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 Quantum lattice models: Models for strongly correlated quantum many-body systems

Quantum lattice models

 Ubiquitous in condensed-matter context and for cold atoms in optical lattices



 Manifesto :) of lecture

Many natural quantum lattice models have ground states that are little, in 
fact very little, entangled in a precise sense. This shows that `nature is 
lurking in some small corner of Hilbert space', one that can be essentially 
efficiently parametrized. This basic yet fundamental insight allows for a 
plethora of new methods for the numerical simulation of quantum lattice 
models using tensor network states, as well as a novel toolbox to 
analytically study such systems

 This lecture: Find out what that means

 Is "double" with subsequent lecture by Uli Schollwoeck

 On slides, will avoid all references (sincere apologies!): For script and references, see
   

  http://arxiv.org/abs/1308.3318

Manifesto of lecture



Correlations in quantum many-body systems



 Quantum lattice models: Some lattice                      , with quantum degree of freedom 
  per vertex: Bosonic, fermionic, spin degree of freedom

G = (V,E)

Quantum lattice models



Quantum lattice models

 Distance in lattice: dist(A,B)

A

B

 Quantum lattice models: Some lattice                      , with quantum degree of freedom 
  per vertex: Bosonic, fermionic, spin degree of freedom

G = (V,E)



 Local Hamiltonian                      , with each     supported only on finite neighboring

   sites, reflecting finite-ranged interactions

Local Hamiltonians

H =
X

j2V

hj hj

hj



Local Hamiltonians

 Example: XY model
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Z(j),

 Pauli operators on site    called X(j), Y (j), Z(j)j

 External field    , anisotropy parameter    : Easily exactly solvable in 1d� �



Ground states and spectral gaps

�E = inf
| i2H\G

h |H| i � E0

 Ground space     spanned by vectors minimising h |H| iG

 Spectral gap:

 One-dimensional: Unique, otherwise degenerate

E0

�E



Clustering of correlations in gapped models

A

B

 In fact, they decay, "cluster", exponentially fast

 For

   where

  Here,                         , is the correlation length

�E > 0

|hOAOBi � hOAihOBi|  Ce�dist(A,B)�E/(2v)kOAk kOBk

C, v > 0

⇠ :=
2v

�E
> 0

 Gapped models have short-ranged correlations



Entanglement entropies

 Gapless models have algebraically decaying correlations (conformal field theory)

 Locality of interactions inherited by something much stronger?

  Yes, by entanglement qualifiers!



Entanglement



A

 Think of some region     of sites, and consider reduced state

   where                   is complement of region  

A ⇢A = trB(⇢)

B = V \A
 All local expectation values in    can be computed using      onlyA ⇢A

Entanglement entropies

 Assume the entire system is in pure state

 In general,       will be a mixed state, even if     is pure!⇢A ⇢



Entanglement entropies

 Entropy of       ,                                            will be non-vanishing, even if 

A

⇢A S(⇢A) = �tr(⇢A log ⇢A) S(⇢) = 0

 Can be computed from eigenvalues of reduced state as S(⇢A) = �
X

k

�k log �k

 How does the (von-Neumann)-entropy scale with the size of      ?

 Like its volume, as an extensive quantity?

A

 Reflects entanglement of     with respect to complement: "Unique" measure of 
   entanglement for pure states

A



Area laws for the entanglement entropy

A @A

 Nope: Entanglement entropies of gapped models generalically scale like the
  boundary area of the region 

S(⇢A) = O(|@A|)

 Entanglement is boundary effect: Much (!) less entanglement than there could be



Area laws for the entanglement entropy

 Nope: Entanglement entropies of gapped models generalically scale like the
  boundary area of the region 

S(⇢A) = O(|@A|)

 Entanglement is boundary effect: Much (!) less entanglement than there could be

 Proven instances of area laws

 1d gapped models 

 Gapped free bosonic and fermionic models in any dimension

 For graph states, projected entangled pair states, matrix-product states, see later

 Any Hamiltonian that is in the same gapped phase as a free model

 Evidence that gapped models satisfy area laws



Violation of area laws

 Critical models in 1d are known to violate area laws, but only logarithmically

S(⇢A) = ⇥(log(|A|))

