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what are the fundamental laws of the universe?
what are the fundamental particles?

reductionist approach
given those I can explain the universe



electrons and lattice

electronic Hamiltonian
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lattice Hamiltonian

if we crystal structure known 
we can concentrate on electrons



a single iron atom

26 electrons, 78 arguments, 
1078 values

10 X 10 X 10 grid

 0(r1, r2, . . . , r26)



more is different

Philp Warren 
Anderson

Nobel Prize in Physics 1977

http://www.emergentuniverse.org/



do we want the exact solution?

• too many details

• really we need to understand idealized cases (thermodynamic 
limit, ideal crystals,...)

• elementary entities depend on energy scale (electron vs spins)

• we want to understand cooperative phenomena 
(ferromagnetism, antiferromagnetism)

• co-operative phenomena/ effective elementary entities = 
emergent properties

• prediction is difficult, experiments normally first

no.



anti-ferromagnetism

LETTERS TO THE EDITOR 125'7

must be positive. This last condition is required in order that spin
states of high multiplicity, which favor ferromagnetism, have the
lowest energy. It seems certain that for many of the non-ferro-
magnetic substances containing a high concentration of magnetic
atoms the exchange integrals are negative. In such cases the lowest
energy state is the one in which the maximum number of anti-
parallel pairs occur. An. approximate theory of such substances
has been developed by Neel, I Bitter, and Van Vleck3 for one
specific case and the results are briefly described below.
Consider a crystalline structure which can be divided into two

interpenetrating lattices such that atoms on one lattice have
nearest neighbors only on the other lattice. Examples are simple
cubic and body-centered cubic structures. Let the exchange
integral for nearest neighbors be negative and consider only
nearest neighbor interactions. Theory then predicts that the
structure will exhibit a Curie temperature. Below the Curie tem-
perature the spontaneous magnetization vs. temperature curve
for one of the sub-lattices is that for an ordinary ferromagnetic
material. However, the magnetization directions for the two
lattices are antiparallel so that no net spontaneous magnetization
exists. At absolute zero all of the atoms on one lattice have their
electronic magnetic moments aligned in the same direction and
all of the atoms on the other lattice have their moments anti-
parallel to the first. Above the Curie temperature the thermal
energy is sufficient to overcome the tendency of the atoms to
lock antiparallel and the behavior is that of a normal paramagnetic
substance.
Materials exhibiting the characteristics described above have

been designated "antiferromagnetic. "Up to the present time the
only methods of detecting antiferromagnetism experimentally
have been indirect, e.g. , determination of Curie points by suscep-
tibility and specific heat anomalies. It has occurred to one of us
(J.S.S.) that neutron diKraction experiments might provide a
direct means of detecting antiferromagnetism. In an antiferro-
magnetic material below the Curie temperature a rigid lattice of
magnetic ions is formed and the interaction of the neutron mag-
netic moment with this lattice should result in measurable co-
herent scattering. Halpern and Johnson' have shown that the
magnetic and nuclear scattering amplitudes of a paramagnetic
atom should be of the same order of magnitude and this result.
has been qualitatively verified by experimental investigators. s At
the time of the above suggestion, an experimental program on the
determination of the magnetic scattering patterns for various
paramagnetic substances (MnO, MnF2, MnSO4 and Fe203) was
underway at Oak Ridge National Laboratory and room ternpera-
ture examination had shown {1)a form factor type of diffusion
magnetic scattering {no coupling of the atomic moments) to exist
for MnF2 and MnSO4, (2) a liquid type of magnetic scattering
(short-range order coupling of oppositely directed magnetic
moments) to exist for MnO and (3) the presence of strong coherent
magnetic diffraction peaks at forbidden re6ection positions for
the n-Fe203 lattice. The latter two observations are in complete
accord with the antiferromagnetic notion since the Curie points
for MnO and o.-Fe203 are respectively' 122'K and 950'K.
Figure 1 shows the neutron diffraction patterns obtained for

powdered MnO at room temperature and at 80'K. The room
temperature pattern shows coherent nuclear diGraction peaks at
the regular face-centered cubic re6ection positions and the liquid
type of diffuse magnetic scattering in the background. It should
be pointed out that the coherent nuclear scattering amplitudes for
Mn and 0 are of opposite sign so that the diGraction pattern is a
reversed NaCl type of pattern. The low temperature pattern also
shows the same nuclear diffraction peaks, since there is no crystal-
lographic transition in this temperature region, T and in addition
shows the presence of strong magnetic reflections at positions not
allowed on the basis of the chemical unit cell. The magnetic re-
jections can be indexed, however, making use of a magnetic unit
cell twice as large as the chemical unit cell. A complete description
of the magnetic structure will be given at a later date.
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Fi( . 1. Neutron diffraction patterns for MnO at room
temperature and at 80~K.

Imprisonment of Resonance Radiation in
Mercury Vapor

D. ALPERT, A. O. McCoUBRFY, AND T. HQLsTEIN
Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania

August 29, 1949

'HE term "imprisonment of resonance radiation" describes
the situation ~herein resonance radiation emitted in the

interior of a gas-filled enclosure is strongly absorbed by normal
gas atoms before it can get out; the eventual escape of a quantum
of radiation then takes place only after a number of successive
atomic absorptions and emissions. The phenomenon was first
observed by Zemansky' who measured the time of decay, T, of
diffuse resonance radiation from an enclosure of optically excited
mercury vapor, after the exciting beam of 2537A light was cut off.
T was found to depend upon gas density and enclosure geometry;
at densities around 10'5/cc, T attained values of the order of 10 4

sec., a thousand times greater than the natural lifetime of an
excited 6'PI atom.
On the theoretical side, a number of treatments' ' have been

presented. The early work' ' is reviewed in reference 6. In the
latter paper (as well as in that of Biebermans), the transport of
resonance quanta is described by a Boltzmann-type integro-
diEerential equation for the density of excited 6'PI atoms; the
solution of this equation by the Ritz variational method gives
accurate values for the decay time, T. It was found that T depends
not only on vapor density and enclosure geometry, but also on
the spectral line shape of the resonance radiation, as pointed out
earlier by Kenty explicit results were obtained for the case of
Doppler broadening and plane-parallel enclosure geometry. Most
recently, unpublished calculations have extended the analysis to
enclosures of the form of infinite circular cylinders and to a variety
of line shapes.

