the bath Green’s function G
is obtained, it is analytically continued onto the imaginary axis (red) to calculate the self-
energy ΣDMFT via the DMFT impurity solver. The latter is analytically extrapolated back to
the semicircle. Figure taken from [43].

using φΛ(~r) wave functions with l = 2. In principle, the choice of the φΛ(~r) is arbitrary as long
as φΛ(~r) is a complete set of functions. This implies that a localized basis set is calculated at a
given reference energy Eref (set to be the center of gravity of the occupied d- or f -band) with
the magnetic field set to zero in the relativistic case. In the full-potential case couplings to the
other l-channels as a consequence of crystal symmetry have to be suppressed.

A flow diagram describing the resulting KKR-based self-consistent LSDA+DMFT scheme is
presented in Fig. 1. Eq. (2) provides the set of regular (Z) and irregular (J) solutions of the
single-site problem accounting for the LSDA potential as well as the DMFT self-energy Σ.
Together with the t-matrix and the scattering-path operator τ the KKR Green’s function is
constructed from Eq. (3). To solve the many-body problem, the projected Green’s function
matrix is constructed according to Eq. (4). The LSDA Green’s function GΛΛ′(E) is calculated
on the complex contour which encloses the valence band one-electron energy poles. The Padé
analytical continuation scheme is used to map the complex local Green’s functionGΛΛ′(E) onto
the set of Matsubara frequencies or the real axis, which is used when dealing with the many-
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body problem. In the current fully relativistic implementation, the perturbative SPTF (spin-
polarized T -matrix + FLEX) [57] as well as T = 0K spin-polarized T -matrix [58] solvers of
the DMFT problem are used. In fact any DMFT solver could be included which supplies the
self-energy Σ(E) when solving of the many-body problem. The Padé analytical continuation is
used once more to map the self-energy from the Matsubara axis back onto the complex plane,
where the new KKR Green’s function is calculated. As was described in the previous sections,
the key role is played by the scattering path operator τnnΛΛ′(E), which allows us to calculate the
charge in each SCF iteration and the new potentials that are used to generate the new single
particle Green’s function.
Finally, the double-counting corrections HDC have to be considered. This problem is definitely
one of the main challenges towards first-principles calculations within LSDA+DMFT. Until
now various schemes for double-counting correction have been suggested [47]. The simplest
choice, i.e., the idea of the static LSDA+U scheme has been used here. We apply the double-
counting corrections to the self-energy when solving the many-body problem. First of all we
remove the static part of the self-energy coming from the SPTF solver and add the mean-field
(AMF) LSDA+U like static part [59]. In the case of pure transition metals, as well as their
metallic compounds and alloys, the so-called AMF double-counting correction seems to be
most appropriate [59,38,40,60]. It is worth noting here that currently an exact analytical equa-
tion for the double-counting correction is not known. Alternatively, it might be possible to get
an exact solution of the double-counting problem on the level of the GW+DMFT scheme [61].
Therefore, it is important to perform direct comparisons, for example, to ARPES experiments
as a stringent test for the choice of the optimal HDC . However, to be able to make a deci-
sion between various suggestions for HDC it is helpful not only to calculate the bare spectral
function, i.e. ImG, but also to perform a complete calculation of photoemission spectra (for
example with the one-step model of photoemission, see Sec. 3.2). In fact, using the one-step
model of photoemission, one can clearly see that the AMFHDC is an appropriate choice at least
for transition-metal systems [38, 40, 60].

2.1 LSDA+DMFT treatment of disordered alloys

It is an outstanding feature of the KKR method that it supplies the one-electron Green’s function
of the considered system directly without relying on Bloch’s theorem. Because of this property,
the KKR Green’s function method allows one to deal with substitutional disorder including both
diluted impurities and concentrated alloys in the framework of the CPA [62, 63]. Within this
approach (KKR-CPA) the propagation of an electron in an alloy is regarded as a succession of
elementary scattering processes due to random atomic scatterers, with an average taken over
all configurations of the atoms. This problem can be solved assuming that a given scattering
center is embedded in an effective medium whose choice is open and can be determined in a
self-consistent way. The physical condition corresponding to the CPA is simply that a single
scatterer embedded in the effective CPA medium should produce no further scattering on the
average as illustrated by Fig. 2.
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xA + xB =

Fig. 2: The major ideas of the CPA: The configurational average over all configurations of a
disordered alloy AxB1−x is represented by an auxiliary CPA medium. Embedding of an A or B
atom should not give rise to additional scattering with respect to the CPA medium.

A similar philosophy is applied also when dealing with many-body problems for crystals in the
framework of DMFT. Thus it is rather straightforward to combine the DMFT and KKR-CPA
method as both schemes are used on a single-site level, i.e., any correlation in the occupation
(e.g. short range order) is ignored and the DMFT self-energy Σ is taken to be on-site only. In
fact, the combination of the KKR-CPA for disordered alloys and the DMFT scheme is based on
the same arguments as used by Drchal et al. [64] when combining the LMTO Green’s function
method for alloys [65] with the DMFT.
The combination of the CPA and LSDA+DMFT turned out to be a rather powerful technique
for calculating electronic structure properties of substitutionally disordered correlated materi-
als [37, 59, 66, 36]. As mentioned, within the CPA the configurationally averaged properties
of a disordered alloy are represented by a hypothetical ordered CPA-medium, which in turn
may be described by a corresponding site-diagonal scattering path operator τCPA, which in turn
is closely connected with the electronic Green’s function. For example for a binary system
AxB1−x composed of components A and B with relative concentrations x and 1 − x the corre-
sponding single-site t-matrix tCPA and the multiple scattering path operator τCPA are determined
by the so called CPA-condition:

xτA + (1− x)τB = τCPA. (5)

The CPA equation represents the requirement that substitutionally embedding an atom (of type
A or B) into the CPA medium should not cause additional scattering. The scattering properties
of an A atom embedded in the CPA medium are represented by the site-diagonal component-
projected scattering path operator τA (angular momentum index omitted here)

τA = τCPA
[
1 +

(
t−1
A − t

−1
CPA

)
τCPA

]−1
= τCPADA , (6)

where tA and tCPA are the single-site matrices of the A component and of the CPA effective
medium; the factor DA = [1 + (t−1

A − τ−1
CPA)]

−1 in Eq. (6) is called the CPA-projector. A
corresponding equation holds also for the B component in the CPA medium. The coupled set
of equations for τCPA and tCPA has to be solved iteratively within the CPA cycle. For example
when a binary system AxB1−x composed of components A and B with relative concentrations
xA = x and xB = (1 − x) is considered, the above equation represents the requirement that
embedding substitutionally an atom (of type A or B) into the CPA medium should not cause
additional scattering.
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The above scheme can straightforwardly be extended to include many-body correlation effects
for disordered alloys [37]. Within the KKR approach the local multi-orbital and energy de-
pendent self-energies (ΣDMFT

A (E) and ΣDMFT
B (E)) are directly included into the single-site

matrices tA and tB, respectively when solving the corresponding Dirac equation (2). Conse-
quently, all the relevant physical quantities connected with the Green’s function, for example
the charge density, contain the electronic correlations beyond the LSDA scheme.

3 One-step model of photoemission

Spectroscopy is an extremely important experimental tool providing information on the elec-
tronic structure of the probed system that has to be seen as a stringent benchmark for the suc-
cess of any electron structure theory. Photoemission spectroscopy (PES) or its inverse – the
Bremsstrahlung isochromate spectroscopy (BIS) – in their angle-integrated form should reflect
the density of states (DOS) rather directly, in particular in the high photon-energy regime (XPS).
For that reason it is quite common to check the DMFT-based calculations by comparing the cal-
culated DOS directly to the PES spectra (see the reviews [67, 46, 47] for example).
However, this approach ignores the influence of the specific PES matrix elements that in general
will introduce an element- and energy-dependent weight to the partial DOS. In ARPES, the situ-
ation is even move severe as the surface as well as dipole selection rules may have a pronounced
impact on the spectra [68] demanding a coherent description on the basis of the one-step model
of photoemission [17]. To achieve a reliable interpretation of experiments it is inevitable to deal
with so-called matrix-element effects that considerably modify the raw spectrum. In particular,
the wave-vector and energy dependence of the transition-matrix elements has to be accounted
for. These issues are known to be important and cannot be neglected. They arise from strong
multiple-scattering processes in the final PES state that dominate the electron dynamics in the
low-energy regime of typically 1-200 eV [13]. The transition-matrix elements also include the
effects of selection rules which are not accounted for in the raw spectrum. Loosely speaking, it
can be said that the main task of a theory of photoemission is to close the gap between the raw
spectrum obtained by LSDA+DMFT electronic-structure calculations and the experiment. The
most successful theoretical approach concerning this is the one-step model of photoemission as
originally proposed by Pendry and co-workers [11–13]. In the following a short overview will
be given on the recent extensions of this model which are connected with correlation effects and
disordered alloys.
The main idea of the one-step model is to describe the actual excitation process, the transport
of the photoelectron to the crystal surface as well as the escape into the vacuum [8] as a single
quantum-mechanically coherent process including all multiple-scattering events. Within this
model self-energy corrections, which give rise to damping in the quasi-particle spectrum, are
properly included in both the initial and the final states. This, for example, allows for transitions
into evanescent band gap states decaying exponentially into the solid. Similarly, the assump-
tion of a finite lifetime for the initial states gives the opportunity to calculate photoemission
intensities from surface states and resonances. Treating the initial and final states within the
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Fig. 3: Left: Schematic overview of the one-step model of photoemission. The whole photoe-
mission process is solved within the multiple scattering theory for a semi-infinite surface. Right:
Electron from initial state φi at energy Ei is exited to the final state φf (time-reversed SPLEED)
which decays into the solid due to the inelastic processes (modeled by imaginary part of poten-
tial). By increasing the inelastic mean free path of the time-reversed SPLEED state (E ′f ) the
photoemission process becomes more bulk sensitive (See Sec. 5).

fully relativistic layer version of the KKR [69, 70], it is a straightforward task to describe the
photoemission from complex layered structures like thin films and multilayers. Furthermore,
the surface described by a barrier potential can be easily included into the multiple-scattering
formalism as an additional layer. A realistic surface barrier model that shows the correct asymp-
totic behavior has been introduced, for example, by Rundgren and Malmström [71].

3.1 General theory of photoemission

In this section, the main features of general photoemission theory will be elucidated. The calcu-
lation of the photocurrent starts from first order time-dependent perturbation theory. Assuming
a small perturbation ∆, the transition probability per unit time w between two N -electron states
|ΨF > and |ΨI > of the same Hamiltonian H, is given by Fermi’s golden rule:

w =
2π

~
| < ΨF |∆|ΨI > |2δ(EF − EI − ~ω) , (7)

where EF and EI denote the energies of the N -electron states and ~ω the excitation energy.
This equation can be also derived within the Keldysh Green’s function approach and can be



ARPES: The one-step model 13.11

represented in the lowest order as a triangular like skeleton diagrams (See e.g. Fujikawa and
Arai [72, 73]). In second quantization the interaction operator ∆ is defined as follows

∆ =
∑
k,m

∆k,m a†kam , (8)

where ∆k,m denotes a one-particle matrix element between two single-particle states φk and
φm. The initial and final states are then defined as |ΨI > = |Ψ 0

N > and |ΨF > = a†f |Ψ sN−1 >

where |Ψ sN−1 > denotes an excited N − 1 particle state and |Ψ 0
N > defines the ground state of

the many-particle system. For the explicit formulation of the initial state the so called sudden
approximation is used. This means the photoelectron is described by a single-particle state and
the interaction with the excited N − 1 state |Ψ sN−1 > has been completely neglected. In other
words af |Ψ 0

N > = 0. Using these approaches for the initial and final states the transition
probability is given by

ws =
2π

~
| < Ψ sN−1|

∑
k,m

∆k,mafakam|Ψ 0
N > |2δ(EN − EN−1 − ~ω) , (9)

where the delta-function describes the energy conservation in the photo-excitation process gen-
erated by a certain photon energy ~ω. Performing some standard manipulations on Eq. (9) it
follows for w =

∑
s ws

w =
2π

~
∑
m,m′

∆†f,m Am,m′(En)∆f,m′ , (10)

where

Am,m′(En)
2

~
∑
s

< Ψ 0
N |a†m|Ψ sN−1 > δ(EN − EN−1 − ~ω) < Ψ sN−1|am′|Ψ 0

N >, (11)

represents the one-electron spectral function of the initial state. Using further the relation

Am,m′(En) = −
1

π
ImGR

m,m′(En) (12)

between the spectral function and the one-electron retarded Green’s function, the intensity of
the photocurrent follows

I(~ω) = − 1

π
Im
∑
m,m′

< φf |∆†|φm > GR
m,m′(En) < φm|∆|φf > . (13)

With the help of the operator representation for GR

GR(En) =
∑
m,m′

|φm > GR
m,m′(En) < φm′ | (14)

we arrive at the final expression

I(~ω) = − 1

π
Im < φf |∆†GR(En)∆|φf > (15)

for the photocurrent I(~ω). Replacing the retarded one-electron Green’s function by the one-
particle Green function and reformulating Eq. (15) in the space representation one arrives at the
one-step model description of the photocurrent as derived among others by Pendry [11] (see
Eq. (16) and [74]).
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3.2 Fully relativistic one-step model of photoemission for alloys

