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•  Imaginary time path integrals 
•  Path integrals for bosons 
•  Restricted path integral method for fermions 
•  Exchange of localized particles 
•  Examples: 

–  Liquid 4He and 3He: superfluids  
–  Solid 4He and 3He : supersolid & magnetic order 



Liquid helium 
the prototypic quantum fluid 

•  A helium atom is an elementary 
particle. A weakly interacting 
hard sphere. First electronic 
excitation is 230,000 K. 

•  Interatomic potential is known 
more accurately than any other 
atom because electronic 
excitations are so high.  

• Two isotopes:  
•  3He (fermion: antisymmetric trial function, spin 1/2)  
•  4He (boson: symmetric trial function, spin zero) 



Helium phase diagram 

• Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important 
• Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature. 
• One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian: 
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Imaginary Time Path Integrals 



The thermal density matrix 
 
•  Find exact many-body 

eigenstates of H. 
•  Probability of 

occupying state α is 
exp(-βEα) 

•  All equilibrium 
properties can be 
calculated in terms of 
thermal o-d density 
matrix  

•  Convolution theorem 
relates high 
temperature to lower 
temperature. 
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Notation 

•  Hamiltonian 

•  Total potential energy     

•  Kinetic energy  
 
 
•  Individual coordinate of a particle  ri 

•  All 3N coordinates   R= (r1,r2, …. rN)  

−λ ∇i
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PIMC Simulations 
•  We do Classical Monte Carlo simulations to evaluate 

averages such as: 

•  Quantum mechanically for T>0, we need both to 
generate the distribution and do the average: 

•  Simulation is possible since the density matrix is 
positive. 
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Trotter’s formula (1959) 
•  We can use the effects of operators  
separately as long as we take small  
enough time steps. 
 
•  n is number of time slices. 
•  τ  is the “time-step” 

•  We now have to evaluate the density matrix for potential and 
kinetic matrices by themselves: 

•  Do by FT’s 

•  V is “diagonal” 

•  Error at finite n comes from commutator  
  

ρ̂ = e−β (T
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•  We sample the distribution: 

 
Where the “primitive” link action is: 

•  Similar to a classical integrand where each particle 
turns into a “polymer.”  
–  K.E. is spring term holding polymer together. 
–  P.E. is inter-polymer potential. 

•  Trace implies R1=Rm+1  ð closed or ring polymers 
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Using this for the density matrix. 



“Distinguishable” particles 
•  Each atom is a ring 

polymer; an exact 
representation of a 
quantum wavepacket 
in imaginary time. 

•  Trace picture of 2D 
helium.  The dots 
represent the “start” 
of the path. (but all 
points are equivalent) 

•  The lower the real 
temperature, the 
longer the “string” 
and the more spread 
out the wavepacket. 

 
 



Main Numerical Issues of PIMC 
•  How to choose the action. We don’t have to use the 

primitive form.  Higher order forms cut down on the 
number of slices by a factor of 10. We can solve the 
2-body problem exactly.  

•  How to sample the paths and the permutations. 
Single slice moves are too slow.  We move several 
slices at once. Permutation moves are made by 
exchanging 2 or more endpoints. 

•  How to calculate properties.  There are often several 
ways of calculating properties such as the energy. 

If you use the simplest algorithm, your code will run 
100s or 1000s of times slower than necessary. 

Calculations of 1000 He atoms can be done on a 
laptop-- if you are patient. 

Details see: RMP 67, 279  1995. 



PIMC Sampling considerations 
•  Metropolis Monte Carlo that moves a 

single variable is too slow and will not 
generate permutations. 

•  We need to move many time slices 
together  

•  Key concept of sampling is how to 
sample a “bridge”: construct a path 
starting at R0 and ending at Rt.   

•  How do we sample Rt/2?  GUIDING 
RULE. Probability is: 

 
 
 

•  Do an entire path by recursion from 
this formula. 

•  Worm algorithms (sampling in space 
of open paths) can be more efficient. 
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How to sample a single slice. 
•  pdf of the midpoint of the 

bridge:(a pdf because it is 
positive, and integrates to 1) 

•  For free particles this is easy-
a Gaussian distribution 

PROVE: product of 2 Gaussians 
is a Gaussian. 

