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1 Introduction

A quantity of central importance for the description of correlated electron systems is the elec-
tronic self-energy Σ(k,ω). It may be viewed as a momentum- and energy-dependent correction
to the energy of an electron that describes the effects of its interaction with the other electrons.
Here the word ‘correction’ is by no means supposed to imply that Σ(k,ω) is small. Quite the
contrary, for example, in a Mott-insulator Σ(k,ω) contains a term of the form U/�(ω − ω0),
with U the intra-atomic Coulomb repulsion, and this term is both large and strongly dependent
on the energy ω. In fact, the very reason why density functional calculations do not reproduce
the single-particle excitation spectrum – or ‘band structure’ – of Mott-insulators is that they
implicitly assume an ω-independent self-energy and thus miss this ‘correction’ of order U .
It would therefore seem desirable to have a theoretical principle that allows us to actually com-
pute the self-energy of a correlated electron system, and in fact it can be shown that Σ(k,ω)

obeys a stationarity condition that can be used for that purpose. More precisely, Luttinger and
Ward have shown in a seminal paper [1] that the grand canonical potential Ω of an interacting
fermion system can be expressed as a functional of its self-energy, Ω = Ω[Σ], and that this
functional is stationary with respect to variations of Σ:

δΩ

δΣ(k,ω)
= 0 .

Unfortunately a straightforward application of the stationarity property – e.g. by introducing
‘trial self-energies’ that depend on a number of variational parameters – is not possible because
Ω[Σ] involves the so-called Luttinger-Ward functional F [Σ], which is defined as a sum over
infinitely many Feynman diagrams and thus cannot be evaluated for a given trial self-energy.
A possible approximation would be to truncate the Luttinger-Ward functional, thereby keep-
ing only a selected class of Feynman diagrams, typically ‘bubbles’ or ‘ladders’. These are the
famous conserving approximations of Baym and Kadanoff [2] and one example for such an
approximation is the very successful GW-approximation proposed by Hedin [3]. On the other
hand, the truncation of the Luttinger-Ward functional ultimately is a poorly controlled approxi-
mation that may be less suitable for strongly correlated electrons.
In 2003, however, an entirely new idea on how to apply the stationarity principle for Σ in
strongly correlated electron systems was put forward by Potthoff, the so-called variational clus-
ter approximation (VCA) [4–6]. The basic idea of the VCA is to generate trial self-energies
Σ for an infinite lattice by exact diagonalization of finite clusters and, in the course of doing
so, to evaluate the exact value of the Luttinger-Ward functional F [Σ] numerically. Variation of
Σ is performed by varying the single-particle terms of a cluster that serves as the ‘self-energy
preparation-lab’. Put another way, the VCA seeks the best approximation to the self-energy
of an infinite lattice amongst ‘cluster-representable’ ones, i.e. functions Σ(k,ω) which can be
generated as the exact self-energies of finite clusters. This is a new way for generating approx-
imations in strongly correlated electron systems and in the following the variational principle
itself, the basic idea of the VCA, and some selected applications will be presented.
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2 Notation and brief review of field theory

First we define the notation and give a brief review of some concepts from field theory. While
this will be rather cursory, introductions to the use of field theory in statistical physics can be
found in many textbooks [7–9], in the present notes we try to be consistent with Fetter and
Walecka (FW) [8].
We assume that the solid in question can be described as a periodic array of atomic orbitals
centered on the nuclei of the atoms that form the basis of the lattice and we assume periodic
boundary conditions. We choose the unit of length such that the unit cell has volume 1. All
orbitals are taken as mutualy orthogonal. The number of unit cells in the crystal is N and
the number of atoms in the basis nAtom. The orbitals can be labeled by a triple of indices
(i, n, ν) where i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom} the basis atom and
ν ∈ {s, px, py, pz, dxy . . . } the type of orbital. The number of orbitals per unit cell is norb [10].
We introduce fermionic creation and annihilation operators, c†

i,n,ν,σ
and c

i,n,ν,σ
, for electrons in

these orbitals, where σ denotes the z-component of spin. It will often be convenient to contract
(i, n, ν, σ) into a single ‘compound index’ α, so that the Hamiltonian – assumed to be time-
independent – can be written as H = H0 +H1, with

H0 =
�

α,β

tα,β c†
α
c
β
, (1)

H1 =
1

2

�

α,β,γ,δ

Vα,β,δ,γ c†
α
c†
β
c
γ
c
δ
. (2)

Note the factor of 1/2 and the ‘inverted’ order of indices on the interaction matrix element V
in (2) which follows from the prescription of second quantization [7–9], see e.g. the lecture of
E. Koch. The Fourier transform of the Fermion operators reads

c†k,β =
1

√
N

�

i

eik·(Ri+rn) c†
i,n,ν,σ

,

where we have introduced the orbital index β = (n, ν, σ). Since this second ‘compound index’
always comes together with either a momentum k or a cell index i no misunderstanding is
possible. The Hamiltonian now can be written as

H0 =
�

k

�

α,β

tα,β(k) c
†
k,α ck,β, (3)

H1 =
1

2N

�

k,k�,q

�

α,β,γ,δ

Vα,β,δ,γ(k,k
�,q) c†k+q,α c†k�−q,β ck�,γ ck,δ . (4)

Equation (3) defines the 2norb × 2norb matrix t(k), whose eigenvalues En(k) give the nonin-
teracting band structure. This formulation allows H0 to describe magnetic systems or include
spin-orbit coupling. With the explicit prefactor of 1/N in (4) the matrix elements V in (4) are
of order 1.
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In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. The thermal average of any operator Ô is given by

�Ô�th =
1

Z
Tr

�
e−β(H−µN)Ô

�
(5)

with the grand partition function

Z = Tr
�
e−β(H−µN)

�
. (6)

Introducing the imaginary-time Heisenberg operator

c
α
(τ) = eτ(H−µN)/� c

α
e−τ(H−µN)/� ,

the imaginary time Green’s function is defined as

Gα,β(τ) = −Θ(τ)
�
c
α
(τ) c†

β

�

th

+Θ(−τ)
�
c†
β
c
α
(τ)

�

th

(7)

=
1

Z

�
−Θ(+τ)