In this section we will show some basic ideas concerning the implementation of Eq. (15) as
derived in Sec. 3.1. As a detailed description of the one-step model of photoemission can be
found in various reviews (e.g. [17]), here we would like to show only the main steps with an
emphasis on the calculations of the photomeission for correlated alloys.
An implementation of the one-step model of PES can be based on Pendry’s expression for the
photocurrent [11], which is nothing but the space representation of Eq. (15)

IPES ∝ Im 〈εf , ~k‖|G+
2 ∆G

+
1 ∆
†G−2 |εf , ~k||〉 . (16)

IPES denotes the elastic part of the photocurrent with vertex renormalizations being neglected.
This excludes inelastic energy losses and corresponding quantum-mechanical interference terms
[11,74,6]. Furthermore, the interaction of the outgoing photoelectron with the rest of the system
is not taken into account. This sudden approximation is expected to be justified for not too small
photon energies. Considering an energy-, angle- and spin-resolved photoemission experiment
the state of the photoelectron at the detector is written as |εf , ~k‖〉, where ~k‖ is the component of
the wave vector parallel to the surface, and εf is the kinetic energy of the photoelectron. The
spin character of the photoelectron is implicitly included in |εf , ~k‖〉 which is understood as a
four-component Dirac spinor. The advanced Green’s function G−2 in Eq. (16) characterizes the
scattering properties of the material at the final-state energy E2 ≡ εf . Via |Ψf〉 = G−2 |εf , ~k‖〉
all multiple-scattering corrections are formally included. For an appropriate description of the
photoemission process we must ensure the correct asymptotic behavior of Ψf (~r) beyond the
crystal surface, i.e., a single outgoing plane wave characterized by εf and ~k‖. Furthermore,
the damping of the final state due to the imaginary part of the inner potential iV0i(E2) must be
taken into account. We thus construct the final state within spin-polarized low-energy electron
diffraction (SPLEED) theory considering a single plane wave |εf , ~k‖〉 advancing onto the crys-
tal surface. Using the standard layer-KKR method generalized for the relativistic case [17, 75],
we first obtain the SPLEED state −TΨf (~r). The final state is then given as the time-reversed
SPLEED state (T = −iσyK is the relativistic time inversion operator). Many-body effects
are included phenomenologically in the SPLEED calculation by using a parametrized weakly
energy-dependent and complex inner potential V0(E2) = V0r(E2) + iV0i(E2) [13]. This gen-
eralized inner potential takes into account inelastic corrections to the elastic photocurrent [74]
as well as the actual (real) inner potential, which serves as a reference energy inside the solid
with respect to the vacuum level [76]. Due to the finite imaginary part iV0i(E2), the flux of elas-
tically scattered electrons is continuously reduced, and thus the amplitude of the high-energy
wave field Ψf (~r) can be neglected beyond a certain distance from the surface (see right panel of
Fig. 3).
In the last part of this section we would like to explicitelly evaluate Eq. (16) for the CPA pho-
tocurrent. A more detailed description of the generalized one-step model for disordered mag-
netic alloys can be found in Braun et al. and Durham et al. [36, 26, 20]. The first step in an
explicit calculation of the photocurrent consists in the setup of the relativistic spin-polarized



ARPES: The one-step model 13.13

low energy electron diffraction (SPLEED)-formalism within the CPA theory. The coherent
scattering matrix tCPAn for the nth atomic site together with the crystal geometry determines the
scattering matrix M for a certain layer of the semi-infinite half-space

M ττ ′ss′

gg′ = δττ
′ss′

gg′ (17)

+
8π2

kk+
gz

∑
nn′

ΛΛ′Λ′′

i−lCms
Λ Y µ−ms

l (k̂τg) t
CPA
n

ΛΛ′′
(1−X)−1

Λ′′Λ′i
l′C

m′s
Λ′ Y

µ′−m′s
l′ (k̂τ

′

g′) e
−i(kτgRn+kτ

′
g′Rn′ ),

where the X-matrix represents the Kambe lattice sum, which in turn is directly connected with
the multiple scattering path operator τ = tX . All quantities are indexed by the reciprocal lattice
vectors of the 2D layer g, relativistic quantum numbers Λ and site index n and index τ = ±
(+ for transmission, and − for reflection). C and Y are standard Clebsch-Gordan coefficients
and the spherical harmonics, respectively. By means of the layer-doubling technique the so
called bulk-reflection matrix can be calculated, which gives the scattering properties of a semi-
infinite stack of layers. Finally, applying SPLEED theory [44, 77] we are able to derive the
final state for the semi-infinite crystal. The quantity ∆ in Eq. (16) is the dipole operator in the
electric dipole approximation. It mediates the coupling of the high-energy final state with the
low-energy initial states. In a fully relativistic theory the dipole interaction of an electron with
the electromagnetic field is given by the dipole operator ∆ = −αA0 where A0 is the spatially
constant vector potential inside the crystal. The three components αk of the vectorα are defined
through the tensor product αk = σ1 ⊗ σk, k = z, y, z, where σk denote the Pauli spin matrices.
Dealing with the matrix element 〈Ψf |∆|Ψi〉 between eigenspinors |Ψf〉 and |Ψi〉 of the Dirac
Hamiltonian with energies Ef and Ei, respectively, it is numerically more stable to transform
∆ in the so called ∇V form of matrix elements. This is derived by making use of commutator
and anticommutator rules analogously to the nonrelativistic case in Ref. [78, 79].
According to Pendry [11] the calculation of G+

1 , and in consequence the calculation of the pho-
tocurrent, can be divided into four different steps. The first contribution Iat, the so called atomic
contribution results from the replacement of G+

1 in Eq. (16) by G+
1,a. The second contribution

Ims, describes the multiple scattering of the initial state. The third contribution Is to the pho-
tocurrent takes care of the surface. When dealing with the disorder in the alloys, an additional
I inc, the so called incoherent term, appears. Following Durham et al. [26,20] the configurational
average can be written as

< IAR−PES > =
1

π
Im
∑
ij

< Miτ
ijM∗

j >=
1

π
Im
∑
i

< Ma
i > + < Is > . (18)

Herein τ ij denotes the scattering path operator between the sites i and j. Ma
i represents an

atomic-type matrix element containing the irregular solutions which appear as a part of the
retarded Green function G+

1,a. Mi indicates a conventional matrix element between regular
solutions of the initial and final states. The first term can be decomposed in on-site and off-site
contributions ∑

ij

< Miτ
ijM∗

j >=
∑
ij,i6=j

< Miτ
ijM∗

j > +
∑
i

< Miτ
iiM∗

i > . (19)
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The on-site term is called incoherent part of the photocurrent since this term reveals density-of-
states (DOS)-like behavior by definition. The off-site contribution which contains all dispersing
features represents the so called coherent part of the photocurrent. Together with the surface
part that remains unchanged by the averaging procedure < Is >= Is the total one-step current
can be written as

< IAR−PES > = − 1

π
Im
∑
i

< Ma
i > + Is

+
1

π
Im
∑
ij,i6=j

< Miτ
ijM∗

j >

+
1

π
Im
∑
i

< Miτ
iiM∗

i > . (20)

Using Pendry’s notation it follows

<IAR−PES(εf ,k)> = <Iat(εf ,k)> + <Ims(εf ,k)> + <I inc(εf ,k)> + Is(εf ,k) , (21)

where Ims can be identified with the coherent contribution that describes all band-like features
of the initial state and I inc with the incoherent contribution that describes the corresponding
DOS-like features. Because of this clear-cut separation in contributions that describe dispersing
or non-dispersing features one may easily define the angle-integrated photocurrent by use of the
CPA-formalism. The ordered case is then defined by a binary alloy with two identical species
at each atomic site. Therefore, it follows

< IAI−PES(εf ,k) > = < Iat(εf ,k) > + < I inc(εf ,k) > + Is(εf ,k) . (22)

For the atomic contribution the averaging procedure is trivial, since < Iat(εf ,k) > is a single-
site quantity. In detail, the atomic contribution is build up by a product between the matrix
Zat
jnαn and the coherent multiple scattering coefficients AcjnΛ of the final state. Herein n denotes

the nth cell of the jth layer and Λ denotes the combined relativistic quantum numbers (κ, µ). It
follows

< Iat(εf ,k) > ∝ Im
∑
jnαn
ΛΛ′

xjnαnA
c
jnΛZat

jnαn
ΛΛ′

Ac∗jnΛ′ , (23)

where αn denotes the different atomic species located at a given atomic site n of the jth layer.
The corresponding concentration is given by xjnαn .
For an explicit calculation Zat must be separated into angular matrix elements and radial dou-
ble matrix elements. A detailed description of the matrix Zat and of the multiple scattering
coefficients AcjnΛ for the different atomic species is given in Refs. [17, 75].
The intra(inter)-layer contributions < Ims(εf ,k) > to the photocurrent describe the multiple
scattering corrections of the initial state G+

1 between and within the layers of the single crystal.
They can be written in a similar form

< Ims(εf ,k) > ∝ Im
∑
jn
ΛΛ′

AcjnΛ Z
c(2)
jn
ΛΛ′

CB,G
jnΛ′ . (24)
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In analogy to the atomic contribution, the coherent matrix Zc(2) can be separated into angular-
and radial parts. The difference to the atomic contribution is that the radial part of the matrix
Zc(2) consists of radial single matrix elements instead of radial double integrals. In the alloy
case this matrix results in the following expression

Zc(2)
jn
ΛΛ′

=
∑
αn

Λ1Λ2Λ3

xjnαnDΛ1Λ2R
(2)
jnαn

Λ1ΛΛ2Λ3

Djnαn
Λ3Λ′

. (25)

The radial and angular parts of the matrix element are denoted byR(2) andD. The CPA-average
procedure explicitly is represented in terms of the CPA-projector Djnαn representing the α-
species at site n for layer j. CB and CG denote the coherent multiple scattering coefficients of
the initial state within a layer and between different layers. They have the form

CB
jnΛ =

∑
n′Λ′Λ′′

B
(o)c
jn′Λ′(t

CPA)−1
jn′

Λ′Λ′′

(
(1−X)−1

jnn′

Λ′′Λ

− δ nn′
Λ′′Λ

)
,

(26)

with the coherent bare amplitudes B(o)c
jn′Λ′

B
(o)c
jn′Λ′ =

∑
Λ′′

Zc(1)

jn′

Λ′Λ′′
Ac∗jn′Λ′′ . (27)

and

Zc(1)
jn
ΛΛ′

=
∑
αn

Λ1Λ2Λ3

xjnαnD
†
jnαn
ΛΛ3

R
(1)
jnαn

Λ1Λ3Λ2Λ′
D†Λ1Λ2

. (28)

Finally, the coherent scattering coefficients CG for the inter-layer contribution take the form

CG
jnΛ =

∑
n′Λ′

G
(o)c
jn′Λ′(1−X)−1

jn′n
Λ′Λ

(29)

and the coherent bare amplitudes G(o)c
jn′Λ′ are given by

G
(o)c
jn′Λ′ =

∑
gms

4πil
′
(−)µ′−sCms

Λ′

(
d+
jgms

Y ms−µ′
l′ (k̂+

1g)e
ik+

1g·rn′+d−jgmsY
ms−µ′
l′ (k̂−1g)e

ik−1g·rn′
)
. (30)

The coefficients d±jgms in Eq. (30) represent the plane-wave expansion of the initial state between
the different layers of the semi-infinite stack of layers. For a detailed description of the matrices
Zat, Z(1) and Z(2) and of the multiple scattering coefficients d±jgms the reader again is referred
to Refs. [17, 75].
The last contribution to the alloy photocurrent is the so called incoherent part < I inc(εf ,k) >,
which appears because the spectral function of an disordered alloy [45] is defined as a non
single-site quantity. In fact this contribution is closely connected with the presence of the ir-
regular wave functions well-known from the spherical representation of the Green function G+

1 .
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The incoherent term is defined as

< I inc(εf ,k) > ∝ Im
∑
jnαn
ΛΛ′Λ′′

xjnαnA
c
jnΛZ

(1)
jnαn
ΛΛ′

(
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)
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+ Im
∑
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ΛΛ′
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c jn
Λ′Λ′′
Zc(2)

jn
Λ′′Λ′′′

Ac∗jnΛ′′′ , (31)

where τ 00
jnαn denotes the one-site restricted average CPA-matrix for species αn at atomic site n

for layer j. τ 00
c jn represents the corresponding matrix for the coherent medium. This completes

the CPA-averaged photocurrent within the fully-relativistic one-step model.

4 LSDA+DMFT for calculations of spectroscopic properties

In the following section we would like to show a couple of recent applications of the formalism
presented in Secs. 2 and 3. The propose of the detailed discussion at each example is to show
which additional information one can gain from the one-step model calculations in contrast to
the standard interpretation of ARPES-spectra-based comparisons between ground state spectral
functions or densities of states with experimental data.