In conclusion it appears that neutron diffraction studies of anti-
ferromagnetic materials should provide a new and important
method of investigating the exchange coupling of magnetic ions.
*This work was supported in part by the ONR.
~ L. Noel, Ann. de physique l7, 5 (1932).
~ F. Bitter, Phys. Rev. 54, ?9 (1938).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
4 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' Whittaker, Beyer, and Dunning, Phys. Rev. 54, 771 (1938); Ruderman,

Havens, Taylor, and Rainwater, Phys. Rev. 75, 895 (1949); and also
unpublished work at Oak Ridge National Laboratory.

II Bizette, Squire, and Tsai, Comptes Rendus 207, 449 (1938).' B. Ruhemann, Physik. Zeits. Sowjetunion 7, 590 (1935).

prediction: Néel (1932)

experiment: Shull and Smart (1949)



exact solution?

Bethe: ground state of linear Heisenberg chain has S=0

Anderson: broken symmetry & quantum fluctuations



magnetism & emergence

from electrons emerge spins
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this lecture

• the general electronic Hamiltonian
• isolated atoms and ions
• ions in solids
• the Hubbard model

• idealized cases: itinerant & atomic limit
• itinerant limit

• Pauli paramagnetism
• Stoner instabilities

• atomic limit
• localized moments
• paramagnetism of isolated magnetic ions
• interacting magnetic ions

• the Kondo model
• conclusions



the Hamiltonian

JARA-HPC



electronic Hamiltonian

non relativistic electronic Hamiltonian
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magnetism is a quantum mechanical effect

interplay between Coulomb interaction, Pauli principle and hoppings



atoms and ions



atoms and ions
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self-consistent potential
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atomic functions
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real harmonics
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atomic functions
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many-electrons
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many electron atoms

filled shells

partially filled shell: magnetic ions

S=L=0

1. Hund’s rule max S

2. Hund’s rule max L

total spin S and total angular momentum L

does the atom/ion carry a magnetic moment?



strongly correlated systems
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here in particular transition-metal oxides 
and f electron systems



origin: Coulomb repulsion
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Coulomb exchange
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a C atom

[He] 2s22p2
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S    P    D
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1. Hund’s rule

S

D  S=0

incomplete p shell: l=1
total spin and angular momentum

2. Hund’s rule



spin-orbit interaction

3. Hund’s rule

S=1 P3P 3P0 2S+1LJ

if weak, LS coupling approximation
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energy scales

U, v

J

dJ

spin-orbit

Coulomb anisotropy

Coulomb exchange

central potential, direct Coulomb
N

S

L

J

1 eV

0.1 eV

10 meV
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N
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L

J

local magnetic moment depends on Coulomb & spin orbit
but also on energy scale...



ions in solids



ions in solids

crystal field & hopping integrals
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crystal field



crystal field
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 perovskite structure ABC3

4C4

2C2

3C3

C2C4 C3

it is the symmetry group of the cube

4C33C4

6C2

KCuF3K+ Cu2+ F-



crystal-field theory

crystal field
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how do d levels split at the Cu site?
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(in real materials, also covalency effects!)
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cubic perovskite
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atomic d orbitals

xyxz yz

x2-y2 3z2-r2



cubic crystal-field

Cu3+ 3d9
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energy scales 

U, v

J
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spin-orbit

Coulomb anisotropy

Coulomb exchange

central potential, direct Coulomb
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Coulomb anisotropyCoulomb anisotropy

strong

intermediate

weak
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Hilbert space



density-density Coulomb

U U-3J+∆U-2J+∆



strong field

t2g4

eg0

∆ t2g4 4d, ruthenates

no 1. Hund’s rule!
S=1

t2g4
∆ > 3J

6U-15J



intermediate

t2g3

∆ t2g3  eg1 3d, manganites

 1. Hund’s rule satisfied S=2

eg1

 however, no 2. Hund’s rule!
6U-18J+∆



quenching of angular momentum

hLi = 0

perfect quenching

partial quenching: L smaller than expected from 2. Hund’s rule



if no hopping integrals....

magnetic ions=isolated localized moments 

insulating behavior

magnetic ions



Coulomb interaction
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itinerant vs local moments

local moment regime t << U

itinerant regime t >> U

integer filling: Mott insulator

integer filling: metal

Stoner instabilities

Heisenberg-like model

local moments survive 
in crystal

local moments melt

ions in solid: conclusion

local moment determined by 
Coulomb & crystal field

hoppings, bands

ferromagnetic Coulomb exchange
AFM kinetic exchange



hopping integrals



hopping integrals

crystal field & hopping integrals
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hopping integrals
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hydrogen molecular ion
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hydrogen molecular ion
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hydrogen molecular ion
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crystal
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crystal
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The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).
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near the middle of the conduction band, d!´", s!´", and
p!´" are positive, and the energy dependence of d!´" may
be linearized ! !d . 0", while those of s!´" and of p!´"
may be neglected. The bilayer bonding and antibonding
subbands have ´s values split by 7t!

ss. Now, if ´s were
infinitely far above the conduction band, or tsp vanishingly
small, the right-hand side of (2) would vanish, with the
result that the constant-energy contours would depend
only on u. The dispersion of the conduction band near the
Fermi level would thus be that of the one-orbital model
(1) with t " !1 2 p"#4 !d and t0 " t00 " 0. For realistic
values of ´s and tsp, the conduction band attains Cu s
character proportional to y2, thus vanishing along the
nodal direction, kx " ky , and peaking at !p, 0", where it
is of order 10%. The repulsion from the Cu s band lowers
the energy of the Van Hove singularities and turns the
constant-energy contours towards the [10] directions. In a
multilayer material, this same y2 dependence pertains to
the interlayer splitting caused by t!