•  Interaction reduces P(R) in 
regions where spectator 
atoms are. 

•  Better is correlated sampling: 
we add a bias given by 
derivatives of the potential 
(for justification see RMP pg 
326) 

•  Sampling potential Us  is a 
smoothed version of the pair 
action. 
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Bisection method 
1. Select time slices 

0 

ß 

3. Sample midpoints 

4. Bisect again, until 
lowest level 

5. Accept or reject entire 
move 

2. Select permutation 
from possible pairs, 
triplets, from: 

( , ';4 )R PRρ τ

R’ 

R 



Improved Action 

• If we make better actions, we can drastically cut 
down on the number of time slices. 
• This saves lots of time, because the number of 
variables to integrate over is reduced  
• but also because the correlation time of the walk is 
reduced since “polymers” are less entangled 
• Possible approaches to better actions: 

– Harmonic approximation 
– Semi-classical approximation (WKB) 
– Cumulant approximation 
– Pair-product approximation 

• Improved actions are also used in lattice gauge 
theory: the “perfect action.” 



Calculating properties 
•  Procedure is simple: write down observable: 

•  Expand density matrix into a “path”: 

•  Density, density-density, …. the potential 
energy are diagonal operators.   Just take 
average values as you would classically. 

•  All time slices are the same – can use all for 
averages. 
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Calculation of Energy 
•  Thermodynamic estimator: differentiate partition function 

 

  

Problem: variance diverges as small time step. 
•  Virial Estimator: differentiate in “internal coordinates” 

  does not diverge at small time steps (Herman, Berne) 
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Quantum statistics 

•  For quantum many-body problems, not all states are allowed: allowed 
are totally symmetric or antisymmetric. Statistics are the origin of 
BEC, superfluidity, lambda transition. 

•  Use permutation operator to project out the correct states: 

 
 
 
 
 
 
•  Means the path closes on itself with a permutation. R1=PRM+1 
•  Too many permutations to sum over; we must sample them. 
•  PIMC task: sample path { R1,R2,…RM and P} with Metropolis Monte 

Carlo (MCMC) using “action”, S,  to accept/reject.   
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Exchange picture 
•  Average by 

sampling over all 
paths and over 
connections. 

•  Trial moves involve 
reconnecting paths 
differently. 

•  At the superfluid 
transition a 
“macroscopic” 
permutation 
appears. 

•  This is reflection of 
bose condensation 
within PIMC. 



Path Integral explanation of Boson 
superfluidity 

•  Exchange can occur when thermal wavelength is greater 
than interparticle spacing 

•  Localization in a solid or glass can prevent exchange. 
•  Macroscopic exchange (long permutation cycles) is the 

underlying phenomena leading to: 
–  Phase transition: bump in specific heat:  entropy of 

long cycles 
–  Superfluidity   winding paths 
–  Offdiagonal long range order--momentum 

condensation  separation of cut ends 
–  Absence of excitations (gaps) 

•  Some systems exhibit some but not all of these 
features. 

•  Helium is not the only superfluid. (2001 Nobel Prize for 
BEC) 

2 2/dk T h /mB ρ≤



ENERGY 
Bose statistics have a small 

effect  on the energy 
Below 1.5K  4He is in the 

ground state.  
             

SPECIFIC HEAT 
•  Characteristic λ  shape 

when permutations 
become macroscopic 

•  Finite size effects cause 
rounding above transition               

Kinetic term becomes smaller because  Ncycle<N.     Springs stretched more.  
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Superfluidity and PIMC 

•  We define superfluidity as a linear response to a velocity perturbation 
(the energy to rotate the system) Landau definition. 

•  To evaluate with Path Integrals, we use the Hamiltonian in rotating 
frame: 
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•  Distort annulus 

•  The area  becomes the winding  
 (average center of mass velocity) 

•  The superfluid density is now estimated as: 

•  Exact linear response formula. Analogous to relation between 
χ ~<M2> for the Ising model. 

•  Relates topological property of paths to dynamical response. 
Explains why superfluid is “protected.” 

•  Imaginary time dynamics is related to real time response. 
•  How the paths are connected is more important than static 

correlations.   