4.1 Angle-integrated valence band photoemission: Fano effect

Spin-orbit coupling gives rise to many interesting phenomena in the electron spectroscopy of
magnetic solids. A rather straightforward access to the understanding of these phenomena is
provided by the study of the Fano effect. This effect was predicted by Fano at the end of the
sixties and denotes the fact that one obtains a spin-polarized photoelectron current even for
non-magnetic systems if the excitation is done using circularly polarized light [80]. Reversing
the helicity in non-magnetic samples reverses the spin polarization of the photocurrent. This
symmetry is in general broken for magnetically ordered systems leading to magnetic circular
dichroism. As a consequence, in the case of magnetic materials, the spin polarization is usually
due to the interplay between spin-orbit coupling and exchange splitting. Recently, we demon-
strated by investigations on Fe, Co and Ni that the pure Fano effect can also be observed in
angle-integrated valence band XPS (VB-XPS) for ferromagnets if circularly polarized light im-
pinges perpendicular to the magnetization direction and if a subsequent spin analysis is done
with respect to the direction of the photon beam [81]. This is demonstrated in Fig. 4 where
the VB-XPS of Fe, Co and Ni at a photon energy of 600 eV is shown. The photon energy of
600 eV has been used in order to increase the bulk sensitivity of the photoemission process.
In the upper panel of Fig. 4 we compare experimental data with corresponding LSDA and
LSDA+DMFT VB-XPS data based on the one-step model of photoemission. In all three cases
the LSDA+DMFT considerably improves the agreement with experiment. In particular, in the
case of Ni LSDA+DMFT leads to a shrinking of the d band width and to a pronounced increase
of the intensity in the regime of the 6 eV satellite. Also, for the total intensity of the Fe and
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Fig. 4: Top panel: The experimental (dots), LSDA (green line) and LSDA+DMFT (blue line)
angle integrated valence band XPS spectra of bcc Fe, hcp Co and fcc Ni for a photon energy of
600 eV . Lower panel: Spin difference ∆I+ = I+

↑ − I
+
↓ of the photocurrent for excitation with

left circularly polarized light. Figure reproduced from [81].

Co spectra we observed a pronounced improvement in the energy region from −2 to −8 eV. A
decomposition of the theoretical spectrum according to the angular momentum character of the
initial state shows that the d-contribution is by far dominating and that the spectrum essentially
maps the corresponding DOS. This, in some sense, supports the common practice of comparing
experimental XPS directly with the DOS. In the lower panel of Fig. 4 the corresponding spin
difference ∆I+ = I+

↑ − I
+
↓ (i.e., the difference of the currents of photoelectrons with spin-up

and spin-down electrons, for excitation with left circularly polarized radiation) is shown. The
occurrence of this spin current is a pure matrix element effect induced by spin-orbit coupling.
In fact, one finds that the shape of the∆I+ curves are very similar to those that can be found for
non-magnetic noble metals [82, 83]. In fact, the amplitudes scale with the spin-orbit coupling
parameter of the Fe, Co and Ni d-states. To achieve this rather good agreement with the experi-
mental data for the ∆I+ intensity distribution the fully self-consistent LSDA+DMFT approach
is obviously needed.

4.2 ARPES: Correlation effects in transition-metals and their surfaces

In the previous section, we showed angle-integrated XPS spectra which can be directly com-
pared to the DOS ignoring to some extent matrix element effects (upper part of Fig. 4). How-
ever, the most detailed mapping of the band structure of correlated materials can be obtained
by spin- and angle-resolved valence band photoemission. In the following section we present
various examples of angle-resolved photoemission calculations done within the one-step model.
These examples clearly demonstrate the need to include matrix-elements in corresponding cal-
culations in order to obtain a quantitative understanding of the experimental data.
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Fig. 5: Spin-integrated ARPES spectra from Ni(011) along ΓY for three different angles of
emission. Upper row: comparison between LSDA-based calculation and experiment [68]; mid-
dle row: comparison between experiment and non self-consistent quasi-particle calculations
neglecting matrix element and surface effects [68]; lower row: spin-integrated LSDA+DMFT
spectra including photoemission matrix elements (this work). Theory: solid red line, experi-
ment: black dots. Figure reproduced from [38].

The following examples concern the ferromagnetic transition-metal systems Ni and Fe as pro-
totype materials to study electronic correlations and magnetism beyond the LSDA scheme. In
particular, the electronic structure of fcc Ni has been subject of numerous experimental [84–90]
and theoretical studies [91–93] as a prototype of an itinerant electron ferromagnet, since short-
comings of simple one-electron theory are obvious. LSDA calculations for fcc Ni cannot repro-
duce various features of the electronic structure of Ni which had been observed experimentally.
Besides the fact that valence band photoemission spectra of Ni [94–96] show a reduced 3d
band width compared to LSDA calculations [97] the spectra show a dispersionless feature at a
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binding energy (BE) of about 6 eV, the so-called 6 eV satellite [84, 85, 98–101], which is not
reproducible within the LSDA approach. On the other hand, an improved description of corre-
lation effects for the 3d electrons using many-body techniques [91,92,102] or in a more modern
view applying the LSDA+DMFT scheme [43,38] results more or less in the experimental width
of the 3d-band complex and furthermore is able to reproduce the 6 eV satellite structure in the
valence band region.

In Fig. 5 we present a comparison between experimental photoemission data [68] and calculated
spectra using different theoretical approaches [38]. In the upper row spin-integrated ARPES
spectra from Ni(011) along ΓY for different angles of emission are shown. The dotted lines
represent the experimental data, whereas the solid lines denote a single-particle representation
of the measured spectral function. Obviously, the LSDA-based calculation completely fails to
describe the experimental data. The energetic positions of the theoretical peaks deviate strongly
from the measured ones. Furthermore, the complicated intensity distributions that appear for
higher emission angles are not accounted for by the LSDA-based calculations. In contrast,
the non self consistent quasi-particle 3BS calculation provides a significant improvement when
compared to the measured spectra. For the complete range of emission angles the energetic
peak positions coincide with the experiment within about 0.1 eV. Only the overall shape of
the measured spectral intensities deviate from the calculations because of the neglect of mul-
tiple scattering and surface-related as well as matrix-element effects. In the experiment the
various peaks seem to be more broadened and the spectral weight especially for nearly normal
emission is shifted by about 0.1 eV to higher binding energies. In addition it seems that for
very high emission angles like 60◦ an even more complicated peak structure is hidden due to
limited experimental resolution. The intensity distributions resulting from the corresponding
photoemission calculation are shown in the lower row of Fig. 5. A first inspection reveals a
very satisfying quantitative agreement between experiment and theory for all emission angles.
Let us concentrate first on the excitation spectrum calculated for the emission angle Θ = 5◦.
The spin-integrated spectrum exhibits a pronounced double-peak structure with binding ener-
gies of 0.1 eV and 0.3 eV. The second peak is slightly reduced in intensity which is also in
accordance with the experimental findings. Furthermore, the width of the spectral distribution
is quantitatively reproduced. The calculated binding energies are related to the real part of the
self-energy that corrects the peak positions due to a dynamical renormalization of the quasi-
particles which is missing in a typical LSDA-based calculation. The relative intensities of the
different peaks, on the other hand, must be attributed to the matrix-element effects which enter
our calculations coherently via the one-step model of photoemission. The observed double-peak
structure originates from excitation of the spin-split d-bands in combination with a significant
amount of surface-state emission [103]. The two spectra calculated for high emission angles
show the spectral distributions more broadened than observed in experiment. An explanation
can be given in terms of matrix-element effects, due to the dominating dipole selection rules.
The spin-resolved spectra reveal a variety of d-band excitations in both spin channels, which in
consequence lead to the complicated shape of the spectral distributions hardly to be identified
in the spin-integrated mode.
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Fig. 6: (a) Experimental XPS-spectrum taken at hν=150 eV. The “Ni 6 eV satellite” structure
appears at about 6.3 eV binding energy. (c) Spin- and angle-resolved photoemission spectra
taken in normal emission at hν=66 eV with s-polarized light. Open black squares: majority
spin states, open red squares: minority spin states, solid black and red lines serve as guides
for the eyes. Spin-integrated intensity: green thick dotted line. (b) LSDA+DMFT calculation
of the spin-integrated DOS. The satellite feature appears at about 7.2 eV binding energy. (d)
LSDA+DMFT spin-resolved photoemission calculation in normal emission at hν=66 eV for a
U value of 3.0 eV: solid black and red lines indicate majority and minority spin states, green
line shows the spin-integrated intensity. Figure reproduced from [42].

The second example within this section concerns a spectroscopic study of the 6 eV satellite of
Ni. As was shown by earlier calculations [102] and confirmed by photoemission experiments
[87], the 6 eV satellite is spin-polarized. In a recent experimental study the XPS intensity at
hν=150 eV as well as the spin- and angle-resolved photoemission spectra at hν=66 eV have
been measured. Results for the second experiment are shown in Fig. 6(a) and Fig. 6(c).

The satellite feature is clearly visible at a BE of about 6.3 eV, fully in agreement with all for-
mer investigations. Furthermore, Fig. 6(c) shows the non-zero spin-polarization of the satellite
in the spin-resolved experiment, again in full agreement with earlier studies [87]. After back-
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ground substraction, the spin polarization amounts to about 15%. In Fig. 6(b) we compare the
experimental results with a DOS-calculation which is based on the LSDA+DMFT approach.
The parametrization for U=2.8 eV and J=0.9 eV is identical with values that we used for the
spin- and angle-resolved photoemission calculations. The satellite appears at a binding energy
(BE) of ∼7.2 eV. This is about 1 eV higher in BE than the experimental result. The explanation
for this is found in terms of the many-body solver. The so called FLEX-solver [57] is based
on pertrubation theory while a more accurate quantum Monte Carlo solver is able to consider
the complete diagramatic expansion of the self-energy in a statistical way. As a consequence
the energy dependence of the self-energy is less pronounced and this causes the observed shift
of about 1 eV in the BE. Nevertheless, the satellite is observable in the calculated DOS and
therefore one would expect its appearance in the theoretical photoemission intensity as well.
The corresponding spin- and angle-resolved photoemission calculation is shown in Fig. 6(d). A
weak intensity distribution in the vicinity of the sp band transition is present at a BE of∼7.2 eV.
The green curve shows the spin-integrated intensity, whereas the black and red lines indicate
the majority and minority spin related intensities. The calculated spin-polarization amounts to
about 10% slightly smaller than the experimental one. Besides these small deviations between
experiment and theory the agreement is very satisfying. Thus we show the first angle-resolved
photoemission calculation for Ni metal in which this spectral feature appears.

In conclusion, we have presented a spectroscopical analysis for ferromagnetic Ni and Co, which
coherently combine an improved description of electronic correlations with multiple-scattering,
surface emission, dipole selection rules and other matrix-element related effects that lead to a
modification of the relative photoemission intensities. As has been demonstrated, this approach
allows on the one hand side a detailed and reliable interpretation of angle-resolved photoemis-
sion spectra of 3d-ferromagnets. On the other hand, it also allows for a very stringent test of
new developments in the field of DMFT and similar many-body techniques.

The third example within this section concerns a spectroscopic study of ferromagnetic Fe [40].
In the left panel of Fig. 7 we compare the experimental peak positions from bulk-like transi-
tions with spin-resolved LSDA+DMFT spectral functions. In addition to these investigations
correlation effects were also accounted for within the 3BS approach [104]. Within the 3BS
approach the self-energy is calculated using a configuration interaction-like expansion. In par-
ticular three-particle configurations like one hole plus one electron-hole pair are explicitly taken
into account within 3BS-based calculations. The corresponding output can be directly related
to the photoemission process and allows for a detailed analysis of various contributions to the
self-energy (e.g., electron-hole lifetime). A more detailed quantitative comparison is shown
in right panel of Fig. 7. Here we display a comparison between spin-integrated ARPES data
and theoretical LSDA+DMFT based one-step photoemission calculations of Fe(110) along the
ΓN direction of the bulk Brillouin zone (BZ) with p-polarized radiation. In our LSDA+DMFT
investigation underlying the ARPES calculations we use for the averaged on-site Coulomb in-
teraction U a value U=1.5 eV which lies between U ≈ 1 eV deduced from experiment [105]
and the value U ≈ 2 eV obtained within other theoretical studies [106,59]. From an analysis of
the spectra, the k values associated with the observed transitions were determined using photon
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Fig. 7: Left panel: Spin resolved Bloch spectral functions calculated within LSDA+DMFT and
3BS formalism . Corresponding experimental data points have been deduced from the normal
emission spectra along the ΓN direction. Right panel: (a) Experimental spin-integrated photoe-
mission spectra of the Fe(110) surface measured with p-polarization in normal emission along
the ΓN direction of the bulk Brillouin zone. The curves are labeled by the wave vectors in units
of ΓN=1.55 Å−1. (b) Corresponding one-step model calculations based on the LSDA+DMFT
method which include correlations, matrix elements and surface effects. Figure reproduced
from [40].

energies ranging from 25 to 100 eV. Near the Γ point (k∼0.06 ΓN), the intense peak close to the
Fermi level corresponds to a Σ↓1,3 minority surface resonance, as indicated in the top of Fig. 7.
Experimentally, its Σ↓3 bulk component crosses the Fermi level at k ∼0.33 ΓN, leading to a
reversal of the measured spin-polarization and to a strong reduction of the intensity at k =0.68
ΓN in the minority channel. The peak at the binding energy BE∼0.7 eV, visible mainly for
p-polarization in a large range of wave vectors between Γ and N, can be assigned to almost
degenerate Σ↑1,4 bulk-like majority states. A Σ↑3 feature at BE∼1.1 eV dominates the spectrum
close to the Γ -point. Depending on the polarization the degenerate Σ↑1 states form a shoulder
around the same BE. The broad feature around 2.2 eV, visible at various k-points, but not at the
N-point, is related to a majority Σ↑1,3 surface state. Around the N-point (0.76≤ k ≤1.0) and
at BE ≥ 3 eV we observe a Σ↓1 band having strong sp character. The pronounced difference
between its theoretical and experimental intensity distributions can be attributed to the fact that
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in the present calculations only the local Coulomb repulsion between d electrons is considered,
without additional lifetime effects for the sp bands. Finally, we notice that the background in-
tensity of the spectrum at k=0.66 ΓN, corresponding to a photon energy of 55 eV, is strongly
increased due to the appearance of the Fe 3p resonance. The direct comparison of the calculated
and experimental spectra turned out to be a very stringent check for the Coulomb parameter U
used in the calculations. This also applies to the DMFT self-energy, which was compared to its
counterpart deduced from the experimental band dispersion and line width.
In summary, spectral function calculations for ferromagnetic Ni and Fe could be performed
that coherently combine an improved description of electronic correlations, multiple-scattering,
surface emission, dipole selection rules and other matrix-element related effects that lead to
a modification of the relative photoemission intensities. A similar study has been performed
recently for hcp Co(0001) [60] and fcc Co(001) [107]. The combined approach allows on the
one hand side a detailed and reliable interpretation of high-resolution angle-resolved photoe-
mission spectra of 3d-ferromagnets. On the other hand, it also allows for a stringent test of new
developments in the field of DMFT and related many-body techniques.