ss. In order to go from
(2) to (1), 1#!1 2 u 1 s" $ 2r#!1 2 2ru" was expanded
in powers of 2ru, where r $ 1

2 #!1 1 s". This provided
explicit expressions, such as t " %1 2 p 1 o!r"&#4 !d,
t0 " %r 1 o!r"&#4 !d, and t00 " 1

2 t0 1 o!r", for the
hopping integrals of the one-orbital model in terms of
the parameters of the four(six)-orbital model and the
expansion energy '´F . Note that all intralayer hoppings
beyond nearest neighbors are expressed in terms of the
range parameter r. Although one may think of r as
t0#t, this holds only for flat layers and when r , 0.2.
When r . 0.2, the series (1) must be carried beyond
t00. Dimpling is seen not to influence the range of the
intralayer hopping, but to reduce t through admixture of
Oa#b pz. In addition, it also reduces tpd .

Here, we generalize this analysis to all known families
of HTSC materials using a new muffin-tin-orbital (MTO)
method [6] which allows us to construct minimal basis
sets for the low-energy part of an LDA band structure
with sufficient accuracy that we can extract the materials
dependence. This dependence we find to be contained
solely in ´s, which is now the energy of the axial orbital,
a hybrid between Cu s, Cu d3z221, apical-oxygen Oc pz ,
and farther orbitals on, e.g., La or Hg. The range, r, of the
intralayer hopping is thus controlled by the structure and
chemical composition perpendicular to the CuO2 layers. It
turns out that the materials with the larger r (lower ´s) tend
to be those with the higher observed values of Tc max. In the
materials with the highest Tc max, the axial orbital is almost
pure Cu 4s. It should be noted that r describes the shape
of the noninteracting band in a 1 eV range around the
Fermi level, whose accurate position is unknown because
we make no assumptions about the remaining terms of the
Hamiltonian, inhomogeneities, stripes, etc.

Figure 2 shows the LDA bands for the single-layer
materials La2CuO4 and Tl2Ba2CuO6. Whereas the high-
energy band structures are complicated and very different,
the low-energy conduction bands shown by dashed lines
contain the generic features. Most notably, the dispersion
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FIG. 2. LDA bands (solid lines) and Cu dx22y2-like conduction
band (dashed line). In the bct structure, G " !0, 0, 0", D "
!p , 0, 0", Z " !2p , 0, 0" " !0, 0, 2p#c", and X " !p , p , 0".

along GDZ is suppressed for Tl2Ba2CuO6 relatively
to La2CuO4, whereas the dispersion along GXZ is the
same. This is the y2 effect. The low-energy bands
were calculated variationally with a single Bloch sum
of Cu dx22y2 -like orbitals constructed to be correct at an
energy near half filling. Hence, these bands agree with
the full band structures to linear order and head towards
the pure Cu dx22y2 levels at G and Z, extrapolating across
a multitude of irrelevant bands. This was explained in
Ref. [6]. Now, the hopping integrals t, t0, t00, . . . may be
obtained by expanding the low-energy band as a Fourier
series, yielding t " 0.43 eV in both cases, t0#t " 0.17
for La2CuO4 and 0.33 for Tl2Ba2CuO6, plus many
further interlayer and intralayer hopping integrals [7].

That all these hopping integrals and their materials
dependence can be described with a generalized four-
orbital model is conceivable from the appearance of the
conduction-band orbital for La2CuO4 in the xz plane
(Fig. 3). Starting from the central Cu atom and going in
the x direction, we see 3dx22y2 antibond to neighboring
Oa 2px, which itself bonds to 4s and antibonds to 3d3z221
on the next Cu. From here, and in the z direction, we see
4s and 3d3z221 antibond to Oc 2pz , which itself bonds to
La orbitals, mostly 5d3z221. For Tl2Ba2CuO6 we find
about the same amount of Cu 3dx22y2 and Oa#b 2px#y
character, but more Cu 4s, negligible Cu 3d3z221, much
less Oc 2pz , and Tl 6s instead of La 5d3z221 character. In
Tl2Ba2CuO6 the axial part of the conduction-band orbital
is thus mainly Cu 4s.

Calculations with larger basis sets than one MTO per
CuO2 now confirm that, in order to localize the orbitals
so much that only nearest-neighbor hoppings are essential,
one needs to add one orbital, Cu axial, to the three stan-
dard orbitals. The corresponding four-orbital Hamiltonian
is therefore the one described above in Fig. 1 and Eq. (2).
Note that we continue to call the energy of the axial orbital
´s and its hopping to Oa px and Ob py tsp . Calculations
with this basis set for many different materials show that,
of all the parameters, only ´s varies significantly [7]. This
variation can be understood in terms of the couplings be-
tween the constituents of the axial orbital sketched in the
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The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).
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The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]
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proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).

047003-1 0031-9007$01$87(4)$047003(4)$15.00 © 2001 The American Physical Society 047003-1



band and density of states
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the small t/U limit



perturbation theory

H = "d
X

i

X

�

c†i�ci� � t
X

hii0i

X

�

c†i�ci0� + U
X

i

ni"ni# = Hd +HT +HU

Hubbard model

nD = number of doubly occupied sites

idea: divide Hilbert space into nD=0 and nD>0 sector

next downfold high energy nD>0 sector

half filling: N=1 electrons per site



two sites

site 1 site 2 site 1 site 2

nD=0 sector nD=1 sector

N=1 per site; Ntot=2



Hilbert space

HT

HT

nD=0 sector nD>0 sector

next downfold high energy nD>0 sector



low energy model

�E"# ⇠ �
X

I

h", # |HT |IihI
����

1

E(2) + E(0)� 2E(1)

���� IihI|HT | ", #i ⇠ �2t2

U
.