Winding numbers in  
periodic boundary conditions 
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Bose condensation 

•  BEC is the macroscopic occupation of a single quantum state 
(e.g. momentum distribution in the bulk liquid). 

•  The one particle density matrix  is defined in terms of open 
paths: 

•  We cannot calculate n(r,s) on the diagonal. We need one 
open path, which can then exchange with others.   

•  Condensate fraction is probability of the ends being widely 
separated versus localized. ODLRO (off-diagonal long range 
order) (The FT of a constant is a delta function.) 

•  The condensate fraction gives the linear response of the 
system to another superfluid. 
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Comparison with experiment 
Single particle density matrix  Condensate fraction 

Neutron scattering cross 
section 



“Direct” Fermion Path Integrals 
•  Path integrals map quantum mechanics into a system of cross-

linking closed “polymers.” 
 
 
 
R0=PRM,  P permutation, 
S(Ri, Ri+1) is “boltzmannon action”  
 
•  Bosons are easy: simply sample P. 
•  Fermions: sample the “action” and carry (-1)P   as a weight. 
•  Observable is even P - odd P.  scales exponentially in N and T-1! 
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Fermion variance 
•  Compute a fermion observable by sampling the boson 

probability and taking the sign as a weight 

•  The variance of O  for this choice can be separated into 
a bosonic and fermionic contribution. 

•  The fermion efficiency is 

•  Big problem once N becomes large OR temperature 
becomes low-precisely when fermi statistics matter. 

( )P( ) ( )
  ( ) 1  

( )
B

F
B

P O R
O P

P
σ

σ
σ

= = −

2

( ) ( ) B
F B

F

ZO O
Z

υ υ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2 2
2 ( )F BNF

B

Z M M e
Z M

β µ µξ − −+ −⎡ ⎤ −⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦



The Sign Problem 
The expression for Fermi particles, such as He3, is also easily written down. 
However, in the case of liquid He3, the effect of the potential is very hard to evaluate 
quantitatively in an accurate manner.  The reason for this is that the contribution of a 
cycle to the sum over permutations is either positive or negative depending on 
whether the cycle has an odd or even number of atoms in its length L. At very low 
temperature, the contributions of cycles such as L=51 and L=52 are very nearly 
equal but opposite in sign, and therefore they very nearly cancel.  It is necessary to 
compute the difference between such terms, and this requires very careful 
calculation of each term separately.  It is very difficult to sum an alternating series of 
large terms which are decreasing slowly in magnitude when a precise analytic 
formula for each term is not available. Progress could be made in this problem if it 
were possible to arrange the mathematics describing a Fermi system in a way that 
corresponds to a sum of positive terms.  Some such schemes have been tried, but the 
resulting terms appear to be much too hard to evaluate even qualitatively.	

The (explanation) of the superconducting state was first answered in a convincing 
way by Bardeen, Cooper, and Schrieffer. The path integral approach played no part 
in their analysis, and in fact has never proved useful for degenerate Fermi systems.	


  
Feynman and Hibbs,1965. 



Fixed-Node method with PIMC 
•  Get rid of negative walks by canceling them with positive 

walks. We can do this if we know where the density matrix 
changes sign. Restrict walks to those that stay on the 
same side of the node.   

•  Fixed-node identity. Gives exact solution if we know the 
places where the density matrix changes sign: the nodes. 

•  Classical correspondence exists!!  
•  Problem: fermion density matrix appears on both sides of 

the equation.  We need nodes to find the density matrix.  
•  But still useful approach. (In classical world we don’t know 

V(R).) 
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Proof of the fixed node method 
1.  The density matrix satisfies the Bloch 

equation with initial conditions. 

2.   One can use more general boundary 
conditions, not only initial conditions, 
because solution at the interior is uniquely 
determined by the exterior-just like the 
equivalent electrostatic problem.  

3.  Suppose someone told us the surfaces where 
the density matrix vanishes (the nodes). Use 
them as boundary conditions. 