4.3 ARPES of disordered correlated alloays: NixPd1−x (001)

In this section, alloying effects in combination with electronic correlations are considered [36].
Fig. 8 shows a series of spectra of NixPd1−x as a function of the concentration x calculated for a
photon energy hν = 40 eV with linearly polarized light. The experimental data are shown in the
left panel and the corresponding LSDA+DMFT-based photoemission calculations are presented
in the right one. Our theoretical analysis shows that starting from the pure Ni, the agreement is
fully quantitative with deviations less than 0.1 eV binding energy, as expected on the basis of
the studies presented above. Going to the Ni0.80Pd0.20 alloy the agreement is comparably good
for binding energies between the Fermi energy and 2 eV. Inspecting the density of states (DOS)
for the Ni0.80Pd0.20 alloy this fact becomes explainable, because this energy interval represents
the Ni-dominated region. The Pd derived states start to appear at about 2 eV below EF next
to the small dip at the Fermi level. For higher binding energies the agreement is also very
good, although a bit more structure is observable in the theoretical spectra especially around
3.5 eV. An explanation for this behavior can be found in terms of lifetime effects. However,
it should be mentioned here that the background in the experimental spectra due to secondary
electrons was not considered for the theoretical spectra. From the results for Ni0.70Pd0.30 it
becomes clearly visible that an increasing deviation between theory and experiment occurs with
increasing Pd concentration. This can be seen from the spectra for Ni0.50Pd0.50 and Ni0.30Pd0.70

alloys shown next in the series. This is caused by the Pd d-states that seem to be slightly shifted
to higher binding energies. This is well known from other paramagnetic metals like Ag and
can be explained in terms of static correlations in the Pd-states not explicitly considered here.
In addition, the spectra of Ni0.30Pd0.70 reveal some deviations near the Fermi level. Also, the
spectral intensity of the Ni surface resonance, that appears at about 0.5 eV binding energy is
underestimated in the calculation when compared to experiment.
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Fig. 8: ARPES spectra taken from the NixPd1−x(001) alloy surfaces as a function of the concen-
tration x for a fixed photon energy of hν = 40.0 eV along ΓX in normal emission. Experimental
data shown in the left panel calculated spectra presented in the right panel. Depending on the
concentration x a pronounced shift in spectral weight towards the Fermi level is visible. Figure
reproduced from [36].

Our spectroscopic analysis clearly demonstrates that the electronic properties of the NixPd1−x

alloy system depend very sensitively on the interplay of alloying and electronic correlation.
A description within the LSDA approach in combination with the CPA results in a quantita-
tive description of the electronic structure of NixPd1−x [36]. This example may illustrate that
the use of the CPA alloy theory self-consistently combined with the LSDA+DMFT approach
serves as a powerful tool for electronic structure calculations, whereas the application of the
fully relativistic one-step model of photoemission, which takes into account chemical disorder
and electronic correlation on equal footing, guarantees a quantitative analysis of corresponding
experimental spectroscopic data.

5 Angle resolved soft and hard X-ray photomemission

It has always been realized, that the results obtained in UV ARPES are restricted in sensitivity to
the near-surface region of the systems studied due to the short inelastic mean free paths (IMFPs)
of ∼ 5-10 Å of the low energy photoelectrons, which are typically in the range from 10-150 eV
[108]. To overcome this limitation of surface sensitivity, there is now considerable interest in us-
ing x-rays in the soft x-ray sub-keV or even hard x-ray multi-keV regime to access deeper-lying
layers in a sample, thus sampling more bulk-like properties [109–119, 27, 29, 30, 32]. One can
thus think of soft x-ray or hard x-ray ARPES (HARPES), respectively. These techniques have
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a) b)

c) d)

Fig. 9: Photoemission spectra calculated for clean Fe(001) (upper panel, a and b). Left
side shows the intensity distribution obtained for 1 keV, right side represents the correspond-
ing spectrum at 6 keV. The lower panels show theoretical spectra for the overlayer system
8MgO/Fe(001) at 1 keV (left side, c) and 6 keV (right side, d). Figure reproduced from [120].

to date been applied to a wide variety of materials, including free-electron like and transition-
metals [109, 116], strongly correlated oxides and high TC materials [111, 112], heavy fermion
systems [111], mixed-valent Ce compounds [114], dilute magnetic semiconductors [29,30,121],
layered transition-metal dichalcogenides [119]. Additional advantages in such experiments in-
clude being able to tune to core-level resonances so as to identify the atomic-orbital makeup of
ARPES features [121], to map three-dimensional Fermi surfaces [119], and to take advantage of
the longer IMFPs, which translate into less smearing of dispersive features along the emission
direction (usually near the surface normal) [118]. Increasing the photon energy means increas-
ing the bulk sensitivity of the corresponding photo emission data. We demonstrate this effect by
comparing spectra obtained by photoelectron excitation with 1 keV and 6 keV radiation from
the clean Fe(001) surface and from the overlayer system MgO/Fe(100) with 8 ML MgO on Fe.
Fig. 9a presents the spectrum for the clean Fe(001) surface and a photon energy of 1 keV. As
expected for this photon energy regime, the bulk sensitivity is enhanced and the surface emis-
sion is reduced to a negligible extent. Also the relative intensity fraction of the sp-bands is
obviously increased. Going to a much higher photon energy of 6 keV the d-band intensity is
strongly reduced when compared with sp-band related features. This is shown in Fig. 9b. In
a next step we put 8 ML of MgO on the Fe(001) surface and repeat our calculations for both
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photon energies. This is shown in the lower panel of Fig. 9. At 1 keV mostly the MgO bulk
band-structure is visible in Fig. 9c. This is due to the thickness of the MgO film which consists
of 8 ML. Increasing the photon energy to 6 keV we expect due to the much larger mean free
path length of the photo-electron that Fe-related features will reappear, namely the Fe sp-states.
This is clearly demonstrated by Fig. 9d which represents the corresponding photo emission
spectrum calculated for the 8ML MgO/Fe(001) system at a photon energy of 6 keV. Besides the
effect that more than one Brillouin zone is visible for a fixed escape angle regime due to the
very high photon energy it is undoubtly observable that nearly all MgO related features have
vanished in the intensity plot. This, for example, should give access to buried interfaces.
Going higher in energy, however, comes with some additional challenges for interpretation of
the data [109,115,118]. Deviations from the dipole approximation in photoelectron excitations
mean that the momentum of the photon can result in a non-negligible shift of the position of the
initial-state wave vector in the reduced Brillouin zone (BZ) [116]. Also, phonon creation and
annihilation during photoemission hinders the unambiguous identification of the initial state in
the BZ via wave vector conservation [109, 110, 115, 116, 27, 118, 29].

5.1 Photon momentum effects: Ag(001)

Here we want to discuss the effect of the photon momentum q on the intensity distribution of
the photocurrent. The impact of the photon momentum on the initial state k-vector is expressed
by the following equation

ki =
(
k|| − q|| + g,

√
2(E − iVi1)− |k|| − q|| + g|2

)
, (32)

where Vi1 denotes the imaginary part of the intial state energy E. Due to the relatively high
photon energies the role played by the photon momentum is no longer negligible, with the im-
portance of its influence depending on the chosen experimental geometry. Considering as an
example photo emission from Ag(001), for φph = 45o the photon momentum has no compo-
nent along the [110] crystallographic direction. However, the effect of the photon momentum
along the [110] direction is to kick the photo-electron in a direction that is perpendicular to the
probed high symmetry direction. This effect can experimentally be corrected for by rotating
the crystal surface by a small amount, Θ = 0.7o, with respect to the entrance plane of the elec-
tron analyzer, thereby minimizing the effect of the photon momentum transfer along the [110]
direction. However, one has to pay the price that the high symmetry plane, in this case the
ΓXUL plane, is no longer the plane from which the emission takes place. A careful analysis
reveals that an angle Θ = 0.7o corresponds, for photon energies in the 500 eV to 600 eV range,
to an effective variation of the angle±7o for the given range of the emission angle θ (q|| effect).
Fortunately, the largest deviation appears for nearly normal emission and for higher emission
angles it approaches zero. Therefore, the total average deviation from the high symmetry plane
is small and the experiment mainly represents emission from the ΓLUX plane with the added
advantage of a minimized q|| effect. Fig. 10 shows the effect of both the correction angle Θ
and the photon momentum q||. In Fig. 10(a) the intensity distribution has been calculated for
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Fig. 10: Theoretical photo emission intensities for the Γ -K high symmetry direction Σ calcu-
lated for hν=552 eV, φ = 45o. To allow for a one-to-one comparison between experimental and
theoretical data, all the theoretical data have been shifted by 1.2 eV. (a) Intensity distribution
calculated for q|| = 0 and Θ=0o. (b) Intensity distribution calculated for a nonzero q|| vector
and Θ = 0o. (c) Intensity distribution calculated for q|| = 0 and Θ = 0.7o. (d) Intensity distri-
bution calculated for a nonzero value of q|| and Θ = 0.7o. This corresponds to the experimental
geometry setup. Figures taken from [116].

Θ = |q||| = 0, whereas in Figs. 10(b) and 10(c) nonzero values for q|| and Θ have been used.
It is observable that in both panels 1(b) and 1(c) the band dispersion is more pronounced than
in Fig. 10(a), where the bands appear. This effect, together with an additional asymmetric in-
tensity distribution around Γ , is caused by the small deviation from the desired high symmetry
plane mentioned above.
Fig. 10(d) represents the experimental situation with Θ = 0.7o and a nonzero q|| value. Ob-
servable is the similarity between panels 10(a) and 10(d). Therefore, we can conclude that the
experimental procedure works in a satisfactory way. The measurements performed by Venturini
et al. [116] were taken at T = 20 K for a photon energy of hν = 552 eV, that corresponds to the
Γ and the X symmetry points along the direction that is perpendicular to the samples surface.
The data sets are measured with right circularly polarized light. The results are shown in the left
panels of Fig. 11 for φ = 0o and φ = 45o, respectively. For φ = 0o, the parallel component of the
initial-state wave vector k|| varies along the ∆ direction, whereas for φ = 45o the Σ direction is
probed. The BZ boundaries along these two directions are found at k|| ≈ 1.54 Å−1 and k|| ≈
1.63 Å−1, respectively, and a photon beam of energy hν = 552 eV allows to probe almost the
entire BZ along these directions. The experimental results presented in Fig. 11 are in good qual-
itative agreement with our fully relativistic one-step model photo emission calculations shown
in the right panels of the respective figures.



13.28 Ján Minár

Fig. 11: Γ -X high symmetry direction ∆ probed with hν = 552,eV, φ = 0o (top) and 45o

(bottom), at T = 20 K. The energy refers to the Fermi level EF . Left: experimental data. Right:
theoretical results. Figures taken from [116].

Along the∆ andΣ high symmetry directions, direct transitions originating from all the allowed
initial states are visible close to the BZ center, except for the two deeper lying bands along
both directions. In particular, for both investigated orientations the Γ ′25 → Γ+

8 + Γ+
7 spin-

orbit splitting is observed at Γ . The agreement between our calculated binding energies of
the high symmetry points along the Γ -X direction [116] and results previously determined in
Ref. [122] is very good. Also the agreement with the corresponding experimental values found
in literature [123, 122, 124] is good, with a maximum deviation of 0.22 eV for the most tightly
bound X+

6 energy level. The spin-orbit split level with X+
7 symmetry is barely visible at the

BZ boundary along the ∆ direction (Fig. 11). Its binding energy along this direction is about
4.3 eV (see Ref. [116]). The ARPES data presented so far show evidence of the fact that, for
well-defined combinations of hν and temperature, direct transitions in the soft x-ray regime
can indeed be observed. If compared to the low energy ARPES, the combination of a larger
k-space sampling and a reduced curvature of the investigated path, together with the use of a
two-dimensional position sensitive detection system, allow measuring the band structure along
specific high symmetry directions with a single measurement. This has been done by Venturini
et al. [116] for four different high symmetry directions in the BZ of fcc Ag. The corresponding
results, which were obtained for T = 20 K, are also in good agreement with our fully relativistic
one-step model photo emission calculations.
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Fig. 12: (i) Plots of measured intensity versus angle of emission for 870 eV excitation from
the valence bands of W(110) approximately along the Γ -N direction for four temperatures of
(a) 300 K, (b) 470 K, (c) 607 K, and (d) 870 K (from [115]), where 90 deg corresponds to nor-
mal emission. (ii) Corresponding intensity distributions calculated from temperature-dependent
one-step theory based on the CPA formulation. (iii) Conventional ARPES calculations of the
direct contribution IDT(E,k) by use of complex scattering phase shifts and the Debye-Waller
model). Figure reproduced from [35].