 Conformal field theory, conformal charge   , suggests S(⇢A) = (c/3) log(l/a) + Cc

 Critical higher-dimensional free models: scaling is different for bosons and fermions: 
  Bosons satisfy an area law, while fermions violate it

S(⇢A) = ⇥(LD�1
logL)



Lesson

 Possible entanglement

 Actual entanglement



Other measures of entanglement

 Replace for pure states von-Neumann entropy by Renyi entropies, ↵ > 0

 For mixed states such as thermal states, use mutual information or negativity

 Entanglement spectra heavily studied (but not here :) )

S↵(⇢A) =
1

1� ↵
log2 tr(⇢

↵
A)



Hilbert space is a fiction!

 Hilbert space dimension of spin models: dim(H) = O(dn)

 Tiny subset occupied by natural states 
   of local Hamiltonian models

 Not even a quantum computer could
   prepare a large set of states

 Hilbert space is a fiction: We only need to 
   capture natural states: Tensor network states



Tensors and graphical notation



Tensors and graphical notation

 Tensor: Multi-dimensional array of complex numbers

 Dimensionality of array is order of tensor

 Extensive use of graphical notation: Tensors are boxes, order: number of edges



 This is how a scalar looks like

Tensors and graphical notation



 Vectors and dual vectors

Tensors and graphical notation



 Matrices

 Contraction of edge: Summation

 E.g. matrix product C↵,� =
NX

�=1

A↵,�B�,�

Tensors and graphical notation



 Trace

 Partial trace

 Scalar product

 An uncontracted index is open index

Tensors and graphical notation



 Contraction of a tensor network: Contraction of all edges not open

Tensors and graphical notation



Matrix-product states



 Arbitrary state vector

Arbitrary state vectors

| i 2 (Cd)⌦n

  graphically

  "Physical edges"

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni



 Matrix-product state (MPS) vector of "bond dimension" 

Matrix-product states

  graphically

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

)

  where

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni

D



 Matrix-product state (MPS) vector of "bond dimension" 

Matrix-product states

  graphically

cj1,...,jn =
DX

↵,�,...,!=1

A(1)
↵,�;j1

A(2)
�,�;i2

. . . A(n)
!,↵;jn

= tr(A(1)
j1

A(2)
j2

. . . A(n)
jn

)

  where

| i =
dX

j1,...,jn=1

cj1,...,jn |j1, . . . , jni

D

 Each tensor



Bond dimensions

 What is     ? A refinement parameterD

 How many parameters for arbitrary pure state?

O(dn)

 How many parameters for MPS?

O(ndD2)

 Linear in    , not exponential!n

 The larger     , the larger the set of states that can be representedD

 Gutzwiller mean field            , all states can be represented for exponentially largeD = 1 D



Area laws and approximations with area laws

 Ground states of local Hamiltonians

 MPS with bond dimension 2, 3, 4, ...



Area laws and approximations with area laws

 Easy to see: For each subset     of consecutive sites, A

S(⇢A) = O(log(D))

 MPS satisfy area laws

 But the converse is also true!

 1d states satisfying area laws can be well approximated by MPS

 Fine print: If for a family of state vectors         there exist constants   
such that for all                   the Renyi entropies of the reduced state of any 
subsystem     of the one-dimensional system satisfy

then it can be efficiently approximated by an MPS (the bond dimension will 
have to grow polynomially with   , the system size, and        , where 
is the approximation error)

| ni c, C > 0
0 < ↵ < 1

A

S↵(⇢A)  c log(n) + C

n 1/✏ ✏ > 0



Projected entangled pair state (PEPS) picture of MPS

 Start from maximally entangled states in 'virtual space' |!i =
DX

j=1

|j, ji

P (j) =
dX

k=1

DX

↵,�=1

A(j)
↵,�;k|kih↵,�|

| i = (P (1) ⌦ · · ·⌦ P (n))|!i⌦(n�1)

P (j�1)
P (j�2)