4.  Putting an infinite repulsive potential at the 
barrier will enforce the boundary condition. 

5.  Returning to PI’s, any walk trying to cross 
the nodes will be killed. 

6.  This means that we just restrict path 
integrals to stay in one region.  
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Ortho-para H2 example 
In many-body systems it is hard to visualize statistics. 
•  The simplest example of the effect of statistics is the H2 

molecule in electronic ground state. 
•  Protons are fermions-must be antisymmetric. 
1.  Spins symmetric (áá). spatial wf antisymmetric (ortho)   “fermions” 
2.  Spins antisymmetric  (âá- áâ). spatial wf symmetic  (para) “bosons” 
3.  Non symmetrical case (HD)         “boltzmannons” 

All 3 cases appear in nature! 
•  Go to relative coordinates:   r= r1-r2 
•  Assume the bond length is fixed |r|=a. Paths are on surface of 

sphere of radius a. 
PIMC task is to integrate over such paths with given symmetries. 
For a single molecule there is no potential term, a “ring polymer” 

trapped on the surface of a sphere. 



Paths on a sphere 
1. “boltzmannons”Ring 

polymers on sphere O(r èr) 

2. “bosons”  2 types of paths 
allowed.  O(r è r) + O(r è -r) 

3. ”fermions” 2 types of paths 
allowed O(r è r)  - O(r è -r)    
Low efficiency as    

1 0( )E Ee βζ − −=



Restricted paths for ortho H2 
•  Fix origin of path: the reference point. 
•  Only allow points on path with a positive 

density matrix. paths staying in the 
northern hemisphere:   r(t).r(0)>0 

•  Clearly negative paths are thrown out. 
•  They have cancelled against positive 

paths which went south and then came 
back north to close. 

•  The symmetrical rule in “t”: r(t).r(t’)>0  
is incorrect. 

•  Spherical symmetry is restored by 
averaging over the reference point: the 
north pole can be anywhere. 

•  Can do many H2 the same way.  
•  Ortho H2 is much more orientable than 

either HD or para H2. 



Nodal Properties 
If we know the sign of the exact density matrix(the nodes), we 

can solve the fermion problem with the fixed-node method. 
•  If ρ(R) is real, nodes are ρ(R)=0 where R is the 3N 

dimensional vector.  
•  Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!) 
•  Coincidence points ri  = rj are  3N-3 dimensional hyper-planes 
•  In 1 spatial dimension these “points” exhaust the nodes. 

fermion problem is easy to solve in 1D   with the “no crossing 
rule.” 

•  Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them. 

•  The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.) 

•  At high T, nodes are free particle-like, Vornoi polyhedra. 



For a density matrix 



RPIMC with approximate nodes 
•  In almost all cases, we do not know the “nodal” 

surfaces. 
•  We must make an an ansatz. 
•  This means we get a fermion density matrix (function 

with the right symmetry) which satisfies the Bloch 
equation at all points except at the node. 

•  That is, it has all the exact “bosonic” correlation 
•  There will be a derivative mismatch across the nodal 

surface unless nodes are correct. 
•  In many cases, there is a free energy bound.  Proved at 

high temperature and at zero temperature and when 
energy is always lower.  

•  Maybe one can find the best nodes using the variational 
principle.  (variational density matrix approach)  



Fermion superfluidity 
•  Liquid 3He becomes superfluid at very low temperatures 

(Tc ~ 1mK). 
•  With the exact nodal restriction this must also happen 

within RPIMC, because we can calculate the free 
energy. 

•  What happens to the paths at this phase transition? 
•  SPECULATION: there is a “Cooper” pairing of up and 

down spin exchanges, similar to a polymer blend 

•  Not tried in 3He  because of formidable practical 
difficulties (length, temperature scale) and lack of 
knowledge of nodal topology required. 



Thouless theory of magnetic order 
•  At low temperature there are very 

few defects, phonons, etc. 
•  The many body wavefunction has 

N! peaks, corresponding to possible 
electron relabelings. 

•  Expand exact wavefunction in 
terms of localized wavefunctions. 

•  System remains in one peak, then 
tunnels to another, very rarely. 

•  Dominant tunneling rates are few 
particle cyclic exchanges. 

•  Exchange frequencies (JP) 
determine the magnetic order. 