5.2 Thermal effects and XPS limit

Going higher in energy, however, comes with some additional challenges for the interpretation
of the data [109, 115, 118]. Deviations from the dipole approximation in photoelectron excita-
tion mean that the momentum of the photon can result in a non-negligible shift of the position of
the initial-state wave vector in the reduced Brillouin zone (BZ), as first pointed out some time
ago. Phonon creation and annihilation during photoemission also hinders the unambiguous
specification of the initial state in the BZ via wave vector conservation [118, 115, 116, 27, 29].
Following Shevchik [125], the photoemission intensities at a given energy E and vector k can
be approximately divided into zero-phonon direct transitions IDT(E,k) and phonon-assisted
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non-direct transitions INDT(E,k). As a rough guide to the degree of direct-transition behavior
expected in an ARPES experiment, one can use a temperature-dependent Debye-Waller factor
W (T ) which qualitatively represents the fraction of direct transitions [118]. As a first approach
that aimed to go beyond this simple scheme for temperature-dependent ARPES, Larsson and
Pendry [126] introduced a model called Debye-Waller model later on that incorporates the effect
of lattice vibrations on the photoemission matrix elements. More than 15 years later Zampieri
et al. [127] introduced a cluster approach to model the temperature-dependent excitation of va-
lence band electrons for photon energies of about 1 keV. More recently Fujikawa and Arai [73]
discussed phonon effects on ARPES spectra on the basis of nonequilibrium Green’s function
theory. Recently, we presented a new approach which accurately models phonon effects over the
full energy range from normal low-energy ARPES to HARPES. More importantly it converges
for high temperatures and/or photon energies to the so called XPS-limit in photoemission, in
particular the development of matrix-element weighted density-of-states (MEW-DOS)-like fea-
tures in the intensity distribution [27, 28]. Our alloy analogy model includes vibrational atomic
displacements via the coherent potential approximation (CPA), where vibrations of different
lattice sites are assumed to be uncorrelated and averaged in the sense of CPA over various pos-
sible displacements which are calculated within Debye theory. Using the CPA-formulation of
the one-step model [26, 20, 36] provides a self-consistent temperature-dependent averaging of
the photoemission matrix elements. In other words, we describe in a quantitative sense the
breakdown of the k-conserving rules due to phonon-assisted transitions, the driving mechanism
that leads finally to the XPS-limit. In order to demonstrate this effect bellow we present an
example of soft-x-ray ARPES calculations for W(110). In Fig. 12, we compare results of our
calculations directly to experimental data for W(110) with soft x-ray excitation at 870 eV [115].
W has a Debye temperature of 400 K and a atomic mass of 183.84 u, close to Au and Pt. In
Fig. 12(i), we show experimental results for four different sample temperatures: (a) 300 K, (b)
470 K, (c) 607 K and (d) 780 K [115]. For all four temperatures, dispersive features are clearly
seen but with significant smearing and an increase of MEW-DOS-like intensity features as tem-
perature is raised. Also shown in Fig. 13(a), (b) are vertical and horizonal cuts, respectively,
through the 2D data of Fig. 12(i). These cuts yield Fig. 13(a): energy distribution curves (EDCs)
and Fig. 13(b): momentum distribution curves (MDCs) to illustrate more directly the changes in
both types of distributions with temperature. Also, various spectral features are labeled by the
numbers 1-6 in these figures. Fig. 12(ii) again presents fully relativistic one-step calculations
which are done with our new alloy analogy model, whereas Fig. 12(iii) shows conventional
one-step calculations in which phonon excitations are considered in a simplified way through
a temperature-dependent single-site scattering matrix [77]. Although at the lowest temperature
of 300 K the two different theoretical approaches yield very similar results, as expected for
a Debye-Waller factor of 0.70, the temperature dependence of the experimental data is much
better described by our temperature-dependent one-step calculations. The simpler calculation
based on the single-site scattering matrix predicts neither the smearing of dispersing features
nor the growth of MEW-DOS features for higher binding energies, but shows instead only the
monotonous decrease of direct transition intensities with increasing temperature [115].
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Fig. 13: (a) Measured temperature-dependent energy distribution curves (EDCs). A compar-
ison to the W DOS (the topmost curve) is also given. (b) Measured temperature-dependent
momentum distribution curves (MDCs). (c), (d) Corresponding theoretical results for (c) EDCs
and (d) MDCs. Dashed lines indicate conventional one-step calculations, solid lines indicate
calculations within the new alloy analogy model. Figure reproduced from [35].

Phonon induced smearing only appears via temperature-dependent matrix elements which cause
a decrease of the direct part of the photocurrent due to a redistribution of spectral weight. Al-
though for 780 K and a photon energy of 870 eV the XPS-limit is not fully established for W,
the indirect contribution of the temperature-dependent CPA-like photocurrent dominates the
corresponding angle-resolved soft x-ray spectra. This is clearly observable from both the ex-
perimental and theoretical data, which are nearly in quantitative agreement.
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Figs. 13(a) and (c) compare in more detail the temperature dependence of experimental and
theoretical spectra in the form of EDCs for a fixed angle of ≈ 104 deg which is 14 deg from the
surface normal. Figs. 13(b) and (d) present the same comparison for MDCs at a fixed binding
energy of ≈ 2 eV. The points labeled 1, 2, 4, 5 and 6 denote d-like electronic states, whereas
point 3 labels bands that are more free-electron like and a mixture of s and d states. The experi-
mental and theoretical data in Fig. 12 show pronounced smearing of features in both EDCs and
MDCs as the temperature is raised, but some remnant direct-transition behavior is clearly still
present, even at 780 K. The dashed lines shown in Fig. 13(c) and (d) indicate conventional one-
step calculations using the one-site scattering matrix approach. As expected, only slight changes
appear in the form of the EDCs and MDCs as a function of temperature. In contrast, the EDCs
and MDCs strongly depend on temperature when using the alloy analogy approach, although in
general the MDCs in experiment and those of the conventional and CPA approaches change less
than the EDCs. Significant broadening of spectral features and shift of spectral weight, not at
all present in the conventional one-site scattering matrix approach, can be observed. The EDC
at the highest temperature has not converged to a MEW-DOS-like curve and the corresponding
MDC still has structure in it. In the XPS-limit all MDCs would exhibit only x-ray photoelec-
tron diffraction (XPD), with a different type of angular distribution [115,29,32,127,28]. This is
obviously not the case. This is expected, because the Debye-Waller factor of 0.41 at 780 K in-
dicates that a certain number of transitions should still be direct. Our calculations thus correctly
predict a diminuation of the features expected due to direct transitions, and also a significant
broadening of features in the EDCs or MDCs. The additional weak and smooth background
observed in the experimental data thus must be ascribed to additional phonon effects, perhaps
through multiple phonon excitations.

6 Summary

The implementation of the LSDA+DMFT on the basis of the KKR method has been described
in some detail. The appealing feature of this approach is that the KKR delivers the one-electron
Green’s function directly. It therefore allows to combine the treatment of correlations via the
DMFT with calculation of a great variety of physical properties for, in principle, any type of
system. Within the one-step model of photoemisssion, this method can be applied to directly
calculate ARPES in the wide photon energy range. As was demonstrated by results for photo
emission spectra of various transition-metal systems, this allows in particular a direct compari-
son with experiment.
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1 Introduction

Complex quantum materials are distinguished by their astonishingly huge variety of interesting
and often peculiar electronic and magnetic properties which arise from the interplay of charge,
spin, lattice, and orbital degrees of freedom. Such phenomena comprise, e.g., ferro-, pyro-
and piezoelectricity, all kinds of magnetic order, colossal magnetoresistance, high-temperature
superconductivity, and metal-insulator transitions. In order to arrive at a microscopic under-
standing of such diverse behavior the leading low-energy scales of the material under consid-
eration have to be explored. To those, spectroscopic methods grant direct access by probing
either low-lying single-particle or charge-neutral particle-hole and collective excitations. The
former is realized, e.g., in photoelectron spectroscopy (PES) – lying at the core of this chapter –
while the latter typically is implemented in scattering techniques. On the theory side, these two
types of spectroscopic information correspond to the physical content of the one-particle and
two-particle Green’s functions, respectively. Since PES is related to the simpler one-particle
Green’s function and extremely versatile in that it can be applied to almost all kinds of solids
it has assumed a prominent role among solid-state spectroscopies over the years, in particular
whenever many-particle physics is important.
As a well established method PES is the subject of numerous monographs and review articles
dealing with all kind of related aspects such as instrumentation, application to atoms, molecules,
and solids, and the theoretical description [1–12]. However, it would be entirely wrong to
believe that photoemission spectroscopy its theoretical understanding and implementation, is
completely developed. The full calculation of photoemission spectra still represents a chal-
lenging task (cf. the chapter by J. Minar in this book) and necessitates progressively advanced
methods from theory while technological evolution and innovation have made it possible, inter
alia, to partially overcome the notorious surface sensitivity of photoemission with acceptable
concessions to resolution and acquisition times.
In this chapter, after an introduction to the basics of photoemission spectroscopy the present
potential of PES, in particular with regard to some modern techniques with enhanced volume
sensitivity, shall be illustrated based on selected examples of complex material systems whose
quantitative theoretical description often demands the advanced methods that are presented in
most of the other chapters of this book. For convenience, the examples are taken from our own
work.

2 The method

2.1 Basics

In a PES experiment monochromatic light is directed onto a sample. The emitted photoelectrons
are discriminated with respect to their kinetic energy and, depending on the information desired,
other observables like emission direction or spin, before they are detected and counted. The
principle is sketched in Fig. 1, left, for an angle-resolved experiment on a single crystal.
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Fig. 1: Left: Geometry for an angle-resolved photoemission experiment. Right: Energy dia-
gram of photoemission in a one-particle picture (from [9]).

An energy diagram of photoemission in a one-particle picture is sketched in Fig. 1, on the right.
Electrons with a binding energy EB are excited above the vacuum level Evac by the absorption
of a single photon with energy hν. Their kinetic energy is given by

Ekin = hν − EB − Φ0 , (1)

where Φ0 denotes the work function. The kinetic energy distribution of the photoelectrons in
vacuum I(Ekin) then reflects essentially the occupied part of the electronic structure, i.e., the
density of states in the solid (weighted by the corresponding single-particle transition matrix
elements, cf. section 2.2).
If, in addition, the photoelectrons are discriminated with respect to their emission direction
relative to the surface of a single-crystalline sample, the momentum p is completely determined
in terms of its components parallel and perpendicular to the surface. For the parallel component
we have

p|| = ~k|| =
√
2mEkin sin θ . (2)

Note that p‖ – due to momentum conservation – equals the parallel component of the crystal
momentum of the electron inside the solid in the extended zone scheme. In contrast, due to the
lack of translational symmetry perpendicular to the sample surface, the perpendicular compo-
nent of crystal momentum is not conserved. Hence, without additional information the crystal
momentum cannot be determined completely. To do so, knowledge or assumptions about the
dispersion of the photoemission final states are needed (cf. Fig. 2(a)), or one resorts to advanced



14.4 Michael Sing

Fig. 2: Kinematics of the photoemission process. (a) Direct optical transition of an electron
within the solid into a certain final state and energy of the corresponding photoelectron in
vacuum. (b) Free-electron approximation for the final states in the solid and inner potential V0.

experimental methods which, however, are only feasible in certain cases. An often used approx-
imation is the assumption of free electron final states. The situation is depicted in Fig. 2(b). The
vertex of the parabola, describing the dispersion of the free electron final states inside the solid,
is shifted along the energy axis to an energy V0 below the vacuum level. Thus, V0 is a mea-
sure of the depth of the potential well in a “particle-in-a-box” picture. The inner potential is
a phenomenological parameter and has to be adjusted for a given material, e.g., such that the
periodicity of the electron dispersions in reciprocal space with respect to k⊥ are reproduced for
a series of PES spectra, taken in normal emission geometry (i.e., at k‖ = 0) at various photon
energies (thereby changing k⊥). Outside the solid, the reference energy for the vertex of the
free-electron parabola is simply the vacuum level. With a proper choice of V0 one can simply
read off the perpendicular component of the crystal momentum as shown in Fig. 2. If one takes
the inner potential into account, the equation for the perpendicular component of the crystal
momentum reads

p⊥ = ~k⊥ =
√

2m(Ekin cos2 θ + V0) . (3)

Note that for angle-integrated measurements or in the case of one- or two-dimensional systems
the determination of k⊥ becomes irrelevant.
Using Eq. (1), Eq. (2) and, if appropriate, Eq. (3), the energy-momentum relations of electronic
excitations can be inferred from the angle- or momentum-resolved energy distribution curves
(EDCs) of a PES experiment by simply tracing the energy positions of marked features as is
illustrated in Fig. 3(a) and (b). In the case of a non-interacting electron system these correspond
to the electronic band dispersions of Bloch states (see Fig. 3(a)), in an interacting system, e.g.,
in a Fermi liquid, to the dispersions of quasiparticle excitations (see Fig. 3(b)). In addition, the
width of the spectral features in the interacting case reflects the finite lifetime of the respective
excitations and also the coupling of other degrees of freedom to the electron system which can
simultaneously be excited when a photoelectron is kicked off. This is illustrated in Fig. 3(c) for
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(a) (b)

(c)

Fig. 3: Angle-resolved photoelectron spectroscopy: (a) Momentum-resolved energy distribution
curves for a non-interacting electron system with a single band, crossing the Fermi energy EF .
(b) Same situation but for an interacting Fermi liquid (figure adapted from Ref. [8]) together
with (c) the PES spectrum of hydrogen in the gas phase and the hypothetical spectrum for solid
hydrogen (dashed line, figure adapted from Ref. [13]).

the PES spectrum of gaseous hydrogen. By kicking off a photoelectron, oscillations of the H2

molecule are excited at the same time. Hence, besides the sharp line at about 6.8 eV as expected
for the excitation from the groundstate of the rigid molecule a series of satellite lines are seen
which correspond to excited vibrational states. If this spectrum is broadened, one arrives at a
hypothetical spectrum (dashed line) which may serve as a paradigm of a PES spectrum for an
interacting solid. It consists of a sharp, coherent quasiparticle excitation and a broad, incoherent
contribution, representing the interaction of the kicked out electron with all possible excitations
of the system such as phonons, magnons, spin-fluctuations, electron-hole pairs, etc.