 Generates MPS

 Two more ways of generating MPS: Sequential generation and successive SVD



Translationally invariant MPS

 Take for periodic boundary conditions A
(j)
↵,�;k = A↵,�;k

 Make a lot of sense in analytical considerations, specifically in thermodynamic limit

 Numerically, advisable to break symmetry, see Uli's lecture



Computation of expectation values



Computation of expectation values

 We want to compute               for local observables    h |O| i O

 Reasons to get worried: Fact that MPS is described by poly many parameters alone 
   does not mean that we can efficiently compute it (permanents in #P)

 In fact: In a naive way, we need exponentially many steps

 But we can do better!



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

L↵,� :=
dX

j=1

A(1)
↵;jĀ

(1)
�;j

 Left boundary



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

(E(k)
I )↵,�;�,� =

dX

j=1

A(k)
↵,�;jĀ

(k)
�,�;j

 Transfer operator



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

R↵,� =
dX

j=1

A(n)
↵;jĀ

(n)
�;j

 Right boundary



Computation of expectation values

 Assume     is only supported on sites    andO l l + 1

 Graphically

 Can be efficiently computed!

 There are yet smarter ways, see Uli's lecture



Decay of correlations

 Stick for simplicity to infinite translationally invariant MPS

EI =
dX

j=1

(Aj ⌦ Āj)

EOA =
dX

j,k=1

hk|OA|ji(Aj ⌦ Āk)

hOAOBi =
tr(EOAE

dist(A,B)�1
I E

n�dist(A,B)�1
I )

tr(En
I )

 Transfer operator                                 , graphically

  and                                                      , graphically

 Correlation function



Decay of correlations

 Interested in 

Ek
I = |r1ihl1|+

D2X

j=2

�k
j |rjihlj |

n ! 1

hOAOBi = hl1|EOAE
dist(A,B)�1
I EOB |r1i

hOAOBi = hl1|EOA |r1ihl1|EOB |l1i+
D2X

j=2

�
dist(A,B)�1
j hl1|EOA |rjihlj |EOB |l1i

hOAihOBi

|hOAOBi � hOAihOBi|

 Find                                                  , so

   becomes

   =

 So                                        decays exponentially in the distance and correlation 
  length is given by  ratio of the second largest     to the largest            (taken to 
  be unity) eigenvalue of      ,

�2 �1 = 1
EI

⇠�1
= � log |�2|



Placeholder

 Powerful numerical techniques, matrix-product operators, time-evolution: 

  See next lecture



Matrix-product states as ground states



Exact MPS ground states

 Are there any Hamiltonians models that have exact MPS ground states?

hj

 Take physical dimension           , a spin-1 model, and bond dimension  d = 3 D = 2

 Now                     , then hj = ⇧S=2 hj | i = 0

 In the PEPS picture take                                   , where           is projection onto
   the spin-1 subspace of two sites

 Surely gives rise to valid MPS

P = ⇧S=1(I⌦ iY ) ⇧S=1

P P

S = 0

| i

Reduced state
orthogonal to S=2



Exact MPS ground states

 But all      are positive, so  

hj

 Now                     , then hj = ⇧S=2 hj | i = 0

P P

hj h |H| i = h |
X

j

hj | i � 0

 That is,       must be a ground state vector!| i



Exact MPS ground states

 But all      are positive, so  

hj

hj h |H| i = h |
X

j

hj | i � 0

 That is,       must be a ground state vector!

 Famous AKLT-model (Affleck, Kennedy, Lieb, Tasaki)

| i

hj =
1

2
S(j) · S(j+1) +

1

6
(S(j) · S(j+1))2 +

1

3

 Resembles Spin-1 Heisenberg model



Gauge freedom in MPS

 An MPS is uniquely defined by the matrices defining it, but the converse is not true

  
  for every

A(k)
jk

A(k+1)
jk+1

= A(k)
jk

XX�1A(k+1)
jk+1

X 2 Gl(D,C)

 Hence, can pick a suitable gauge in which matrices take simple form

   where each                         for                               is diagonal, positive, has full rank
   and unit trace 