•  The resulting Hamiltonian is: 

ˆ( 1) pphonon p
p

H H J P= − −∑
Unimportant at low temperatures 



Solid 3He 
 
•  Exchanges of 2,3,4,5 and 6 particles are important because of 

Metro effect. 
•  Large cancellation of effects of various exchanges leads to a 

frustrated broken symmetry ground state (u2d2).  
•  Main problem with MEM: there are too many parameters! But 

if they are determined with PIMC, they are no longer 
parameters! 

•  We have calculated (Ceperley & Jacucci PRL 58, 1648, 1987) 
exchange frequencies in bcc and hcp 3He for 2 thru 6 particle 
exchanges. 

•  PIMC gives convincing support for the empirical multiple 
exchange model. (Roger, Delrieu and Hetherington)  

•  Agrees with experiment measurements on magnetic 
susceptibility, specific heat, magnetic field effects, …. 



Path Integral Method to  
determine exchange frequency 

•  We make a path extending from Z to PZ and 
evaluate the change in the action.  Z=perfect  
crystal lattice. 

•  We estimate the ratio: 
 
 
 

•  X is a “reaction coordinate” for the exchange. 
•  JP is the imaginary time tunneling rate. 
•  β0 is the width in imaginary time of the 

“instanton.” 
•  How can we calculate a “free energy difference?”: 

map paths from exchange to non-exchange 
(Bennett’s method) and estimate the slope. 
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Exchange frequencies in bcc 3He 

From: DMC, Jacucci PRL 58, 1648(1987) 

MEM 
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Supersolid 
Will solid 4He be a superfluid if we go to low enough T? 

Ring exchange frequencies in 
hcp 4He. 



•  How can we have  a 
supersolid? 

•  We would need: 

•  Local loops have no winding 
(do not transport mass) 

•  Need frequent long exchanges  
•  Seems to require unbound 

vacancies and interstitials.  
•  BEC would also require 

delocalized paths. 
•  PIMC Evac ~16K 
•  Pederiva et al find Evac ~10K. 
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Calculation of density matrix of solid helium 
Clark & DMC cond-mat/0512547 

Boninsegni, Prokof’ev & Svistunov cond-mat/0512103   
 

•  n(r) from PIMC gets very 
small at large r. No BEC 

•  Oscillations are due to 
lattice effects 

•  Separating 2 ends costs a 
constant “energy” per 
unit length (string 
tension). 

•  If you pull the string too 
hard, you create vacancy-
interstitial pairs. 

•  Can you have a superfluid 
even if there is no BEC? 

basal plane 



Winding exchanges 
•  Winding exchanges are much 

more probable because they 
are straight. 

•  PIMC exchange frequencies in 
the basal plane decrease 
exponentially 

•  Consider exchanges with 
various angles 

•  Coordination number in hcp 
lattice is 12; 11=exp(2.4)  

•  Can this compensate for the 
exponential drop? 

•  To find out, we did 
calculations of 50 different 
exchanges in solid 4He with 
4<L<9. 

26 bars 

60 bars 
0 exp   2.7pJ J Lα α⎡ ⎤= − =⎣ ⎦

Lp 



Phase diagram of lattice model 
DMC & Bernu PRL 93, 155303 (2004): cond mat/0409336  

•  Ring exchange model with 
parameters from fit, is not 
a supersolid 

•  Probability of long 
exchanges decreases 
faster than number of 
polygons increases 

•  Increasing the density 
makes it worse! 
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Dictionary of the Quantum-Classical Isomorphism 

Quantum Classical 
Bose condensation Delocalization of ends 
Boson statistics Joining of polymers 
Exchange frequency Free energy to link 

polymers 
Free energy Free energy 
Imaginary velocity Bond vector 
Kinetic energy Negative spring energy 
Momentum distribution FT of end-end 

distribution 
Particle Ring polymer 
Potential energy Iso-time potential 
Superfluid state Macroscopic polymer 
Temperature Polymer length 
Pauli Principle Restricted Paths 
Cooper Pairing Paired Fermion Paths 
Fermi Liquid Winding restricted paths 
Insulator Nonexchanging paths 

Attention: some 
words have 
opposite meanings. 
 
 
  
 
 
 
 
 
 
“fermion 
dictionary”? 
 