To study the valence band of solids in the lab, usually gas discharge lamps are used whose line
spectra cover the spectral range of about 10–50 eV ((AR)UPS – (angle-resolved) ultraviolet
photoelectron spectroscopy). In this energy range the inelastic mean free path (IMFP) of elec-
trons in solids, λINFP, amounts – due to the large cross section regarding plasmon excitations –
only to a few Ångstroms. For this reason, PES is extremely surface-sensitive.

For larger energies (>50 eV) for all materials the inelastic mean free path roughly behaves as
λINFP ∝

√
E. Hence, the information depth of PES can be significantly enhanced if excitation

energies in the soft (λINFP ∼ 15 Å) or hard x-ray regime (λINFP ∼ 40–100 Å) are used.1 How-
ever, the trade-off is a strong decrease of the photoemission signal since the photoionisation
cross sections within the dipole approximation scale roughly like E−3. Nevertheless, during the
last years high-resolution PES with soft (SXPES – soft x-ray photoelectron spectroscopy) and
hard x-rays (HAXPES – hard x-ray photoelectron spectroscopy) became feasible at third gener-
ation synchrotrons. Some of the case studies presented in the following rely on the use of high
photon energies beyond the standard range. If appropriate, special variants of the application of
PES like resonant PES will be discussed in the respective context.

1An enhancement of the information depth can also be achieved for excitation energies <10 eV. In this regime
the IMFP is determined mainly by interband transitions which are strongly material-dependent. Hence, an increase
of the information depth is not universal for this energy range.
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2.2 Many-body picture

The simplest starting point for a theoretical description of photoemission is Fermi’s Golden
Rule. The photocurrent I results from the photoexcitation (with energy hν), described by the
appropriate perturbation operator (Hint), of the N particle system in its ground state |Φ0(N)〉
into all possible final states |Φκ,n(N)〉. The final states also describe a system with N particles,
one of them being the photoelectron with momentum ~κ and energy (~κ)2/2m. The index n
denotes a complete set of quantum numbers defining all possible excitations in the final state.
Hence the expression of the photocurrent is given by

Iκ(hν) =
2π

~
∑
n

|〈Φκ,n(N)|Hint|Φ0(N)〉|2 δ(Eκ,n(N)− E0(N)− hν). (4)

The operator Hint describes the interaction of the photon field with a single electron within
first-order perturbation theory. In second quantization it reads

Hint =
∑
i,j

〈ki|Hint|kj〉 c†icj =
∑
i,j

Mij c
†
icj . (5)

In the corresponding description based on the Schrödinger equation the explicit representation
of Hint is obtained by the canonical replacement of momentum according to p → p − eA,
where A is the vector potential of the photon field

Hint = −
e

2m
(A · p+ p ·A) +

e2

2m
A2. (6)

The term quadratic in A is only important in the case of very high photon intensities and can
usually be neglected even when employing highly brilliant synchrotron radiation. Using the
commutator relation [p,A] = −i~∇A and under the assumption ∇A ≈ 0, which corresponds
to the dipole approximation valid for typical photon energies in the vacuum ultraviolet,2 the
perturbation operator can be simplified further, yielding

Hint = −
e

m
A · p . (7)

The matrix element in Eq. (4) can be further evaluated in the case of a factorized final state. It
then can be written as a product of the state of the photoelectron and the state of the remaining
(N − 1) particle system

|Φκ,n(N)〉 = c†κ|Φn(N − 1)〉. (8)

This approximation, known as sudden approximation is all but trivial. From a physical point of
view, it means that the photoelectron is removed instantaneously, i.e., relaxation processes dur-
ing photoemission are neglected. In general, it is assumed that this assumption is well justified
for photon energies of several tens of eV and beyond [14]. From Eq. (4) with Eq. (5) one gets

Iκ(hν) =
2π

~
∑
j

|Mκj|2
∑
n

|〈Φn(N−1)|cj|Φ0(N)〉|2 δ(εκ+En(N−1)−E0(N)−hν). (9)

2At surfaces, due to the discontinuity of the dielectric function, this assumption is not necessarily fulfilled,
which can lead to special surface effects.
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Introducing the chemical potential, µ = E0(N) − E0(N − 1), and with ε = εκ − hν − µ

(i.e., energies are negative with respect to the chemical potential) the final expression for the
photocurrent reads

Iκ(hν) =
2π

~
∑
j

|Mκj|2
∑
n

|〈Φn(N − 1)|cj|Φ0(N)〉|2 δ(ε+ En(N − 1)− E0(N − 1))

=
2π

~
∑
j

|Mκj|2 A<(kj, ε), (10)

where A<(kj, ε) is the electron removal spectral function at T = 0. Under the assumption that
the one-particle matrix elements Mκj conserve momentum and are constant, angle-resolved
photoemission thus essentially measures the momentum-resolved spectral function A<(κ, ε).
The spectral function has a simple and instructive interpretation in terms of a quantum me-
chanical measurement. Kicking out an electron from the groundstate prepares the system in an
excited (N − 1) particle state. This hole state, in general, is not an eigenstate of the (N − 1)

particle system. Hence, when predicting the result of an energy measurement in photoemission
this state has to be projected onto the eigenstates |Φ0(N − 1)〉. Their relative contribution to the
prepared hole state is then sampled in a PES experiment. The δ function simply ensures energy
conservation.
In other words, the spectral function describes the probability to remove an electron from the
system with wavevector k and energy ε. In the case of independent electrons cj|Φ0(N)〉 in
Eq. (10) is exactly an eigenstate of the (N − 1) particle system, and A<(k, ε) becomes a δ
function. Integration over k yields the one-particle density of states. For integration over ε the
sum rule

∫∞
−∞ dεA(k, ε) = 1 applies, when the spectral function is generalized also to the case

that a particle is added to the system.
For a theoretical treatment the spectral function is in most cases only of limited use since a direct
calculation in principle requires the knowledge of all excited states of the (N − 1) particle sys-
tem. The major role of photoemission for the investigation of interacting electron systems stems
from the fact that the spectral function is simply related to the already mentioned one-particle
Green’s function G(k, ε), for the calculation of which there exist many powerful methods. The
relation is

A<(k, ε) = − 1

π
ImG(k, ε− i0+) f(ε, T ) , (11)

where f(ε, T ) is the Fermi-Dirac distribution.
The Green’s function that contains the full dynamics of an interacting many-particle system can
be expressed in terms of the single-particle energy ε0

k and a complex self-energy Σ(k, ε) =

Σ ′(k, ε) + iΣ ′′(k, ε)

G(k, ε) =
1

ε− ε0
k −Σ(k, ε)

. (12)

The self-energy contains all interaction and correlation effects. With the self-energy Eq. (11)
can be rewritten as

A(k, ε) = − 1

π

Σ ′′(k, ε)

[ε− ε0
k −Σ ′(k, ε)]2 + [Σ ′′(k, ε)]2

, (13)
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Fig. 4: (a) Crystal structure of TiOCl along the b-axis. Ti-O bilayers, sandwiched by chlorine
ions, are stacked along the c-axis with sizable van der Waals gaps in between. (b) Triangular-
type lattice of the Ti ions viewed along the c-axis (from [10]).

which again has a simple interpretation. For fixed ε and with Σ ′′(k, ε) only weakly varying
with k, Eq. (13) represents a Lorentzian whose finite width is determined by Σ ′′(k, ε) and
whose renormalized energy position is given by Σ ′(k, ε). Hence, the full information about
the finite lifetime of the excitations and the renormalization of the electronic dispersions due to
interactions as contained in the self-energy can be determined experimentally from an analysis
of ARPES spectra.
While the above expression for the photocurrent in Eq. (10) is general, one should be aware of
the fact that it is usually evaluated using bulk Bloch states, thereby neglecting the existence of
a surface and the concomitant special nature of the states in a real PES experiment. To heal this
shortcoming, the resulting spectral function is considered only the first step in a so-called three-
step-model in which the photoemission process is described by the initial optical excitation in
the solid, the propagation of the photoelectron to the surface including scattering events, and
the transmission into the vacuum across the surface potential barrier. A proper treatment of
photoemission as a one-step process clearly is much more challenging to theory (cf. J. Minar’s
contribution in this book).

3 Case studies

3.1 Low-energy photoemission: Doping a one-dimensional Mott insulator

In the nineties, TiOCl was discussed as a material in which a resonating valence bond state,
if driven metallic, might result in exotic superconductivity [15]. Indeed, more recent results
reported on an unusual spin-Peierls scenario due to the geometric frustration of magnetic inter-
actions and a spin dimerized ground state [16–18], thus reviving the idea of superconductivity
induced by some kind of bond-dimer fluctuations if it is possible to introduce additional charge
carriers into the system.



Photoemission Spectroscopy 14.9

-3 -2 -1 0
E-µexp (eV)

0.35

0.33

0.32

0.31

0.30

0.29

x =

0.27

0.25
0.22

0.19

0.13

0.10

0.05

0

Ti 3d
in

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

465 460 455

binding energy (eV)

140

130

120

110

100

90

80

70

60

50

30

20

0

10

dosing
time
(min)

Ti 2p
 Ti

2+
 Ti

2+

 Ti
3+

 Ti
3+

Fig. 5: Left: Ti 2p spectra of TiOCl after various durations of Na dosing. Right: Corresponding
Ti 3d spectra. The electron doping concentration x can be inferred from the Ti 2p spectra
(from [20]).

The structure of TiOCl is depicted in Fig. 4. It is a layered material [19] with one-dimensional
Ti chains running along the crystallographic b-axis (see Fig. 4). Also note that the Ti sites, if
projected onto the (a, b)-plane, form a triangular lattice giving rise to the geometric frustration
of magnetic interactions which, however, is weak since the hopping amplitudes along and across
the chains differ by one order of magnitude.
Beside the interest in this compound as a spin-1/2 quantum magnet with unusual properties
and the perspective of exotic superconductivity, TiOCl deserves also attention since at room
temperature it is a clean realization of a quasi-one-dimensional Mott insulator with the Ti ions
in a 3d1 configuration and the orbital degrees of freedom quenched (the occupied dxy orbital is
slightly split off from the next higher dyz,zx orbitals).
One way of doping the system is by intercalation of alkali metal atoms into the layered structure.
This can be achieved in situ by the evaporation of alkali metal atoms onto the surface of a freshly
cleaved crystal. That the occupancy of the d shell can indeed be enhanced in this way is shown
in the left panel of Fig. 5, which shows XPS spectra of the Ti 2p core level [20]. With increasing
duration of Na dosing, additional spectral weight appears at lower binding energies with respect
to the two main lines. This can be attributed to the emission from the 2p shell of Ti ions that are
in a 2+ instead of a 3+ oxidation state. The extra electron in the valence shell leads to a more
effective screening of the core potential and hence to a shift of the core levels to lower binding
energies (so-called chemical shift). From an analysis of the areas of the respective Ti 2p lines
the amount of electron doping into the Ti 3d states can be determined quite accurately according
to x = A(2+)/(A(2+) + A(3+)).
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The change in the Ti 3d weight at the chemical potential upon electron doping can be seen in
the angle-integrated PES spectra of the right panel of Fig. 5 [20]. For x = 0 only the lower
Hubbard band (LHB) and a clear gap is seen. Already for the lowest doping level the whole
spectrum is shifted by about 0.6 eV to higher binding energies. With increasing x additional
spectral weight develops near the chemical potential which overlaps with the lower Hubbard
band. Surprisingly, no metallic phase, which would be signalled by a sharp quasiparticle peak at
the chemical potential, is observed for any doping level as one would expect in a Mott Hubbard
scenario. If the initial shift of the spectrum was interpreted as jump of the chemical potential
from the middle of the Mott gap to the lower edge of the upper Hubbard band (UHB) it should
amount to about half the optical gap of about 2 eV. However, it is significantly smaller. Further,
upon closer inspection it is recognized that the spectral weight of the LHB decreases in favor of
the additional weight upon doping.