�

i,j

e−β(Ei−µNi) eτ(Ei−Ej+µ)/�
�i|c

α
|j��j|c†

β
|i�

+Θ(−τ)
�

i,j

e−β(Ei−µNi) eτ(Ej−Ei+µ)/�
�i|c†

β
|j��j|c

α
|i�

�
, (8)

where |i� are the exact eigenstates of the system with energies Ei and particle number Ni and
Θ(τ) is the Heaviside step function. G(τ) is a matrix with row dimension 2Nnorb, which can
be made block-diagonal by introducing the spatial Fourier transform

G(n,ν,σ),(n�,ν�,σ�)(k, τ) =
1

N

�

i,j

eik·(Ri−Rj+rn−rn� ) G(i,n,ν,σ),(j,n�,ν�,σ�)(τ) ,

where G(k, τ) is a 2norb × 2norb matrix.
From (8) it is easy to see that G is well-defined only if τ ∈ [−β�, β�] when Ei are unbounded
from above [11], and that for τ ∈ [−β�, 0] one has G(τ + β�) = −G(τ). It follows that G(τ)

has the Fourier transform (see equation (25.10) in FW)

G(τ) =
1

β�

∞�

ν=−∞
e−iωντ G(iων),

G(iων) =

�
β�

0

dτ eiωντ G(τ) ,

The ων = (2ν +1)π/β� are called the (Fermionic) Matsubara frequencies. From (8) we obtain

Gαβ(iων) =
1

Z

�

i,j

e−β(Ei−µNi) + e−β(Ej−µNj)

iων +
1
�µ−

1
�(Ej − Ei)

�i|c
α
|j��j| c†

β
|i�

=

�
cα

1

iων +
1
�µ−

1
�L

c†
β

�

th

−

�
c†
β

1

−iων −
1
�µ−

1
�L

cα

�

th

(9)



The Variational Cluster Approximation 4.5

= .... +

G
!

G = + + + ....

+ ....

!

Fig. 1: Top: Graphical representation of the Dyson equation. Middle: Self-energy diagrams
have two open ends. Bottom: The convention for the representation of the Green’s function
implies the labeling of the entry points of the self-energy.

where the Liouville operator L is defined by LX = [H,X]. When viewed as function of a
complex variable z, all elements of G(z) are analytic in the complex z-plane except for the real
axis, where there are poles at z = (Ej − Ei − µ)/�. It is this property on which the usefulness
of the imaginary-time Green’s function is based: its Fourier transform G(z) can be analytically
continued to a line infinitesimally above the real axis and then gives the Fourier transform of
the retarded real-time Green’s function – from which single-particle spectral function i.e. the
photoemission and inverse photoemission spectrum of a system can be obtained. For this rea-
son the Fourier transform (9) is often called ‘the’ Green’s function and when we speak of the
Green’s function in the following we always mean (9). The first line in (9) is the Lehmann
representation of the Green’s function.
It is shown in textbooks of field theory [7–9] that the imaginary-time Green’s function can be

expanded in Feynman diagrams and the self-energy Σ(k, iων) can be introduced in the stan-
dard way, see Figure 1. The self-energy can be expanded in diagrams which have two ‘entry
points’ an incoming and an outgoing one, see Figure 1. Following FW [8], we represent the
Green’s function Gαβ by a directed line with an arrow running β → α (the reason is that it is
the creation operator that has the index β, see (7)). In the Dyson equation the orbital indices
of the Green’s function and the self-energy must take the form of consecutive matrix products,
e.g. G0

δα
Σ

αβ
G0

βγ
- otherwise the summation of the geometric series would not be possible. It

follows that the element Σαβ must have the label α on the outgoing entry and the label β on the
incoming one, see Figure 1. This will be of some importance later on.
Note that the real time Green’s function at finite temperature does not allow for a Feynman dia-
gram expansion – this is why the digression of calculating the imaginary time Green’s function
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Fig. 2: Real part of the Green’s function G(ω) for real ω. The dashed vertical lines give the
position of the poles, ωi.

and analytically continuing its Fourier transform is necessary. It follows from the diagrammatic
expansion that the Green’s-function obeys the Dyson equation (see (26.5) of FW)

�
iων + µ/�− t(k)/�−Σ(k, iων)

�
G(k, iων) = 1

�
− ∂τ + µ/�− t(k)/�

�
G(k, τ)−

�
β�

0

Σ(k, τ − τ �) G(k, τ �)dτ � = δ(τ). (10)

where the second equation is the Fourier-transform of the first and FW (25.21) was used.
Let us finally briefly discuss the analytic structure of the Green’s function and self-energy. For
simplicity we specialize to a single band and assume that the z-component of spin is a good
quantum number so that the Green’s function is a scalar. It can be seen from (9) that the Fourier
transform of the Green’s function has the form

G(ω) =
�

i

α2
i

ω − ωi

where αi and ωi are real numbers. It has poles on the real axis and the real part of G(ω) looks
like in Figure 2. This shows that in between any two successive poles ωi and ωi+1 the Green’s
function crosses zero with a negative slope

G(ω) ≈ −β2
i
(ω − ζi).

Near the crossing point ζi we thus have

Σ(ω) = −G−1(ω) + ω + µ− tk

=
σi

ω − ζi
+ . . .

where σi = 1/β2
i
. The self-energy thus has poles on the real axis as well, and these poles are

‘sandwiched’ in between the poles of the Green’s function. Luttinger has shown [12] that Σ(ω)

is essentially determined by these poles and their residua in that it can be written as

Σ(ω) = η +
�

i

σi

ω − ζi
(11)

with a real constant η.
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3 Proof of the theorem by Luttinger and Ward

3.1 Statement of the theorem

The grand canonical potential Ω(T, µ) contains all thermodynamical information about a sys-
tem at fixed temperature T and chemical potential µ. It is defined as the logarithm of the grand
partition function

Ω = −
1

β
ln(Z).