X

j

A(k)
j (A(k)

j )† = I

⇤(0) = ⇤(n) = 1

X

j

(A(k)
j )†⇤(k�1)A(k)

j = ⇤(k)

⇤(k) 2 CD⇥D k = 1, . . . , n� 1



Applications in quantum information theory 
and quantum state tomography



Matrix-product states in metrology

 Matrix-product states can be used in metrology, say, the GHZ-state

  is MPS with             and                      and

| i = (|0, . . . , 0i+ |1, . . . , 1i)/
p
2

D = 2 A1 = |0ih0| A2 = |1ih1|

 Other MPS are better suited under noise



MPS in measurement-based quantum computing

 Quantum computing based on measurements only



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Start from

|+i |+i |+i |+i |+i |+i |+i |+i |+i
|+i = (|0i+ |1i)/

p
2



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Start from

 Apply phase gates to neighbors

|j, ki 7! |j, ki(�1)�j,1�k,1



MPS in measurement-based quantum computing

 One-dimensional cluster states

 Is MPS - and this picture explains how the principle works!



 Measure unknown quantum state of single spin

 Requires 3 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 3 spins

 Requires 63 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 8 spins

 Requires 65535 measurement settings

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



 Measure unknown quantum state of 20 spins

 Requires 1099511627775 measurement settings

 Use matrix-product states (or compressed sensing)

MPS in quantum state tomography

Data
Tomographic 
knowledgeExperiment



Higher-dimensional tensor network states



PEPS in higher dimensions

 For a cubic lattice                for V = LD D = 2

A(k)
↵,�,�,�;j k 2 V

↵,�, �, � = 1, . . . , D

j = 1, . . . , d All tensors                  can be taken differently per site           ,  

  and



PEPS in higher dimensions

 PEPS construction

P (k) =
DX

↵,�,�,�=1

dX

j=1

A(k)
↵,�,�,�;j |jih↵,�, �, �|



Properties of PEPS

 PEPS satisfy an area law: The entanglement entropy is bounded from above by
                       for
   
 Again, if the bond dimension is large enough one can write every state as a PEPS

 Again, one can again have exponentially clustering correlations

 Interestingly, as a difference to MPS, one can construct PEPS that have algebraically
  decaying correlations in 

O(L logD) D = 2

dist(A,B)



PEPS contraction

 Transfer operator 

 Tricky: Can only approximately contract, not exactly!

 Exact contraction is in #P



Exact PEPS

 Cluster states in measurement-based computing

 Toric code Hamiltonian defined on edges (!) of a cubic lattice

    
   where           and            are the star and plaquette operators, defined as

H = �Ja
X

s

As � Jb
X

p

Bp

{As} {Bp}

As =
Y

j2s

X(j)

Bp =
Y

j2p

Z(j)



More general tensor networks

 Checklist

the tensor network should be described by polynomially many parameters,

it should be efficiently contractible, either exactly or approximately, and

the corresponding class of quantum states should be able to grasp the 
natural entanglement or correlation structure



Trees

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T



Trees

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T

Isometries

I : Cdj⌦dj ! Cdj+1



Multi-scale entanglement renormalisation

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T



Multi-scale entanglement renormalisation

 Take                , and think of "temporal" layersn = 2T t = 1, . . . , T

Disentanglers

U 2 U(d2j )



Multi-scale entanglement renormalisation

 Causal cone leads to efficient contraction



Multi-scale entanglement renormalisation

 This idea works in any dimension

 It also works for fermions

 Nice connection to AdS-cft

 Can be proven to be efficiently contractible PEPS



Lessons



Lessons

 Exciting field of research!

 Good for numerical and analytical studies

 For two dimensions, full potential is yet to be explored

Many natural quantum lattice models have ground states that are little, in 
fact very little, entangled in a precise sense. This shows that `nature is 
lurking in some small corner of Hilbert space', one that can be essentially 
efficiently parametrized. This basic yet fundamental insight allows for a 
plethora of new methods for the numerical simulation of quantum lattice 
models using tensor network states, as well as a novel toolbox to 
analytically study such systems

 Again :)
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