A quantitative analysis of the data as shown in Fig. 6(a) – here for the case of K intercalation
– reveals the following relationship: If the total Ti 3d weight, for which a sum rule applies (cf.
section 2.2), is normalized to 1 + x and the integral intensities of both components are plotted
as a function of doping x, it is seen that the LHB weight decreases as 1−x, while the additional
weight upon doping increases as 2x [20]. This so-called transfer of spectral weight is exactly
what is expected in the atomic limit (t = 0), i.e., when there is no quasiparticle, for the lower
and upper Hubbard bands of a Mott insulator. For each extra electron on a Ti site there is one
possibility lost to remove by PES an electron at the orbital energy ε while there are now two
possibilities to take out an electron from a doubly occupied site at the single particle energy
ε + U . Thus it is spectroscopically proven that both bands are correlated, i.e., they behave as
LHB and UHB.
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To understand the puzzling observations that no metallic phase is induced despite significant
electron doping and that the size of the jump of the chemical potential does not match half the
optical gap one has to consider unwanted side effects induced by chemical intercalation apart
from the addition of electrons to the 3d shell. The salient point is that the alkali metal ions
are not randomly distributed between the layers but assume only well-defined positions close to
certain Ti sites [21, 22]. The consequences are two-fold: Firstly, the outer electron of the alkali
metal is donated exactly to the Ti ion situated next to it. Secondly, the now positively charged
alkali metal ion induces a sizable Coulomb potential at the next Ti site leading to a shift of the
Ti 3d orbital energies at this site towards higher binding energies. In this way, a second sort of Ti
site with renormalized orbital energies is created electrostatically, a mechanism that one could
call electrostatic alloying. A further consequence of this scenario is that an electron double
occupancy can only occur at such alloy sites. In PES these give rise to the observed additional
spectral weight, viz. the alloy band (AB) within the original Mott gap between LHB and UHB.
Hence, the system remains insulating for all doping concentrations. This qualitative picture
is sketched in Fig. 6(b) [20]. For each spectral structure, the transitions in terms of the local
electronic configuration of the d shell upon removal of an electron as in PES are also noted.
This scenario bears some resemblance to ionic or alloy Hubbard models. However, within these
models doping at some stage always leads to metallic phases. The difference to the situation
encountered in experiment is that in these models the potential varies in an alternating manner
or statistically for a fixed number of sites. In contrast, by the very method of doping through
chemical intercalation the number of alloy sites is changed dynamically.
This qualitative picture can also be corroborated quantitatively. The energy for adding a second
electron to the d shell of a Ti ion amounts to U − 3J + δ since for parallel spin orientation of
the electrons in two different orbitals an exchange energy 3J is gained [23]. Here the energy
splitting of the two lowest lying orbitals is taken into account by δ ≈ 0.3 eV. Upon intercalation
this splitting is reduced to δ′ ≈ 0.1 eV at the alloy sites [22]. The electrostatic potential at the
alloy sites due to adjacent alkali metal ions is denoted by ∆. This yields an energy separation
U − 3J + δ′ −∆ of LHB and AB. Note that the energy separation of LHB and UHB remains
unchanged and is given by U − 3J + δ. Experimentally, it amounts to about 1 eV. The chemical
potential jumps by half this value – exactly as observed in the PES spectra – assuming that it
is lying in mid-gap position, now between AB and UHB. Inserting feasible values for U − 3J

between 2.5 and 3.5 eV [23,24], yields∆ ≈ 2 eV. This value can be reconciled within a simple,
local model of point charges. If for all crystallographically inequivalent Ti sites the Coulomb
potential due to a single, intercalated, positively charged alkali metal ion and an extra electron
residing on the Ti site next to it is calculated, taking screening into account by a dielectric
constant of 3.5 [25], one obtains a value of about 2 eV for a doubly occupied Ti site while the
potential for the other Ti ions remains essentially unchanged. TiOCl, if n-doped by intercalation
with alkali metal ions, hence turns out to be a special case of an alloy-Mott insulator where the
alloy sites are created dynamically by the dopants themselves due to electrostatics.
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3.2 Hard x-ray photoemission: Profiling the buried two-dimensional
electron system in an oxide heterostructure

Transition metal oxides are well-known for their huge variety of intrinsic functionalities such as
ferroelectricity, magnetism, superconductivity, or multiferroic behavior. Recent achievements
in the atomic-scale fabrication of oxide heterostructures by means of pulsed laser deposition
(PLD) and molecular beam epitaxy (MBE) made it feasible to combine these intrinsic func-
tionalities with those specific for interfaces and thin films as is known from semiconductor
technology. This paves the way not only for tuning the interactions in transition metal oxides to
stabilize known phases but also for the creation of novel quantum states, which are not present
in the bulk constituents [26]. Such control can be realized by design, the materials choice, ap-
plying a gate voltage, or strain. The common scheme thereby is to realize a re-balancing of the
interactions of the charge, spin, orbital, or lattice degrees of freedom.

The paradigm for this new class of hybrid materials is the two-dimensional electron system
(2DES) which forms at the interface of LaAlO3/SrTiO3 (LAO/STO), although both oxides are
band insulators [27]. Intriguingly, the 2DES exists only at a LAO thickness of 4 unit cells
(uc) or bigger if the LAO film has been grown on a TiO2-terminated STO(001) substrate [28].
Meanwhile, a vast array of intriguing properties has been found for this interface system, among
them magnetic Kondo scattering [29], two-dimensional (2D) superconductivity [30], and a large
electric-field enabling switching of the interface (super)conductivity by application of suitable
gate voltages [28, 31]. More recently, phase separation or even coexistence of magnetism and
superconductivity have been discovered at low temperatures [32–35].

The physical origin of the 2DES formation, however, is still debated. The observation that both
interface-conductivity as well as ferromagnetism only appear for a critical LAO thickness of 4
unit cells (uc) and beyond [28,36] has been related to electronic reconstruction. In this scenario
electrons are transferred from the surface to the interface in order to minimize the electrostatic
energy resulting from the polar discontinuity between LAO and STO [37]. While STO consists
of charge neutral SrO and TiO2 layers, LAO exhibits alternating (LaO)+ and (AlO2)− lattice
planes, which act like a series of parallel-plate capacitors [38] resulting in a polarization field
across the LAO film. If the potential difference across the LAO gets large enough with increas-
ing thickness, electrons are transferred to the interface to (partially) neutralize the electrostatic
gradient. Alternative explanations involve doping by oxygen vacancies and/or cation intermix-
ing (cf. also section 3.3).

The challenge for the notoriously surface-sensitive PES consists in accessing the interface
buried below an overlayer of about 2 nm. This became possible only several years ago at 3rd
generation synchrotron radiation sources that provide sufficiently high photon fluxes for mea-
surements in the hard x-ray regime with high energy resolution and count rates [39]. Obviously,
to gain a microscopic understanding of the origin and nature of the 2DES it is key to know about
its vertical extension and the charge carrier concentration. As opposed to most other methods,
HAXPES can provide this information non-destructively on as-is samples.

The simple idea is to exploit the angle-dependence of the effective inelastic mean free path
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Fig. 7: Left: Sketch of the measuring geometry for angle-dependent HAXPES experiments on
a LAO/STO heterostructure with an interface 2DES. Middle and right: Ti 2p spectra of two
different LAO/STO heterostructures with varying emission angle θ (from [40]).

λeff = λINFP cos θ to perform depth profiling, e.g., of the vertical distribution of an element
with a certain oxidation state in the geometry as sketched in Fig. 7, left [40]. Figure 7 depicts in
the middle and on the right Ti 2p spectra of two different LAO/STO samples with a conducting
interface, recorded at a photon energy of 3 keV and with varying detection angle θ relative to the
surface normal [40]. The spectra are normalized to integral intensity. The interesting feature is
the tiny spectral weight at lower binding energies with respect to the main line, which is shown
as close-up in the respective insets.
Due to its chemical shift it can be attributed to the emission from the 2p core level of Ti3+ ions,
whereas the main line originates from that of Ti4+ sites. An additional electron in the d shell
results in a more effective screening of the core-potential and hence a shift to lower binding
energies. This feature thus provides indirect evidence of the existence of extra electrons in STO
in which Ti otherwise is in a 4+ valence state. It is now interesting to realize that in the spectra
of Fig. 7 the emission from Ti ions in the oxidation state 3+ increases with larger detection
angle, i.e., with smaller information depth and hence higher sensitivity to the interface. This
means that the region in STO with extra electrons is indeed confined to the interface and has a
vertical extension of the order of the inelastic mean free path of the photoelectrons. Otherwise
no angular dependence would be observed.
A more detailed, quantitative analysis of the angle dependence of the ratio of the 2p emission
from Ti3+ and Ti4+ ions, based on a simple model assuming a homogeneous 2DES of thickness
d as in Fig. 7, left, allows for an estimate of the sheet carrier density and the thickness of the
2DES. To do so one just has to integrate the contributions of the respective Ti species to the
photoemission signal according to their vertical distribution, taking into account the damping
factor e−z/λeff for photoelectrons created at a depth z below the interface [40]. The results
are the following: (i) The sheet carrier densities are about one order of magnitude lower than
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Fig. 8: Left: Sketch of the direct PES and the Auger-like channel which quantum mechanically
interfere in ResPES. Right: Angle-integrated on- and off-resonance spectra of the valence band
in LAO/STO. The resonance enhancement in the region of O 2p emission (below ≈ 3.5 eV) is
due to O 2p-Ti 3d hybridization.

expected in an ideal electronic reconstruction scenario as also is inferred from Hall data [28].
(ii) At variance with the latter, already in samples with a non-conducting interface a finite charge
carrier concentration is observed by HAXPES. Moreover, the charge carrier concentrations as
inferred from the HAXPES data do not exhibit a jump with increasing LAO thickness but rather
a continuous increase. (iii) The vertical extension of the 2DES amounts to only a few unit cells
at room temperature.
It is difficult to reconcile these results, in particular (i) and (ii), with the standard electronic
reconstruction scenario as mechanism for the formation of the 2DES. In the next section, we
will see that in view of the findings by resonant soft x-ray PES the ideal electronic reconstruction
actually has to be discarded.

3.3 Resonant angle-resolved soft x-ray photoemission: Direct k-space
mapping of the electronic structure in an oxide-oxide interface

In the previous section we saw that HAXPES on the Ti 2p core-levels provides indirect evidence
for the interface 2DES in LAO/STO. A direct observation of the 3d states contributing to the
2DES is hindered by the low photoionisation cross section at these high photon energies. Even
for energies in the soft x-ray regime around 500 eV which would just grant a sufficiently high
probing depth to access the buried interface the Ti 3d photoemission signal is too low for mea-
surements to be feasible. However, there is a special technique called resonant PES (ResPES)
which allows for a selective enhancement of the photoemission signal from specific orbitals
by tuning the photon energy to an appropriate absorption threshold. According to the dipole
selection rules, in our case the apt absorption threshold in the soft x-ray regime is the Ti L edge
(2p → 3d transitions). There, an additional Auger-like channel opens which leads to the same
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Fig. 9: (a) Fermi surface map recorded at 460.20 eV. (b) Same map as (a) but with the Fermi
surface sheets from density-functional calculations overlaid (from [41]).

final state as in the direct PES process (see Fig. 8)

2p63dn → 2p63dn−1 + ε (direct PES), (14)

2p63dn → 2p53dn+1 → 2p63dn−1 + ε (Auger decay), (15)

where ε denotes the ejected photoelectron. The probability amplitudes of both channels interfere
quantum mechanically and thus give rise to an enhanced 3d spectral weight. How effectively
the resonant enhancement indeed works can be judged from the comparison of angle-integrated
on- and off-resonance spectra in Fig. 8. Off-resonance, no hint to the Ti 3d states is discernable
at the chemical potential, while on-resonance, a sharp quasiparticle peak is observed.
Since momentum information is still preserved using soft x-rays one now can exploit the res-
onance enhancement to perform even k-space mapping of the 2DES interface states. By inte-
gration of the recorded EDCs for each k point over an interval of 0.3 eV centered around the
Fermi energy, one obtains the Fermi surface map in Fig. 9 [41]. One finds an isotropic contribu-
tion of high intensity around the Γ points of the Brillouin zone of STO. As is best seen for the
lower left Γ point in Fig. 9, the spectral weight also extends towards the X points, forming a
flower-like intensity distribution. These observations are consistent with the results of density-
functional calculations of the Fermi surface sheets, which are overlaid on top of the PES data
in Fig. 9(b) [41].
However, there is also a striking discrepancy: In the calculations, a hole-like Fermi surface is
predicted around the M points as marked by the red dashed lines. It originates from O 2p states
at the valence band maximum of LAO. This simply reflects the standard electronic reconstruc-
tion scenario in which the valence band maximum follows the built-in potential across the LAO
overlayer towards the Fermi level. At the critical thickness, the valence band crosses the Fermi
level at the very surface of the LAO film and gives rise to the hole pockets around M while the
released electrons are transferred to the STO conduction band minimum.
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The absence of such hole pockets thus leads to the conclusion that the built-in potential is
basically screened out in the LAO film. This possibly could be caused by the separation of
photogenerated electron-hole pairs in the initial polarization field. However, there are several
indications against it. Samples with an insulating interface do charge up in HAXPES which
should not happen if there was a significant amount of photogenerated charge carriers. Varying
the photon flux by several orders of magnitude does not result in any noticeable changes of the
spectra [42]. In a related heterostructure with a polar/non-polar interface a built-in potential has
been observed by x-ray photoelectron spectroscopy [43].
Alternatively, the experimental observations can be reconciled by proposals, based mainly on
density-functional calculations, that O vacancies at the very surface of the LAO film can serve
as a charge reservoir for the electronic reconstruction [44–47]. Such O vacancies induce un-
occupied, localized in-gap states. The two released electrons per vacancy are transferred to
the interface and thereby the polarization field is efficiently reduced and finally screened out
almost completely. Note that we recover the critical thickness in this picture since, with in-
creasing thickness of the LAO film considered as a parallel-plate capacitor, at some stage the
electrostatic energy gain for discharging due to the transfer of two electrons per oxygen vacancy
outweighs its formation energy.