Z =
�

i

e−β(Ei−µNi) ,

where the sum is over all eigenstates of the system with energy Ei and particle number Ni.
The latter can indeed be evaluated for noninteracting particles and in this way one obtains for
example the grand canonical potential of noninteracting Bloch electrons

Ωnon−int = −
1

β

2norb�

n=1

�

k

ln
�
1 + e−β(En(k)−µ)

�
. (12)

As shown in textbooks of statistical mechanics, expression (12) allows one to derive the com-
plete thermodynamics of metals. However, it is in general not possible to evaluate the grand
partition function for a system of interacting particles of macroscopic size.
Luttinger and Ward, however, derived a relation for for the grand canonical potential of inter-
acting fermions [1]. More precisely, they considered the following quantity

Ω̃ = − lim
η→0+

1

β

�

k,ν

eiωνη

�
ln det

�
−G−1(k, iων)

�
+Tr

�
G(k, iων)Σ(k, iων)

��
+Φ[G] . (13)

Here
�

ν
denotes summation over the Fermionic Matsubara frequencies and Φ[G] is the so-

called Luttinger-Ward functional which is defined as a sum over closed, linked Feynman-
diagrams (the precise definition will be discussed below). The important point here is that a
closed Feynman diagram is simply a number, so that Φ[G] indeed assigns a (real) number to
each possible Green’s function G. Regarding the logarithm of the determinant in (13), we recall
that the determinant of a matrix is given by the product of its eigenvalues (the matrix need not
be Hermitian for this to be true), so the logarithm of the determinant is the sum of the logarithms
of the (complex) eigenvalues of −G−1.

In the following, we want to show that in fact Ω̃ = Ω, the true grand canonical potential
and thereby follow the original proof by Luttinger and Ward. The basic idea is to multiply the
interaction part of the Hamiltonian, (2), by a scale factor, H1 → λH1, then show Ω̃ = Ω for
λ = 0 – i.e. the noninteracting limit – and next show that ∂λΩ̃ = ∂λΩ. Obviously, this proves
the identity of the two expressions for any λ.
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(c)(b)(a)

Fig. 3: (a) Integration contour C used in (15). Since the integrals along the two contours in (b)
are zero and the contributions from the circular arcs vanish, the integral along the contour in
(a) is equal to that over the contour C � in (c).

3.2 The case λ = 0

In this limit, Σ = 0 and Φ[G] = 0 (the latter property follows because all interaction lines in all
diagrams are zero) so that only the first term in (13) remains and

G−1(k,ω) = ω + (µ− t(k)) /�,

ln det
�
−G−1(k,ω)

�
=

2norb�

n=1

ln
�
− ω −

�
µ− En(k)

�
/�

�
. (14)

We now replace the sum over Matsubara frequencies by a contour integration, a standard trick
used in field theory (see e.g. section 25 of FW) and obtain

−
1

β

�

ν

eiωνη ln det
�
−G−1(k, iων)

�
=

�
2πi

�

C
dω f(ω) eωη ln det

�
−G−1(k,ω)

�
, (15)

where

f(ω) =
1

eβ�ω + 1
,

is the Fermi function and the contour C encircles the imaginary axis in counterclockwise fash-
ion, see Figure 3a. Next we note that the integrals along the two clover-shaped contours in
Figure 3b are zero, provided the integrand is analytic in the interior of the two curves. Since
the Fermi function has all of its poles along the imaginary axis, which is outside of the curves
in 3b, we only need to consider possible singularities of ln det(−G−1(k,ω)). In principle, the
complex logarithm has a branch-cut along the negative real axis which could be problematic.
However, a quick glance at (14) shows that as long as ω has a nonvanishing imaginary part,
the argument of the logarithm can never be purely real. Singularities of the logarithm thus oc-
cur only on the real axis, which also is exterior to the contours 3b. The integral along these
contours therefore is indeed zero. Next, Jordan’s lemma can be invoked to establish that the
integral along the large semicircles vanishes. Here, the Fermi function f(ω) guarantees that the
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contribution from the semicircle with �(ω) > 0 vanishes, whereas the factor eωη does the same
for the semicircle with �(ω) < 0. It follows that the integral along the contour C in Figure
3a is equal to that along the contour C � in 3c (note the inverted direction of the curves in 3c as
compared to 3b). Next, we insert

f(ω) = −
1

β�
d

dω
ln
�
1 + e−β�ω� (16)

and integrate by parts. Thereby the Fermi function and the factor eηω again make sure that the
contributions from �(ω) = ±∞ vanish and we obtain

1

β

1

2πi

�

C�
dω ln

�
1 + e−β�ω� d

dω

�
eηω

2norb�

n=1

ln (−ω + (µ− En(k))/�)
�

=
1

β

1

2πi

�

C�
dω ln

�
1 + e−β�ω� eηω

2norb�

n=1

1

ω + (µ− En(k))/�
+O(η) .

Now we substitute �ω → z and use the theorem of residues (thereby remembering that C�

encircles the poles of the Green’s function on the real axis in clockwise fashion) and after taking
the limit η → 0 obtain the expression (12), which completes the first step of the proof.

3.3 Calculation of ∂Ω/∂λ

To obtain the derivative of the true grand potential Ω with respect to λ we start from the formula

λ
∂

∂λ
Ω(λ) = −

λ

β

∂

∂λ
ln
�
Tr

�
e−β(H0+λH1)−µN

��

=
1

Z
Tr

�
λH1 e

−β(H0+λH1)−µN

�

= �λH1�λ

where �...�λ denotes the thermal average calculated at interaction strength λ. The last quantity
thus is the expectation value of the interaction Hamiltonian for interaction strength λ. This can
be computed by making use of the equation of motion of the Green’s function, a procedure
found in many textbooks, see e.g. Equation (23.14) of FW. One has

�λH1�λ = −
1

2
lim
τ→0−

�

k

Tr

�
� ∂

∂τ
− µ+ t(k)

�
Gλ(k, τ) ,

where the subscript λ on the Green’s function implies that this is the exact Green’s function for
interaction strength λ. Next we recall the Dyson equation (10), which holds for any λ

(−∂τ + (µ− t(k)) /�)G(k, τ)−

�
β�

0

dτ � Σ(k, τ − τ �)G(k, τ �) = δ(τ).