eliminate states with a doubly occupied site

energy gain 

virtual hopping

=1/U=t =t

t

U



low energy model

energy gain only for antiferromagnetic arrangement

Pauli principle

t

HS =
1

2
�
X

hii0i


Si · Si0 �

1

4
nini0

�

1

2
� ⇠ (�E"" ��E"#) =

1

2

4t2

U



a canonical transformation

H = �t
X

hii0i

X

�

c†i�ci0� + U
X

i

ni"ni# = HT +HU

here for simplicity "d = 0

Hubbard model

half filling: N=1 per site
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t/U expansion for the Hubbard model

1 JUNE 1988

A. H. MacDonald, S. M. Girvin, and D. Yoshioka*
Department of Physics, Indiana UniUersity, Bloomington, Indiana 47405

(Received 8 January 1988)

%e describe a unitary transformation which eliminates terms coupling states with diNering
numbers of doubly occupied sites from the Hamiltonian of the Hubbard model. The S matrix for
the transformation, and the transformed Hamiltonian, 0', are generated by an iterative procedure
which results in an expansion in powers of the hopping integral t divided by the on-site energy U.
For a half-61led band and in the space with no doubly occupied sites, 0' is equivalent to a spin
Hamiltonian. %e discuss the implications of our results for 0' on theories of high-temperature
superconductivity.

T ~T()+Ti+ T- i,
where

(3a)

Tp- tZ,N;, (n,.C—t.C,.n,.+h,-~,t C,.h,-,),iJO'

Ti t+N, j.n; C; Csh-
ije

T i t+Ntjh; Ctt C-J—n, - (3d)
ijcr

In Eqs. (3) cr is up for cr down and down for o up,
n; Ct~Ct~, and h; 1 n;; the separa—tion is formally
achieved by multiplying each term in Eq. (1) on the left
by 1 n; +h; and on the -right -by 1 nj +h No-te tha—t.

The Hubbard model' is the simplest possible Hamil-
tonian which captures the essential physics of fermion sys-
tems with short-range repulsive interactions. The Hamil-
tonian of this model is H T+V where the kinetic part
represents hops between neighboring sites,

T —t+N;i C;t Ct. (1)
ija

and the interaction part gives contributions only from
electrons on the same site,

V Ugtt;(ni . (2)

[In Eq. (1) Nij 1 if i and j are labels for neighboring
sites and equals zero otherwise. ] Despite its apparent sim-
plicity, the properties of the Hubbard model are well un-
derstood only for the case of a one-dimensional lattice. 3
The difIIculty of the model is generally felt to result from
the fact that it does capture the essential elements of the
complex behavior of strongly-correlated Fermi systems
and interest in the model has increased in recent years.
(See, for example, Refs. 4-9.) This has been especially
true since the discovery of high-T, superconductivity in
copper-oxide systems 'p" which are believed to be qualita-
tively described by the Hubbard modeL
Our transformation is based on a separation of the ki-

netic part of H into terms which increase the number of
doubly occupied sites by 1, terms which decrease the num-
ber of doubly occupied sites by 1, and terms which leave
the number of doubly occupied sites unchanged:

Tt T and -that

[VT ] mUT

Equation (4) expresses the fact that the interaction energy
changes by mU after one of the hops in T .
We seek a unitary transformation which eliminates

hops between states with differing numbers of doubly oc-
cupied sites

H( /sH js H + [tS,H] + ftS, [tS,H] ] +
1f

A recursive scheme for determining a transformation
which has this property to any desired order in t/U is de-
scribed below. The last two terms in the untransformed
Hamiltonian,

H—=H' ' ~V+ Tp+ Ti+ T i, — (6)

may be eliminated by choosing

~S-~S")-U '(T —T -)

Substituting Eqs. (7) and (6) into Eq. (5) and using Eq.
(4) gives

H ~(2)—eis"'Heis"'
V+ T()+U ([Ti T i]+[Tp T i]

+ [T(,Tp])+0(U ') (8)

To proceed further we define

T"'(mi, m2, . . . , rnk)= T"'[m]-T—,T, . . . T „(9a)
and note, using Eq. (4), that

[V T"'[ ]]-Ug;T"[)]=—UM")[ ]T"'[m] .
(9b)

H'k' will contain terms of order tkUi kwhich couple-
states with differing numbers of doubly occupied sites, i.e.,
with M [m] aO and which can be expressed in the forin

H~(iki U( —k+C(k)[ ]T(k)[ ] (1O)
fm)

It follows from Eq. (9b) that

0&(k+1)—iS(h) —iS+)08
37 9753 1988 The American Physical Society



a canonical transformation

H0
T = �t

X

hii0i

X

�

ni��c
†
i�ci0�ni0��

�t
X

hii0i

X

�

(1� ni��) c
†
i�ci0� (1� ni0��) ,

H+
T = �t

X

hii0i

X

�

ni��c
†
i�ci0� (1� ni0��) ,

H�
T =

�
H+

T

�†

no change in nD

from nD to nD+1

from nD to nD-1

nD = number of doubly occupied states

HT = �t
X

hii0i

X

�

c†i�ci0� = H0
T +H+

T +H�
T



a canonical transformation

S = � i

U

�
H+

T �H�
T

�

HS = eiSHe�iS = H + [iS,H] +
1

2
[iS, [iS,H]] + . . . .

cancels 

in

[H±
T , HU ] = ⌥UH±

T H+
T +H�

T

HT = �t
X

hii0i

X

�

c†i�ci0� = H0
T +H+

T +H�
T ,

H = �t
X

hii0i

X

�

c†i�ci0� + U
X

i

ni"ni# = HT +HU



half filling

HS = HU +H0
T +

1

U

�⇥
H+

T , H�
T

⇤
+
⇥
H0

T , H
�
T

⇤
+
⇥
H+

T , H0
T

⇤ 
+O(U�2)

these are zero at half filling 

thus

H
(2)
S =

1

2

4t2

U

X

ii0


Si · Si0 �

1

4
nini0

�
.

the remaining term is

(no hopping possible without changing nD)

example of kinetic exchange



interacting spins

HS =
1

2
�
X

hii0i


Si · Si0 �

1

4
nini0

�

to antiferromagnetic Heisenberg model

from Hubbard model 

(remember, Coulomb exchange ferromagnetic)



magnetic properties



linear response theory

Mz(q;!) = �zz(q;!)hz(q;!)