4 Outlook

In this brief introduction into photoelectron spectroscopy of complex quantum materials only
a very small portion of the entire field could be covered. And even there only a few essential
aspects could be touched upon. Nevertheless, it should have become clear that photoelectron
spectroscopy in all its variants is a very versatile tool to study basically all kind of complex
materials exhibiting interesting many-body phenomena. Although photoelectron spectroscopy
is a mature, well-established technique the frontiers of its capabilities have been pushed back
by technological progress regarding light sources, electron analyzers, and detectors during the
last twenty years and this evolution still continues. Current developments are directed towards
a further improvement of fast detectors with parallel data acquisition, high brilliance tunable
light sources (also with well-defined time structure for time-resolved experiments), electron
analyzers with respect to energy and momentum resolution, and spin detection.
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[4] S. Hüfner: Photoelectron spectroscopy. Principles and applications
(Springer, Berlin, 2003)

[5] W. Schattke and M.A. van Hove (Eds.): Solid-state photoemission and related methods:
theory and experiment (Wiley-VCH, Weinheim, 2003)

[6] L. Hedin and S. Lundqvist: Effects of electron-electron and electron-phonon interactions
on the one-electron states of solids, in: H. Ehrenreich, D. Turnbull (eds.):
Solid State Physics, Vol. 23 (Academic Press, New York, 1969)

[7] C.O. Almbladh and L. Hedin in E.E. Koch (Ed.) Handbook on synchrotron radiation Vol. 1
(North-Holland, Amsterdam, 1983), p. 607

[8] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)
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1 Introduction

The spectacular physical properties often observed in materials containing transition-metal and
rare-earth elements challenge our comprehension of solid state physics [1, 2]. These properties
include superconductivity, unusually large magnetoresistance, metal-insulator transitions, and
multiferroicity. We would like to understand how the electrons in such materials interact with
each other as to generate those unusual quantum phenomena. From a theoretical viewpoint, it
turns out that the equations we have to solve are so complicated that we will not be able to obtain
exact solutions. To make things worse and more fascinating at the same time, tiny changes in
temperature, pressure, or in the material composition may cause large changes of the properties
so that it appears that there are many solutions available that lie very close together in energy.
With exact solutions out of reach, the objective is to find smart approximations by which we
can capture the essential physics to describe the correlated motion of the electrons in such
materials. It may very well be that we need to develop and use different approximations for
different materials or properties.
In order to test the validity and accuracy of the theoretical approximations, one can utilize
photoelectron spectroscopy [3, 4] as a powerful tool to unravel the electronic structure of the
material. One can use the extremely large dynamic range in energy: by studying excitation
spectra in the energy range from several eV up to several hundreds of eV, one can obtain direct
information about the “bare” electrons, e.g. the charge, spin, and orbital state of the ions that
make up the correlated material. By measuring the excitation spectra in the vicinity of the
chemical potential with ultra-high resolution, one can directly find the momentum-dependent
behavior of the “dressed” electrons, i.e. quasiparticles.
In the following, we will address a long-standing issue concerning the electronic structure of
Ti2O3. The basic crystal structure and relevant orbitals are shown in Fig. 1. This material is
a non-magnetic insulator at low temperatures and shows a gradual insulator-to-metal transition
with metal-like conductivity for temperatures above 500 K [6–10]. The transition is not accom-
panied by a change in symmetry of the crystal structure [11]. Band structure calculations have
great difficulties explaining the properties of this compound: the low temperature phase is cal-
culated to be a metal rather than an insulator [12,13]. Cluster methods were used to explain the
insulating state and the transition by involving, among others, an on-site (intra Ti 3d) correlation
energy [14–16].
Several photoelectron spectroscopic experiments have been carried out on the Ti core levels
and the valence band [17–23], thereby identifying the O 2p and Ti 3d derived character of the
valence band and establishing the insulating character of the compound in the low tempera-
ture phase. Strangely enough, none of these reported photoemission studies have revealed the
presence of satellite structures that otherwise would be consistent with the formation of the c-
axis dimers in the low-temperature phase as proposed by the cluster studies [14–16, 24]. The
structural presence of the c-axis dimers can be seen in Fig. 1.
Here we will revisit the valence band photoemission experiment with the emphasis on obtaining
spectra that are representative for the bulk material. We will analyze the spectra on the basis
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Fig. 1: (Left) Corundum structure of Ti2O3 at T = 300K in the insulating phase. Titanium
(oxygen) sites are indicated by black (white) spheres. (Right) Energy level diagram adapted
from Castellani et al. [5] for a c-axis dimer of titanium sites. One-electron orbitals of each site
are shown on the left and right sides, with the resulting molecular orbitals in the center.

of the hydrogen molecule model, thereby establishing not only that the c-axis dimer is present
electronically, but also quantifying the importance of correlation effects relative to the intra-
dimer hopping for the gap formation in the low temperature phase.

2 Experimental

Single crystals of Ti2O3 were grown by H. Roth (University of Cologne) using a floating-zone
mirror furnace and subsequently characterized by x-ray diffraction and thermogravimetric anal-
ysis. No impurities or foreign phases in the samples were detected, which was also confirmed
by the photoemission measurements. These measurements were taken at room temperature on
in-situ cleaved samples. The photoemission spectra (in the following referred to as XPS) were
collected using a VG twin-crystal monochromatized Al Kα x-ray source with hν = 1486.6 eV
and a Scienta SES 100 hemispherical electron energy analyzer. The overall experimental en-
ergy resolution was set to 350 meV. The pressure in the spectrometer chamber was below
2×10−10 mbar during the measurement. The possible process of aging of the sample was mon-
itored by repeated O 1s spectra alternating with the measurement of the valence band region.
No significant changes during the entire experiment (48 h) were observed.

3 Results

The room temperature XPS valence band spectrum is shown in Fig. 2. The large spectral weight
at 4–10 eV binding energies can be attributed to bands with mainly O 2p character. The lower
energy region from the Fermi level up to 4 eV consists of mainly Ti 3d contributions. This
part of the spectrum is characterized by two distinct structures. The main line (M) is a sym-
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Fig. 2: Room temperature valence band photoemission spectrum of Ti2O3 taken at 1486.6 eV
photons. The Fermi level was calibrated using a polycrystalline gold sample shown by the
dashed line.

metric peak with a width of ≈ 0.8 eV FWHM centered at about 0.7 eV. The semiconduct-
ing or insulating nature of the system at room temperature [7–9] is reflected by the fact that
the spectral weight vanishes close to the Fermi level, in agreement with earlier photoemission
reports [17–22]. The second feature is a weak but clearly noticeable satellite (S) at around
2.4 eV binding energy. The existence of this satellite has not been reported in the literature
before [17–22].
One of the concerns with respect to the results reported in the literature is related to the surface
sensitivity of photoelectron spectroscopy when using low photon energies. One can estimate
that the probing depth is no more than 7–10 Å for ultraviolet photons. At 1486.6 eV, the probing
depth is estimated to be around 20 Å, and apparently, this is needed to observe the existence of
the satellite (S).

4 Discussion: the Hubbard model for the hydrogen molecule

Establishing the presence of the satellite (S) structure is essential for identifying the appropriate
model for Ti2O3. Band theory not only fails to produce a gap at the Fermi level, but also
does not reveal any structure in the calculated density of states in the 1–3 eV binding energy
region [12, 13]. Only the main line (M) is reproduced. It is also important to note that single-
site cluster approaches that include correlation effects do not produce a satellite structure in
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the 1–3 eV region, only the main line appears in the calculations [21, 22, 16]. We therefore
infer that the satellite (S) structure can only be explained if two aspects are taken into account
simultaneously: correlation effects and strong intra-dimer hopping [15, 16]. To demonstrate
this point, we now will simulate the Ti 3d derived features using the Hubbard model for the
hydrogen molecule [25], where the H 1s orbital is representing the occupied Ti 3d a1g orbital
as illustrated in Fig. 1 and indicated experimentally by XAS measurements [24].

4.1 Ground state

The model consists of two electrons that can be distributed over two sites denoted by i = 1, 2.
The ground state |GS〉 of the system can be described as a linear combination of a state |ϕ0〉 in
which the two electrons are on different sites coupled to a singlet, and another singlet state |ϕ1〉
in which both electrons are on the same site,

|GS〉 = α|ϕ0〉+ β|ϕ1〉

|ϕ0〉 =
1√
2

(
c†1↑c

†
2↓ + c†2↑c

†
1↓

)
|0〉

|ϕ1〉 =
1√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉.

Here, |0〉 denotes the vacuum state out of which the operators c†iσ create an electron at site i with
spin σ =↑, ↓. The triplet states are not considered since they do not hybridize with each other
to allow for the formation of a lower energy state [25]. The coefficients α and β are determined
by diagonalizing the ground state Hamiltonian,

HGS =

(
0 2t

2t U

)
,

in which U denotes the on–site Coulomb repulsion between two electrons at the same site, and
t the hopping integral of the electron between the two sites. The energy of the ground state is
then given by

E0 =
1

2

(
U −
√
U2 + 16t2

)
.

4.2 Photoemission final states

The photoemission process, in which an electron is removed, is represented by the annihilation
operators ciσ. In a basis of states in which the remaining electron is localized at one of the two
sites, c†iσ|0〉, i = 1, 2, the final state Hamiltonian and the corresponding eigenstates are given by

HFS =

(
0 t

t 0

)
,

|FS±〉 = 1√
2

(
c†1σ ± c

†
2σ

)
|0〉.
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Fig. 3: Total energy level diagram for the photoemission process in a hydrogen molecule model.
The two accessible final states |FS+〉 and |FS−〉 yield two lines in the spectrum of intensities
I+ and I−, respectively, according to the initial state coefficients α and β. The corresponding
spectrum is indicated on the right.

These final states are the well known bonding and anti-bonding states of the H+
2 ion which are

separated in energy by 2t. See Fig. 3.

4.3 Photoemission spectral weights

Depending on the spin of the removed photoelectron, the final states can take two spin orien-
tations σ of equal energy. One can see immediately that the photoemission spectrum of this
system consists of two lines associated with the two final states. The separation of the peaks
in the spectrum is given by the final state splitting 2t. Their intensities depend only on the ini-
tial state coefficients α and β. A qualitative spectrum is sketched in Fig. 3 on the right with a
lifetime broadening of the photoemission lines taken into account.
We calculate the spectrum as the intensity proportional to the square of the transition matrix
elements for the photoemission process,1

I± ∝ ‖〈FS±|ciσ|GS〉‖2

=
1

4
|α± β|2

=
1

4

(
1±

√
16t2/ (U2 + 16t2)

)
.

We thus find that the intensities only depend on the ratio between U and t, and we can immedi-
ately evaluate the relative intensities for two limiting cases. Firstly, for U = 0, I− vanishes, and
the spectrum will be given by a single line only. In other words, although there are two final

1Note that the sum of I+ and I− equals 1/4 instead of 1. Since there are four photoemission operators ciσ for
i = 1, 2 and σ = ↑, ↓, which naturally all yield the same intensities, the total intensity equals 1.
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Fig. 4: Calculated photoemission spectra of the hydrogen molecule model in energy units of t
for 0 ≤ U/t ≤ 6 with a lifetime broadening of 0.25t. Left inset: the variation of I+ (solid line)
and I−(dashed) with U/t. Right inset: the energy gap in units of t as function of U/t.

states, we can only reach the lowest of them due to the fully constructive and fully destructive
interference (α = β when U = 0) in the expression for the transition matrix elements. We
are thus back to the one-electron approximation and reproduce essentially the results of band
structure calculations. Secondly, for U/t → ∞, the intensities for the two final states become
equal: the satellite intensity I− is as large as that of the main line I+. In this limit, there is no
double occupation in the ground state and the two electrons reside on one site each (α = 1 and
β = 0).

In Fig. 4, we show the intensities for a range of U/t values. The energy scale is in units of
t. The energy scale is chosen such that the zero, given by the chemical potential µ, lies in the
center of the energy gap shown in the right inset. The gap is given by

Egap =
√
U2 + 16t2 − 2|t| .

One can clearly see how the satellite intensity I− grows with increasing U/t. Comparing the H2

model calculations as shown in Fig. 4 with the experimental spectrum for Ti2O3 as displayed
in Fig. 2, we can make the estimate from the experimental satellite to main line intensity ratio
that U/t ≈ 3 − 4. The experimental energy separation between the satellite and the main line
is 2.4 − 0.7 = 1.7 eV, which corresponds with 2t in the hydrogen model. We thus obtain the
estimate that t ≈ 0.85 eV and U ≈ 2.5− 3.4 eV for Ti2O3.
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5 Conclusions

We have investigated the low temperature phase of Ti2O3 with bulk sensitive photoelectron
spectroscopy. We find a distinct two-peak structure in the Ti 3d contribution to the valence
band spectrum. We attribute this to correlation effects at the Ti 3d and to the presence of inter-
site hopping within the c-axis dimer. On the basis of the Hubbard model for the hydrogen
molecule, we can make realistic estimates for the magnitude of the Hubbard U and the intra-
dimer hopping intergral t. We can conclude that the c-axis dimers exist not only structurally but
also electronically. This finding is relevant for a better understanding of the insulator-to-metal
transition, in which an electronic break-up of the c-axis dimers for the high temperature phase
can be hypothesized.
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