Since δ(τ < 0) = 0 we have limτ→0− δ(τ) = 0 and obtain

λ
∂

∂λ
Ω(λ) =

�
2

lim
τ→0−

�

k

�
β�

0

dτ � Tr
�
Σλ(k, τ − τ �)Gλ(k, τ

�)
�

=
1

2β

�

k,ν

TrΣλ(k, iων)Gλ(k, iων) . (17)
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3.4 Definition and properties of the Luttinger-Ward functional

As already mentioned, the Luttinger-Ward functional Φ[G] is defined as a sum over infinitely
many Feynman diagrams with certain properties. The diagrams which contribute are closed,
which means they have no external lines. They are moreover connected, which means that they
cannot be decomposed into sub-diagrams that are not connected by lines. And finally, only
skeleton diagrams are taken into account in the Luttinger-Ward functional. A skeleton diagram
is a diagram where no Green’s function line contains a self-energy insertion. In other words, it
is impossible to draw a box around any part of the diagram so that only two Green’s function
lines cross the box.
At this point we need to discuss an important property of the skeleton diagrams. Let us consider
a self-energy diagram. It contains one Green’s function line from the entry-point to the exit-
point, and a number of Green’s function loops. Starting from the entry-point we may follow the
Green’s function line and draw a circle around each self-energy insertion that we encounter until
we reach the exit point. This procedure will eliminate a number of loops, that means enclose
them in a self-energy insertion. Then, we continue along the first interaction line which is not
eliminated until we reach a Fermion loop that is not yet eliminated. We follow the Green’s
function line along this loop and again draw a circle around each self-energy insertion. We
proceed to the next interaction line that has not yet been eliminated and so on. We end up
with a diagram in which all self-energy insertions are inside circles. Replacing the circles by
straight lines we obviously obtain a skeleton-diagram for the self-energy. It is easy to see that
the skeleton diagram to which a given self-energy diagram is reduced is unique. All self-energy
diagrams thus can be grouped into classes such that all members of one class can be reduced to
the same skeleton diagram. Conversely, all members of one class can be obtained by starting
out from the skeleton-diagram and inserting the full Green’s function for each Green’s function
line in the diagram, which we write as

Σ(k,ω) =
�

n

Σ(s,n)(k,ω). (18)

Here Σ(s,n) denotes the set of all nth order skeleton diagrams (i.e. diagrams with n interaction
lines) with the Green’s function lines replaced by the full Green’s function.
Having defined the diagrams contributing to Φ[G] each diagram is now translated into a mul-
tiple sum according to the standard Feynman rules for the imaginary-time Green’s function in
momentum space (see section 25 of FW). However, there is one crucial difference: whereas in a
standard Feynman diagram a Green’s function line corresponds to a factor G0(k,ω) (the nonin-
teracting Green’s function), in the Luttinger-Ward functional we replace G0(k,ω) → G(k,ω)

where G(k,ω) is the argument of the functional Φ[G]. As an example, the expression corre-
sponding to the diagram in Figure 4 is
�

−1

β�2N

�2

(−1)2
�

k,k�,q

�

α,β,γ,δ

�

α1,β1,γ1,δ1

�

ν,ν�,µ

Vα,β,δ,γ(k,k
�,q)Vδ1,γ1,α1,β1(k+ q,k�

− q,−q)

×Gα1,α(k+ q, iων + ωµ)Gδ,δ1(k, iων)Gβ1,β(k
�
− q,ων� − ωµ)Gγ,γ1(k

�,ων�) . (19)
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Fig. 4: Left: A diagram contributing to the Luttinger-Ward functional. Right: the elements of
the diagram.

The Luttinger-Ward functional Φ[G] thus consists of an infinite sum of multiple sums which
involve the interaction matrix elements V of the Hamiltonian (4) and the function G for which
the functional is to be evaluated.
Let us briefly discuss the scaling with system size, N . By the Feynman rules an nth order dia-
gram has the prefactor (1/N)n. On the other hand, there are n interaction lines, and 2n Green’s
function lines, so that there are 3n momenta. The n interaction lines give rise to 2n momentum
conservation conditions, one for each end of a line. However, in a closed diagram one of these
momentum conservation conditions is fulfilled trivially so that there remain n + 1 momenta to
be summed over (see the above example). Each sum runs over N momenta so that the total
diagram is of order N – as it has to be because Ω is an extensive quantity.
In addition to the factors originating from the Feynman rules, each diagram is multiplied by
−1/(βS) where the positive integer S is the symmetry factor of the diagram. A very de-
tailed discussion of these symmetry factors is given in section 2.3 of Negele-Orland [9]. The
definition is as follows: first, the diagram is drawn such that all interaction lines are in x-
direction. The n interaction lines of a diagram are labeled by integers i ∈ {1 . . . n} and the
ends of each interaction line are labeled by R and L (for ‘right end’ and ‘left end’), see Fig-
ure 5a. Any Green’s function line in the diagram now can be labeled by the ends of the in-
teraction lines where it departs and where it ends: (i, S1) → (j, S2) with i, j ∈ {1 . . . n}

and S1, S2 ∈ {R,L}. Obviously, the diagram is characterized completely by the 2n ‘directed
quadruples’ (i, S1) → (j, S2). Then, we consider the following operations on the diagrams: a)
any permutation of the indices i, b) exchange of the labels R and L on an arbitrary number of
interaction lines, c) any combination of a permutation followed by label exchanges. Such an
operation obviously changes the quadruples which characterize the connectivity of the diagram:
[(i, S1) → (j, S2)] → [(i�, S �

1) → (j�, S �
2)]. The symmetry factor of a diagram then is the num-

ber of symmetry operations – including identity – where the new labels (i�, S �
1) → (j�, S �

2) are
a permutation of the old ones, (i, S1) → (j, S2) (Negele-Orland then call the transformed dia-
gram a deformation of the first one). As an example, consider the diagram in Figure 5a. Label
exchange on, say, the interaction line 2 leads to the diagram shown in 5b, which however is not
a deformation of the original diagram. This can be seen by considering e.g. the line connecting
the R-end of 1 and the R-end of 2. In 5a this line would have the label (2, R) → (1, R), whereas
it would be (1, R) → (2, R) in 5b. This means that the direction of momentum flow along the
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Fig. 5: Determination of the symmetry factor S for a diagram.

line would be reversed. On the other hand, the permutation of the labels 1 and 3 followed by
label exchange on interaction line 2 leads to the diagram 5c which indeed is a deformation of
the original diagram. In Figure 5d the Green’s function lines are numbered by 1 → 6 and Table
1 gives the quadruples corresponding to these lines in Figures 5a and 5c. Obviously the two sets
of quadruples are a permutation of each other. It turns out that this is the only symmetry oper-
ation which leaves the diagram invariant, so that, taking into account the identity operation, the
diagram has S = 2. Since a symmetry operation corresponds to a permutation of the quadruples
(i, S1) → (j, S2) that characterize the individual Green’s function lines in a diagram, it defines
a mapping between these lines whereby each line is mapped onto the one that gets its label. For
example, from Table 1 one reads off the corresponding mapping for the operation connecting
5a and 5c:

1 2 3 4 5 6
2 1 6 5 4 3

If two Green’s function lines i and j are mapped onto each other the lines are equivalent in the
sense that the diagram could be deformed such that the deformed diagram is precisely the same
as the original one but with line j now taking the place of line i and vice versa.
Let us now assume that a diagram has the symmetry factor S. This means that all Green’s
function lines can be grouped into disjunct classes such that the lines belonging to one class are
mapped onto each other by one of the S symmetry operations. For example, the diagram in 5
has the classes (1, 2), (3, 6) and (4, 5). Since a diagram with n interaction lines has 2n Green’s
function lines the number of classes is 2n/S which will be of importance later on.

Line 5(a) 5(c)
1 (1,L)→(3,L) (3,L)→(1,L)
2 (3,L)→(1,L) (1,L)→(3,L)
3 (1,R)→(2,L) (3,R)→(2,R)
4 (2,R)→(1,R) (2,L)→(3,R)
5 (2,L)→(3,R) (2,R)→(1,R)
6 (3,R)→(2,R) (1,R)→(2,L)

Table 1: Quadruples describing the connectivity of the diagrams Figure 5a and Figure 5c. The
numbers of the Green’s function lines are given in Figure 5d.
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Fig. 6: Variation of G implies opening the lines of a Feynman diagram.

Next, we want to see the meaning of this definition. In fact, the Luttinger-Ward functional is
the generating functional of the self-energy, or, more precisely:

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων). (20)

To see this, consider an infinitesimal change Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων) as
in Figure 6. The initial diagrams correspond to multiple sums over products of Green’s func-
tions where all internal frequencies, momenta, and orbital indices are summed over, subject to
the condition of energy/momentum conservation at each interaction vertex, see (19). The first-
order change then also can be viewed as a sum of diagrams but with a single missing line, which
corresponds to the variation δG that has been factored out. Another way to state this is to say
that differentiating with respect to an element of G amounts to successively opening each of
the lines in the initial closed diagram and summing the remaining diagrams. These remaining
diagrams obviously look like self-energy diagrams in that they have two entry points. We now
need to show, however, that the diagrams not only look like possible contributions to the skele-
ton diagram expansion of the self-energy, but that they come with exactly the right numerical
prefactors. At this point, the additional prefactors of −1/βS turn out to be crucial.
We first note that the momentum and frequency which flow into/out-of the diagram are fixed
by the momentum and frequency of δG. Regarding the orbital indices, we recall that Gαβ cor-
responds to a directed line β → α. The resulting self-energy-like diagrams therefore all have
the matrix index α on their incoming entry and β on their outgoing entry and, comparing with
Fig. 4, we see that this assignment of indices corresponds to Σβα. Moreover, all internal mo-
menta, frequencies and matrix indices in the remaining diagrams are summed over – subject
to the condition of frequency and momentum conservation at the interaction lines – as would
be the case in the true self-energy diagrams. Second, the order n of a diagram, i.e. the number
of interaction lines, is not changed by opening a Green’s function line, so that the prefactor
(−1/β�2N)n of the closed diagram is also the correct prefactor for the resulting self-energy di-
agram. Third, opening a Green’s function line reduces the number of closed fermion loops by 1
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and the factor (−1) in −1/βS takes care of this. Lastly, we need to discuss the symmetry factor
S. Let us consider a diagram with n interaction lines, which accordingly has 2n Green’s func-
tion lines and moreover assume that the diagram has the symmetry factor S. As we saw above,
the 2n Green’s function lines can be divided into classes of S members which are mapped into
each other by the symmetry operations, and the number of these classes is 2n/S. A symmetry
operation maps a Green’s function line i onto an equivalent one j, so it is possible to deform the
diagram such that it looks exactly the same as the original one but with line j in place of line i.
This means, however, that ’opening’ the line i also gives exactly the same self-energy diagram
as opening line j. Accordingly, from the single closed diagram of degree n with symmetry
factor S we obtain 2n/S different skeleton diagrams for the self-energy, and each is produced
S times, see also Figure 7. This factor of S, however, precisely cancels the prefactor 1/S. It
follows that each skeleton-diagram for the self-energy is produced with the same prefactor 1/β.
Differentiating Φ[G] with respect to Gαβ(k, iων) thus gives 1/β times the sum of all skeleton
diagrams for Σβα(k, iων), with the noninteracting Green’s function replaced by the full one,
and this is exactly Σβα(k, iων) itself, see (18), proving (20).
We have just seen that all skeleton-diagrams for the self-energy can be obtained by differenti-

ating the Luttinger-Ward functional with respect to G, whereby the differentiation corresponds
to opening one line in a closed diagram. We then may ask if this operation can be reversed,
namely if the Luttinger-Ward functional can be obtained by starting from the skeleton-diagram
expansion of the self-energy and closing the diagrams by reconnecting the entry-points of the
self-energy by a Green’s function. More precisely, we consider an expression of the form

1

β

�

ν,k

�

α,β

Gα,β(k, iων)Σ
(s,n)
β,α

(k, iων) . (21)

We have seen that an nth order diagram contributing to Φ[G] with symmetry factor S produces
2n/S different skeleton-self-energy diagrams, and each of them S times and with a factor of
(−1), so that the remaining prefactor was 1/β. Upon closing the fermion line again, according
to (21), each of these diagrams produces the original closed diagram (it is easy to see that for
each self-energy diagram there is exactly one closed diagram from which it can be obtained).
Since there are 2n/S self-energy diagrams originating from the original closed diagram the
latter is produced 2n/S times and thus has the additional prefactor −2n/Sβ, where the factor
of (−1) is due to the additional fermion loop in the closed diagram. In the expansion of Φ[G],
however, the diagram would have had the prefactor −1/Sβ, or, put another way, closing the sum
of all nth order skeleton diagrams for Σ according to (21) produces the nth order contribution
to Φ[G] with an additional prefactor of 2n so that

Φ(n) =
1

2nβ

�

ν,k

TrG(k, iων)Σ
(s,n)(k, iων). (22)
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1

12

23

3

Fig. 7: The diagram on the left has n = 3 and S = 2 and accordingly 3 classes of symmetry-
equivalent Green’s function lines. The lines are labeled by the number of the classes, compare
Figure (5) and Table 1. Successively opening the lines of the diagram produces the three differ-
ent self-energy diagrams in the center column and each of them is produced S = 2 times. The
right column shows the diagrams redrawn to more look like self-energy diagrams.