linear response

magnetization magnetic field

response function

thermodynamic sum rule

�zz(0; 0) = lim
hz!0

@Mz

@hz



interaction with magnetic field

HZ = gµBhzSz

Zeeman term

.. plus second  oder corrections (van Vleck & Larmor)



Zeeman term

hz

z
Sz=1/2

Sz=-1/2

Mz=-gµBSz

Mz=-gµB/2

Mz=+gµB/2

HZ = gµBhzSz



the itinerant limit



U=0 case



Pauli paramagnetism

"k ! "k� = "k +
1

2
�gµBhz

Zeeman term



Pauli paramagnetism

hz=0

z

-D

+D

EF

"k" = "k#



Pauli paramagnetism

"k ! "k� = "k +
1

2
�gµBhz

hz

z

-D

+D

EF

Mz

Sz



Pauli paramagnetism

Mz = �1

2
(gµB)

1

Nk

X

k

[nk" � nk#] ⇠
1

4
(gµB)

2 ⇢("F )hz

�P (0) =
1

4
(gµB)

2 ⇢("F )

�P (T ) =
1

4
(gµB)

2
Z

d"⇢(")

✓
�dn(")

d"

◆
finite temperature

zero temperature



finite temperature
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linear response theory

Mz(q;!) = �zz(q;!)hz(q;!)

Pauli susceptibility: uniform and static



small U/t case



Fermi liquid 

m⇤

m
= 1 +

1

3
F s
1 > 1, F s

1 > 0

�

�P
=

1

1 + F a
0

> 1, F a
0 < 0

enhanced Pauli susceptibility

 one-to-one correspondence between electrons & quasiparticles

enhanced masses

in some limit an interacting electron system can be described via 
independent quasi-electrons

F0a and F1s: Landau parameters

weakly interacting: small U/t ratio



Stoner instabilities: Hartree Fock

HU = U
X

i

ni"ni# ! HHF
U

HHF
U = U

X

i

[ni"hni#i+ hni"ini# � hni"ihni#i] .

ferromagnetic instability?

hni�i = n� =
n

2
+ �m

"Uk� = "k + n�� U = "k +
n

2
U � �mU



effective total magnetic field

Zeeman
"k� = "Uk� +

1

2
gµBhz�

HHF
U = U

X

i


�2mSi

z +m2 +
n2

4

�
HF



Stoner instabilities

linear response

self-consistent solution for Mz

RPA susceptibility

Mz ⇠ �P (0)


hz �

2

gµB
Um

�
= �P (0)

⇥
hz + 2(gµB)

�2UMz

⇤

�S(0; 0) =
�P (0)

1� 2 (gµB)
�2 U�P (0)

Uc = 2/⇢("F ) critical U



2-dimensional case
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logarithmic singularity 

any U>0 triggers the instability



band and density of states
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Stoner instabilities with finite q 

oscillating magnetic
field and spin polarization

supercell

linear chain, q=(π/a,0,0)

a b

j=1 j=2
i=0 i=0i=-1i=-1 i=1 i=1

Si
z(q) =

X

j

eiq·RjSji
z

hSji
z i = m cos(q ·Rj)



antiferromagnetism

Γ=(0,0)

X

Y

M

Q2=(π,π)

M=(π/a,π/a)

X=(π/a,0)

Y=(0,π/a)
(a,a)

(0,0)

(a,0)

(0,a)

two dimensional case



Stoner instabilities with finite q 

HHF
U +HZ =

X

i


gµB

2

✓
hz �

2

gµB
mU

◆⇥
Si
z(q) + Si

z(�q)
⇤
+m2 +

n2

4

�

sums over supercell sites!

�S(q; 0) =
1

2
(gµB)

2 �0(q; 0)

[1� U�0(q; 0)]
,

�0(q; 0) = � 1

Nk

X

k

nk+q � nk

"k+q � "k

�0(0; 0) = 2 (gµB)
�2 �P (0) ⇠ 1

2
⇢("F )



Stoner instabilities with finite q 

d=1

 
 X  

  M 0

 2

 4
0(q;0)

d=2

 
 X  

  M 0

 2

 4
d=3

 
 X  

  M 0

 2

 4

2-dimensional case: M point!

"k = �2t[cos(k
x

a) + cos(k
y

a) + cos(k
z

a)]

finite temperature ~ 350 K



two-dimensional case



perfect nesting

�0(Qi; 0) /
1

4

Z "F=0

�1
d"⇢(")

1

"
! 1.

2-dimensional case: Q2=M point

"k+Q2 = �"k + 8t0 cos(k
x

a) cos(k
y

a)

"k+Qi = �"k

however, finite T: Q2 singularity most important one 
2-dimensional case: divergence also at Γ point 

what about t′  ?



two-dimensional case

r50.2

r0(q;0)
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 X  

  M 0

 2

 4
r50.4
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 X  

  M 0

 2

 4

r ⇠ t0/t

"k = �2t[cos(k
x

a) + cos(k
y

a)] + 4t0 cos(k
x

a) cos(k
y

a)



remarks

• in general several instabilities possible (different q)

• which one dominates: check finite temperature susceptibility!

• instabilities possible at any doping

• q can also be incommensurate with lattice
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  M 0
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 4
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non-interacting magnetic ions



magnetization
non interacting ions

uniform magnetic field hz, Zeeman term

derivative with respect to hz

Mz = hM i
zi = �gµB

Tr [e�gµBhz�S
i
zSi

z]

Tr [e�gµBhz�Si
z ]

= gµBS tanh (gµBhz�S)

@Mz

@hz
= (gµBS)

2 1

kBT

⇥
1� tanh2 (gµBhz�S)

⇤



Curie susceptibility

�zz(0; 0) = (gµBS)
2 1

kBT
=

C1/2

T

C1/2 =
(gµB)

2 S(S + 1)

3kB

Curie constant



generalization
J=S+L

j=|s-l|,...|s+l|

ground state:third Hund’s rule

gJ =
hJJzLS|(gS +L) · J |JJzLSi

hJJzLS|J · J |JJzLSi

⇠ 3

2
+

S(S + 1)� L(L+ 1)

2J(J + 1)

Mz = hM i
zi = gJµBJ BJ (gJµBhz�J)

BJ(x) =
2J + 1

2J

coth

✓
2J + 1

2J

x

◆
� 1

2J

coth

✓
1

2J

x

◆

Brillouin function

M = �gJµBJ



transition-metal ions

Ion n S L J 2S+1LJ

V

4+
Ti

3+
3d1 1/2 2 3/2

2D3/2

V

3+
3d2 1 3 2

2F2

Cr

3+
V

2+
3d3 3/2 3 3/2

4F3/2

Mn

3+
Cr

2+
3d4 2 2 0

5D0

Fe

3+
Mn

2+
3d5 5/2 0 5/2

6S5/2

Fe

2+
3d6 2 2 4

5D4

Co

2+
3d7 3/2 3 9/2

4F9/2

Ni

2+
3d8 1 3 4

3F4

Cu

2+
3d9 1/2 2 5/2

2D5/2

J=S



lanthanides

Ion n S L J 2S+1LJ gJ

Ce3+ 4f1 1/2 3 5/2 2F5/2 6/7
Pr3+ 4f2 1 5 4 3H4 4/5
Nd3+ 4f3 3/2 6 9/2 4I9/2 8/11
Pm3+ 4f4 2 6 4 5I4 3/5
Sm3+ 4f5 5/2 5 5/2 6H5/2 2/7
Eu3+ 4f6 3 3 0 7F0 0
Gd3+ 4f7 7/2 0 7/2 8S7/2 2
Tb3+ 4f8 3 3 6 7F6 3/2
Dy3+ 4f9 5/2 5 15/2 6H15/2 4/3
Ho3+ 4f10 2 6 8 5I8 5/4
Er3+ 4f11 3/2 6 15/2 4I15/2 6/5
Tm3+ 4f12 1 5 6 3H6 7/6
Yb3+ 4f13 1/2 3 7/2 2F7/2 8/7



generalization 

Mz ⇠ gJµBJ ⌘ M0

CJ =
(gJµB)2J(J + 1)

3kB

�zz(0; 0) ⇠

8
<

:

0 kBT/|M0|hz ! 0
CJ/T |M0|hz/kBT ! 0
CJ/T hz ! 0

Curie susceptibility



magnetization
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correlation function

paramagnet

uncorrelated spins

Si,i0 = h(Si � hSii) · (Si0 � hSi0i)i = hSi · Si0i � hSii · hSi0i

Si,i0 = hSi · Si0i ⇠
⇢

hSii · hSi0i ⇠ 0 i 6= i0

hSi · Sii = 3/4 i = i0



paramagnet vs disordered system

different from

paramagnet

spin disorder

Curie susceptibility

e.g. spin glass behavior

Si,i0 = hSi · Si0i ⇠
⇢

hSii · hSi0i ⇠ 0 i 6= i0

hSi · Sii = 3/4 i = i0

X

i0 6=i

hSi
z · Si0

z i ⇠ 0



fluctuation-dissipation theorem

local susceptibility

(at high-temperature)

�zz(q; 0) ⇠ (gµB)2

kBT

X

i0

Si,i0

zz eiq·(Ri�Ri0 ) = �i
zz(T )

=
M2

0

kBT
=

C1/2

T

�zz(0; 0) = lim
hz!0

@Mz

@hz
= �i

zz(T )



spin as emergent entity

�zz(0; 0) ⇠ (gµB)2

kBT

8
<

:
Tr

h
e��(Hi�µNi)

�
Si
z

�2i

Tr
⇥
e��(Hi�µNi)

⇤ �
"
Tr

⇥
e��(Hi�µNi) Si

z

⇤

Tr
⇥
e��(Hi�µNi)

⇤
#2

9
=

;

=
C1/2

T

e�U/2

1 + e�U/2

one-site Hubbard model

infinite U limit: the spin S=1/2

only S=1/2 part of Hilbert space remains

U = E(Ni + 1) + E(Ni � 1)� 2E(Ni)



Van Vleck paramagnetism

MVV
z = 2hzµ

2
B

X

I

|h0|(Lz + gSz)|Ii|2

EI � E0

relevant if J=0

J=0: non degenerate state, linear correction (Zeeman) is zero

second order correction (i.e., beyond Zeeman)



Larmor diamagnetism

M

L
z = �1

4
hzh0|

X

i

(x2
i + y

2
i )|0i

diamagnetic contribution, same order of Van Vleck term



interacting local moments

mean-field approach

H =
1

2
�
X

ii0


Si · Si0 �

1

4
nini0

�

H = gµB

X

i

[Si · (h+ hm
i ) + const]

hm
i = nhii0i� hSi0i/gµB



antiferromagnetic case

bipartite lattice

sublattice A and sublattice B

& Zeeman term

(
MA

z /M0 = B1/2

⇥
M0(hz +�hA

z )�
⇤

MB
z /M0 = B1/2

⇥
M0(hz +�hB

z )�
⇤

⇢
�hA

z = �(MB
z /M0)S2�nhii0i/M0

�hB
z = �(MA

z /M0)S2�nhii0i/M0



self-consistent equation
order parameter 

TN: Neel temperature

�m = (MB
z �MA

z )/2M0 = B1/2

⇥
�mS2�nhii0i�

⇤

�m = B1/2


TN

T
�m

�

 0

 1

 0  0.5  1  1.5  2

m
m

x 

T>TN T=TN

T<TN



around TN

T

TN
=

�m

B�1
1/2 [�m]

�m

B�1
1/2(�m)

⇠ �m

�m + �3
m/3 + . . .

⇠ 1� �2
m/3 + . . .

�m =
p
3

✓
1� T

TN

◆1/2

order parameter small



uniform response function

Curie-Weiss high-temperature behavior

�zz(0; 0) =
C1/2(1� �2

m)

T + (1� �2
m)TN

�zz(0; 0) ⇠
C1/2

T + TN

no divergence!