3.5 Calculation of ∂Ω̃/∂λ

We proceed to the the final step of the proof and compute ∂Ω̃/∂λ. If we vary the interaction
strength λ there are two places in the expression Ω̃ in (13) where this makes itself felt. Namely,
the self-energy Σ will change, and moreover the interaction matrix elements V in the Luttinger-
Ward functional (compare 19) that have a prefactor of λ will also contribute to the variation.
Let us first consider the variation of Σ and compute

∂Ω̃

∂Σα,β(k, iων)
.

There are three terms in (13) and we consider them one after the other. The first two terms
involve a sum over momentum and frequency and obviously only those terms with momen-
tum k and frequency ων will contribute. Accordingly, in the following equations we omit the
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arguments (k, iων) for brevity. Then we find by using the chain rule for differentiation

∂

∂Σα,β

�
−
1

β
ln det

�
−G−1

��
= −

1

β

�

µ,ν

�
∂

∂(−G−1
µ,ν

)
ln det

�
−G−1

�� ∂(−G−1
µ,ν

)

∂Σα,β

= −
1

β

�

µ,ν

(−Gν,µ) δµ,α δν,β

=
1

β
Gβ,α .

In going to the 2nd line we used the identity from the Appendix and the Dyson equation

−G−1 = −ω − µ/�+Σ

from which it follows that
∂(−G−1

µ,ν
)

∂Σα,β

= δµ,α δν,β.

We proceed to the second term:

∂

∂Σα,β

�
−
1

β
TrΣG

�
=

∂

∂Σα,β

�
−
1

β

�

µ,ν

Σν,µ Gµ,ν

�
= −

1

β

�
Gβ,α +

�

µ,ν

Σν,µ

∂Gµ,ν

∂Σα,β

�
.

Lastly we consider the Luttinger-Ward functional. Using again the chain rule we find

∂Φ[G]

∂Σα,β

=
�

µ,ν

∂Φ[G]

∂Gµ,ν

∂Gµ,ν

∂Σα,β

=
1

β

�

µ,ν

Σν,µ

∂Gµ,ν

∂Σα,β

.

Adding up the three terms we thus obtain the important result

∂Ω̃

∂Σα,β(k, iων)
= 0. (23)

In other words: the expression Ω̃, which will be seen to be equal to the grand potential Ω in
a moment, is stationary with respect to variations of the self-energy. This is the stationarity
condition for Σ which is the basis of the VCA.
First, however, we have to complete the proof and evaluate λ ∂

∂λ
Ω̃(λ). Since there is no variation

of Ω̃ due to a variation of Σ, the only remaining source of variation are the interaction lines in
the Luttinger-Ward functional. Namely any nth order diagram has the prefactor of λn so that

λ
∂

∂λ
Φ(n) = n Φ(n)

Using (22) we thus obtain

λ
dΩ̃

dλ
=

�

n

nΦ(n) =
�

n

1

2β

�

ν,k

TrGλ(k, iων)Σ
(s,n)
λ

(k, iων)

=
1

2β

�

ν,k

TrGλ(k, iων)

�
�

n

Σ(s,n)
λ

(k, iων)

�

=
1

2β

�

ν,k

TrGλ(k, iων)Σλ(k, iων) .
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Comparing with (17), we see that this is equal to λ ∂

∂λ
Ω(λ) which completes the proof.

Let us summarize the results that we have obtained:

1. The grand canonical potential Ω of an interacting Fermi system is given by eqn. (13).

2. The Luttinger-Ward functional is the generating functional of Σ(k, iων), see eqn. (20).

3. Φ[G] depends only on the interaction matrix elements Vαβδγ in the Hamiltonian and the
Green’s function G which is the argument of the functional.

4. Ω is stationary under variations of Σ(k, iων) see (23).

Looking at the above proof one might worry about the fact that it assumes a continuous evo-
lution of the system with increasing interaction strength λ - whereas we are interested e.g. in
Mott-insulators where we have reason to believe that a phase transition occurs as a function
of λ. However, Potthoff has recently given a nonperturbative proof of the theorem [6, 13] that
means all of the above properties of the grand potential, the Luttinger-Ward functional and the
self-energy remain valid in a strongly correlated electron system where a Feynman-diagram ex-
pansion of the Green’s function and the adiabatic continuity with the noninteracting system can
no longer be assumed valid.

4 The variational cluster approximation

In the preceding section we have seen that the grand canonical ensemble of a system is sta-
tionary with respect to variations of the self-energy. In order to rewrite Ω as a functional of
the self-energy we need to change the argument of the Luttinger-Ward functional from G to
Σ. Since Σ is the derivative of Φ with respect to G this can be achieved, following [4], by
introducing the Legendre-transform of the Luttinger-Ward functional:

F [Σ] = Φ[G[Σ]]−
�

k,ν

�

α,β

∂Φ

∂Gαβ(k, iων)
Gαβ(k, iων)

= Φ[G[Σ]]−
1

β

�

k,ν

�

α,β

Gαβ(k, iων)Σβα(k, iων)

= Φ[G[Σ]]−
1

β

�

k,ν

TrG(k, iων)Σ(k, iων) .

By virtue of being a Legendre transform this new functional obviously satifies
∂F

∂Σαβ(k, iων)
= −

1

β
Gβα(k, iων) . (24)

Moreover, the second and third term in (13) together are nothing but F [Σ], whence

Ω = − lim
η→0+

1

β

�

k,ν

eiωνη [ln det (−iων + (t(k)− µ)/�+Σ(k, iων))] + F [Σ] . (25)
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Fig. 8: Left: The 2D Hubbard model. Center: The 2D Hubbard model partitioned into 2 × 2
clusters. Right: Partitioning into larger/smaller clusters, with or without additional bath sites
and additional hopping integrals. All systems have a different kinetic energy H0 but exactly the
same interaction part H1; accordingly, they all have the same Luttinger Ward functional.

Here we have used the Dyson equation to replace −G−1 in the first term. This expresses Ω as
a functional of Σ, and this functional is known to be stationary with respect to variations of its
argument at the exact Σ (this is also easily verified using the identity from the Appendix together
with (24)). One might now try and either derive Euler-Lagrange equations or introduce a trial
self-energy containing some variational parameters, e.g., of the form (11) with only a certain
number of poles (σi, ζi) retained, and perform the variation with respect to these parameters.
Unfortunately this procedure does not work, because the functional F [Σ] was defined as the
Legendre transform of the Luttinger-Ward functional Φ[G], which in turn was defined as a sum
over an infinite number of Feynman diagrams and thus is completely impossible to evaluate for
a given trial self-energy.
At this point Potthoff’s new idea comes into play. For definiteness let us assume that we are
interested in a 2D Hubbard model, shown schematically in Figure 8a. Then, we might partition
the plane into finite clusters and set the hopping between the clusters to zero, so that they
become disconnected, see Fig. 8b. The resulting array of clusters has been termed the reference
system. The finite clusters also can be decorated in various ways by noninteracting bath orbitals,
they can be larger than just 2× 2 or contain hopping terms not included in the original Hubbard
Hamiltonian, see Fig. 8c. As long as the resulting clusters are not too big, the Fock space of
a single cluster has a manageable size and the clusters can be treated by exact diagonalization.
This gives us all eigenstates |i� together with their energies Ei and particle numbers Ni. Using
these, we may numerically evaluate the grand partition function Z̆ and obtain the potential Ω̆
for a single cluster. In addition, we can calculate the Green’s function matrix Ğ(ω) using the
Lehmann representation or the Lanczos algorithm [14], invert it and extract the self-energy
Σ̆(ω). For all of this it is actually sufficient to know all eigenstates with Ei − µNi within
a window of ≈ 10 kBT above the minimum value, which can be obtained by the Lanczos
algorithm even for clusters of size Ñ ≈ 10− 20. Next, we revert to expression (25) and obtain
the numerical value of F [Σ̃]:

F [Σ̆] = Ω̆ + lim
η→0+

1

β

�

ν

eiωνη

�
ln det

�
−iων + (t̆− µ)/�+ Σ̆(iων)

� �
, (26)

where t̆ is the kinetic energy of the cluster, i.e., the matrix tαβ in (1). This procedure gives
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us the exact self-energy Σ̆(ω) of the cluster together with the exact numerical value of the
corresponding Luttinger-Ward functional. An important point is that all matrix elements Σ̆αβ

that have one index α or β on a bath site are zero. This can be seen, e.g., from the diagrammatic
expansion of the self-energy. The cluster self-energy Σ̆ therefore has non-vanishing entries only
for the correlated sites of the original lattice problem.
At this point the crucial observation by Potthoff comes into play: we have seen above that
the Luttinger-Ward functional Φ[G] was a sum over Feynman diagrams into which, apart from
numerical factors, only two quantities do enter: the interaction matrix elements V of the Hamil-
tonian and the Green’s function G which is the argument of the functional, see e.g. (19). In
our example with the 2D Hubbard model, however, the full 2D Hubbard model and the array of
clusters, which may include non-interacting bath sites, differ only in their single-particle terms
H0 but do have exactly the same interaction part H1. It follows that the functional Φ[G] and
hence its Legendre transform F [Σ] are identical for the two systems. Since, however, we are
able to calculate the self-energy of the cluster and the corresponding value of the Luttinger-
Ward functional exactly, we may use these as trial self-energies for the lattice system. In other
words, we make the ansatz for the lattice system

Ωlatt = − lim
η→0+

1

β

�

k,ν

eiωνη
�
ln det

�
−G�(k, iων)

−1
��

+ F [Σ̆],

G�(k,ω) =
�
ω + (µ− t(k))/�− Σ̃(k,ω)

�−1
. (27)

Here t(k) is now the kinetic energy matrix of the lattice system whereas Σ̆(k,ω) is the spatial
Fourier transform of the cluster self-energy (which may have no k-dependence at all, depending
on the geometry of the reference system). Accordingly, G� is the approximate Green’s function
of the lattice system.
Then, how do we perform the variation of the self-energy? The answer is that the single-particle
Hamiltonian H̆0 of the cluster used to compute the trial self-energies Σ̆ is completely arbitrary,
because the only requirement for the equality of the Luttinger-Ward functionals was the equality
of the interaction part H1. If we change the single-particle terms of the reference system, i.e. the
hopping integrals or site-energies, the self-energy of the cluster will change. The self-energy
and its Luttinger-Ward functional thus become functions of the single-particle terms t̆αβ of the
reference system: Ωlatt = Ωlatt(t̆αβ). Then, we demand that

∂Ωlatt

∂ t̆αβ
= 0, (28)

which is a condition on the parameters of the reference system, t̆, and we denote the solution of
(28) by t̆∗. The physical interpretation is that the VCA is seeking the best approximation to the
self-energy of the lattice-system amongst those functions Σ̆(k, iων) that can be represented as
the exact self-energies of the reference system for some values of the single-particle parameters
t̆αβ . After solving (28) we obtain an approximate self-energy Σ̆(k, iων) and an approximate
value of the grand canonical potential Ωlatt. Since Ωlatt can be obtained for arbitrary values
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of T and µ or other external parameters, thermodynamical quantities such as particle number,
entropy or specific heat can be obtained by doing the procedure for different T and µ and
differentiating.
As an example we address an interesting property of the VCA The particle number Ne of any
system can be obtained in two different ways (the second is a combination of FW (23.9) and
(25.10)):

Ne = −
∂Ω

∂µ
=

1

β� lim
η→0+

�

k,ν

eiωνη TrG�(k, iων).