T-TN TC

FMPMAFMC1/2

�zz(0; 0)



finite q

hM ji
z i = ��mM0 cos(q ·Rj) = �gµB m cos(q ·Rj)

kBTq =
S(S + 1)

3
�q, �q = �

X

ij 6=0

� 00,ijeiq·(Ti+Rj)

�zz(q; 0) =
C1/2(1� �2

m)

T � (1� �2
m)Tq

divergence at critical temperature

relation between critical temperature and couplings



correlation length

⇠ / [TQ/(T � TQ)]1/2

�00,ji
zz / e�r/⇠/r

diverges at critical temperature TQ!

fluctuation-dissipation theorem + Fourier transform

q=Q instability



effective magnetic moment

C1/2 ! Ce↵ = µ2
e↵/3kB

generalization to materials

effective moment

depends on: Hund’s rules, crystal field etc..

very large temperature limit

3kBT�zz(q; 0) ! µe↵



local moment regime and HF

HU = U
X

i

ni"ni# ! HHF
U

HHF
U = U

X

i

[ni"hni#i+ hni"ini# � hni"ihni#i] .

hni�i = n� =
n

2
+ �m

HHF
U = U

X

i


�2mSi

z +m2 +
n2

4

�



local moment regime and HF

Bloch function

spin scattering function

 k�(r) =
1p
Ns

X

i

eik·Ti  i�(r)

paramagnetic & ferromagnetic case

Sz(k,k
0) =

1

Ns

X

i

ei(k�k0)·Ti
1

2

X

�

�c†i�ci�

Siz



ferromagnetic case
Hartree-Fock Hamiltonian and bands
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diagonal in k



Hartree-Fock bands

very large mU case, half filling

spin down band empty, m=1/2

total energy

EF =
1

Nk

X

k

["k� � µ] =
1

Nk

X

k


"k � 1

2
U

�
= �1

2
U

no t2/U term!



antiferromagnetic case

HHF
U =

X

i2A


�2mSi

z +m2 +
n2

4

�
+

X

i2B


+2mSi

z +m2 +
n2

4

�

two sublattices with opposite magnetization +m and -m

 k�(r) =
1p
2

⇥
 A
k�(r) +  B

k�(r)
⇤

 ↵
k�(r) =

1p
Ns↵

X

i↵

eiT
↵
i ·k  i↵�(r)

Bloch function

original lattice two sublattices A and B

Bloch functions



two-dimensional case

Γ=(0,0)

X

Y

M

Q2=(π,π)

M=(π/a,π/a)

X=(π/a,0)

Y=(0,π/a)
(a,a)

(0,0)

(a,0)

(0,a)



antiferromagnetic case

H =
X

k

X

�

"knk� +
X

k

X

�

"k+Q2nk+Q2�

+ U
X

k


�2m Sz(k,k +Q2) + 2m2 + 2

n2

4

�

scattering function couples k and k+Q2

"k± � µ =
1

2
("k + "k+Q2)±

1

2

q
("k � "k+Q2)

2 + 4(mU)2

HF bands



antiferromagnetic case
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HF bands

gap: mU



antiferromagnetic case
very large U case
half-filling, m=1/2

"k� � µ ⇠ �1

2
U � "2k

U
= �1

2
U � 4t2

U
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U � 4t2

U

total energy



energy difference

�EHF = EHF
"" � EHF

"# =
2

nhii0i
[EF � EAF] ⇠

1

2

4t2

U
⇠ 1

2
�

�E = ES=1 � ES=0 = �

in this example for this quantity we obtain 
the same result as in exact solution!

however, this is not the triplet-singlet splitting



Hartree-Fock problems

HF does not give correct spin excitation spectrum

gap in single HF calculation ~U

Slater vs Mott insulator

insulator with much smaller U than exact solution

NB. HF is used in the LDA+U approach



the Kondo effect



the Kondo effect
diluted magnetic alloys: metal+magnetic impurities

minimum in resistivity

high-temperature: impurity local moments, Curie susceptibility

low temperature: effective magnetic moment disappears
(Fermi-liquid susceptibility)

Au+Fe impurities

characteristic temperature: Kondo temperature TK



Anderson model

canonical transformation (Schrieffer-Wolff) to Kondo model

HA =
X

�

X

k

"knk� +
X

�

"fnf� + Unf"nf#

+
X

�

X

k

h
Vkc

†
k�cf� + h.c.

i

HK =
X

�

X

k

"knk� + �Sf · sc(0) = H0 +H�

� ⇠ �2|VkF |2

1

"f
� 1

"f + U

�
> 0

antiferromagnetic coupling

metal impurity

hybridization

Kondo regime: nf ~1



susceptibility
high-temperature impurity susceptibility

Kondo temperature

�f
zz(T ) ⇠

(gµB)2Sf (Sf + 1)

3kBT

⇢
1� 1

ln (T/TK)

�

kBTK ⇠ De�2/⇢("F )�

�f
zz(T ) ⇠

C1/2

WTK

�
1� ↵T 2 + . . .

 
Fermi liquid!

low-temperature impurity susceptibility

µ2
e↵(T ) ⌘ 3kBT�

f
zz(T ) / hSf

z S
f
z i+ hSf

z s
c
zi

magnetic moment screened, S=0



poor’s man scaling

-D

D
D'

-D'

eliminate high-energy states, i.e., the states with
•at least one electron in high-energy region
•at least one hole in high-energy region

•one electron •one hole •low-energy state



downfolding

electron contribution

electron case: projectors

PH ⇠
X

�

X

q

c†q�|FSihFS|cq�

PL ⇠
X

�

X

k

c†k�|FSihFS|ck�

high-energy sector

low-energy sector

�H
(2)
L = �1

2
� 2

X

q

1

! � "q
Sf · sc(0) + . . .

⇠ 1

4
⇢("F )�

2 �D

D
Sf · sc(0) + . . .

�H
(2)
L ⇠ PLH�PH(! � PHH0PH)�1PHH�PL

effect of downfolding high sector at second order



scaling equations

thus the Kondo Hamiltonian is modified as follows

� ! � 0 = � + ��,

��

� lnD
=

1

2
⇢("F )�

2

� 0 =
�

1 + 1
2⇢("F )� ln D0

D

.

scaling equations



scaling equations

� ! � 0 = � + ��,

��

� lnD
=

1

2
⇢("F )�

2

∞

antiferromagnetic coupling

strong coupling

ferromagnetic coupling 

weak coupling
0

∞∞



strong coupling case

one electron screens local moment

starting point for perturbation theory

effective repulsive on-site Coulomb interaction

Nozières Fermi liquid

spin zero system!

nearby electrons polarize moment via virtual excitations



weak coupling case

asymptotic freedom

non-interacting local moment

Curie susceptibility

magnetic interaction as perturbation



scaling: two-channel case

Coulomb exchange: FM

kinetic exchange: AFM
conduction band A

conduction band B

situation realized in some Ce and Yb alloys

Kondo or Curie?



scaling: two-channel case

FM

AFM
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The competition between local exchange and hybridization in Kondo systems is investigated
by studying a model in which a localized spin 1y2 has an exchange interaction with two
bands with a ferromagnetic coupling Jsf . 0 and an antiferromagnetic coupling Jhyb , 0, respec-
tively. It is shown that a Kondo effect takes place even for large values of the ratio jJsfyJhyb j.
The results should be applicable to real systems when orbital degeneracy is taken into ac-
count, and indicate that the Kondo effect can occur even in the presence of a strong local ex-
change. Consequences on the picture of the competition between the two effects are discussed.
[S0031-9007(96)01202-1]

PACS numbers: 71.28.+d, 75.20.Hr, 75.30.Mb

The magnetic interaction in normal rare-earth com-
pounds originates from local exchange between the f
shell and conduction electrons through the Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism. In anoma-
lous rare-earth compounds (Kondo systems and heavy
fermions) the electronic hybridization between f and
band electrons gives rise to the Kondo effect and tends
to produce the nonmagnetic heavy Fermi liquid ground
state [1].
The observation of Kondo-like phenomena suggests

that hybridization dominates over local exchange; this is
usually taken for granted in the study of Kondo systems,
and, in fact, local exchange is neglected in the commonly
adopted Anderson model. However, electronic structure
calculations suggest that in several Ce compounds (like
CeTe, CeSe, CeAg) the magnetic interaction is deter-
mined essentially by local exchange, rather than by the
hybridization-induced pair coupling: in fact, the magnetic
ordering temperature calculated by keeping hybridization
only is an order of magnitude smaller than the experi-
mental value [2,3], while agreement with experiment is
obtained when local exchange is accounted for [2].
This behavior cannot be understood within a simple

spin 1y2 one-band model. In such a model the local ex-
change coupling Jsf [which is usually ferromagnetic (FM),
Jsf . 0] competes with the antiferromagnetic (AFM) cou-
pling Jhyb , 0 generated from hybridization through the
Schrieffer-Wolff transformation [4]: the relevant coupling
is Jsf 1 Jhyb , so that the Kondo effect occurs only when
jJhybj . Jsf [5]. However, more subtle effects can take
place in the presence of orbital degeneracy. Under the
usual assumption that hybridization is spherically symmet-
ric and local exchange is a spin-only interaction, hybridiza-
tion couples the f shell with conduction electrons in a
partial wave l ≠ 3 around the impurity site [6], while local
exchange couples the f shell to band electrons in a l ≠ 0
state. Thus the Kondo and local exchange interactions in-
volve two different conduction electron channels.

In this Letter we model this situation by studying
a two-band (or two-channel) Hamiltonian in which a
localized spin 1y2 interacts with two distinct bands,
with a FM coupling Jsf . 0 and an AFM coupling
Jhyb , 0, respectively. Since a FM coupling is known
to scale to weak coupling for the one-band model at
low temperatures, while AFM coupling scales always to
strong coupling, it can be expected that the Kondo effect
persists even when the ratio jJsfyJhybj is large. This is
shown explicitly in this paper, and leads to a picture of the
competition between Kondo effect and magnetic ordering
which is quite different from the commonly assumed one.
The model Hamiltonian is

H ≠
X

ns

encynscns 1
X

qs

eqcy
qscqs

2 Jsf $sFs0d ? $Sf 2 Jhyb $sAFs0d ? $Sf , (1)

where en seqd is the energy of an FM-band (AF-band)
conduction electron with wave vector $n s $qd. The FM-
band (AF-band) cutoff is BF (BAF). The exchange
interaction between the localized spin $Sf and the FM-
band (AF-band) spin density at the impurity site, $sFs0d
[$sAFs0d], is FM [AFM] with a coupling constant Jsf . 0
[Jhyb , 0].
We adopt the nonperturbative method developed by

Yoshimori and Yosida [7] for the one-band Kondo model,
in which the ground-state wave function is expanded in
a many-body basis with electron-hole excitations [see
Fig. 1(a)] and Stot ≠ 0. An integral equation for the
lowest-order expansion coefficient (dq) is derived by a re-
summation to infinite order in Jhyb , keeping only the (log-
arithmically) most divergent terms. The equation can be
solved analytically, and its solution describes the forma-
tion of a many-body singlet ground state. The nonpertur-
bative energy gain is defined to be the Kondo temperature
and is given by T0

K ≠ BAF exps1yrJhybd, where r is the

2762 0031-9007y96y77(13)y2762(4)$10.00 © 1996 The American Physical Society



conclusion

• emergence of spin • emergence of long-range order

• local moment regime
   Curie and Curie-Weiss susceptibility
   Heisenberg model

d=1

 
 X  

  M 0

 2

 4
0(q;0)

d=2

 
 X  

  M 0

 2

 4
d=3

 
 X  

  M 0

 2

 4

• itinerant regime
   Pauli susceptibility
   Stoner instabilities

in strongly correlated system both local and delocalized features present
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