Since the VCA gives both Ω, and G�(ω), it is natural to ask if the two ways of calculating Ne

give the same result, and this question has been addressed by Aichhorn et al. [15]. We first note
that the chemical potential of the reference system has to be the same as that of the physical
system. Next, let us assume that we regroup the orbital energies of the cluster, t̃αα, by separating
the center of gravity

� =
1

2norb

Tr t̃

and introducing 2norb − 1 relative energies t̃�
αα

so that t̃αα = t̃�
αα

+ �. Since in all calculations
for the reference system the chemical potential µ and � only appear in the combination µ − �,
the derivative of any cluster quantity Ă with respect to the chemical potential µ obeys

∂Ă

∂�

�����
t̆�,µ

= −
∂Ă

∂µ

�����
t̆�,�

.

Next we consider the change of the approximate Ωlatt induced by a change of µ. A variation
of µ will make itself felt at a variety of places. Looking at (26) and (27) we see that µ appears
explicitely in these. Moreover, µ appears in the grand partition function Z̆ and the Green’s
function Ğ of the reference system, so that the cluster self-energy itself will change with µ.
As a consequence of these changes, we have to take into account that t̆∗, the solution of (28),
will change as well: t̆∗ → t̆∗ + δt̆∗, so that the situation becomes somewhat complicated.
Fortunately enough, the first-order change of Ωlatt due to a variation of t̆∗ is zero; this is exactly
the stationarity condition (28). We thus need to consider only the change of Ωlatt for fixed
parameters t̆. Using the last identity in the Appendix we obtain

−
∂Ωlatt

∂µ

����
t̆�,�

= lim
η→0+

1

β

�

k,ν

eiωνη Tr



G�(k, iων)



1

� −
∂Σ̆(k, iων)

∂µ

�����
t̆�,�







−
∂F [Σ̃]

∂µ
|t̃�,�

= lim
η→0+

1

β

�

k,ν

eiωνη Tr



G�(k, iων)



1

� +
∂Σ̆(k, iων)

∂�

�����
t̆�,µ







+
∂F [Σ̃]

∂�
|t̃�,µ

= lim
η→0+

1

β�
�

k,ν

eiωνη TrG�(k, iων)−
∂Ωlatt

∂�

����
t̆�,µ

.

The presence of the first term in the last line can be be understood by noting that µ appears
explictly in the approximate cluster Green’s function G� (see (27)) whereas � does not. At this
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point we note that if � has been included into the set of cluster parameters which are subject
to variation, the last term vanishes (because this is exactly equation (28) for t̆αβ = �) and the
two expressions for the particle number indeed give the same result. The VCA thus gives a
thermodynamically consistent particle number if and only if the center of gravity of the orbital
energies in the reference system is included into the set of parameters to be varied.
To conclude this section we briefly comment on the evaluation of terms like

S = −
1

β

�

ν

eiων0+ ln det(−G−1(iων)) ,

where G may be either the Green’s function of the reference system as in (26) or the approx-
imate Green’s function of the lattice system as in (27). The form of this term suggests that
we proceed exactly as in the first step of the proof of the Luttinger-Ward theorem, namely to
convert the sum over Matsubara-frequencies into a contour-integral, deform the contour using
Jordan’s lemma as in Figure 3, replace the Fermi function according to (16) and integrate by
parts. One obtains

S = −
1

2πβi

�

C�
dω log(1 + e−βω)

�

n

1

λn(ω)

∂λn(ω)

∂ω

where λn(ω) are the eigenvalues of G(ω). There are two types of singularities of the integrand
in this expression:

1. zeros of an eigenvalue (which corresponds to a singularity of an eigenvalue of Σ) i.e.

λ(ω) ≈ aν(ω − ζν) →
1

λ(ω)

∂λ(ω)

∂ω
=

1

ω − ζν

2. singularities of an eigenvalue, i.e.

λ(ω) ≈
bµ

ω − ηµ
→

1

λ(ω)

∂λ(ω)

∂ω
= −

1

ω − ηµ
.

In this way we obtain the expression derived by Potthoff [4]:

S = −
1

β

�
�

µ

log(1 + e−βηµ)−
�

ν

log(1 + e−βζν )

�
,

An alternative is to simply evaluate the contour integral numerically.

5 Applications of the VCA

5.1 Metal-insulator transition in a dimer

As a simple illustration of the procedure we study Potthoff’s re-derivation of the phase diagram
for the metal-insulator transition in the Hubbard model [16]. We consider a half-filled single-
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Fig. 9: Left: The physical Hubbard model (top) which is a true infinite lattice system and the
reference system which is an array of identical dimers. Right: Schematic representation of the
parameters of a single dimer (see the Hamiltonian (29)).

band Hubbard model on a bipartite N -site lattice

H =
�

k,σ

t(k) c†k,σck,σ +
U

2

N�

i=1

(ni − 1)(ni − 1)−N
U

2

=
�

k,σ

t(k) c†k,σck,σ + U
N�

i=1

ni,↑ ni,↓ −
U

2

N�

i=1

ni

where ni = c†
i,↑ci,↑ + c†

i,↓ci,↓. For simplicity we assume this Hamiltonian has particle-hole
symmetry. More precisely, under the transformation c† ↔ c we have ni − 1 → 1 − ni so
that the interaction part is invariant, whereas the first term changes sign. If the hopping term
connects only sites on different sublattices, which is what we assume, this sign change can
be compensated by the gauge transformation c†

i,σ
→ −c†

i,σ
on the sites i of one sublattice.

This transformation exchanges photoemission and inverse photoemission spectrum and implies
µ = U/2.
For the reference system, Potthoff chose N dimers with one ‘Hubbard-site’ hybridizing with
one bath-site, see Figure 9, whereby the Hamiltonian for one dimer reads

H − µN = −V
�

σ

(c†
σ
b
σ
+ b†

σ
c
σ
) +

�
�b −

U

2

��

σ

b†
σ
b
σ
+

U

2
(nc − 1)(nc − 1)−

U

2
. (29)

Here b†
σ

creates an electron in a bath site and nc = c†↑c↑ + c†↓c↓. We have to write �b − U/2

because µ = U/2. Since we want to generate particle-hole symmetric self-energies we have
to impose particle-hole symmetry also in the reference system. The transformation c† ↔ c,
b† ↔ −b indeed converts the Hamiltonian into itself except for the second term. Setting �b =

U/2, however, eliminates this term and particle-hole symmetry is restored. The only remaining
parameter to be varied therefore is V .
The Fock space of the dimer has a dimension of 4 × 4 = 16, so all eigenstates can be readily
obtained. If we construct basis functions with fixed particle number, spin, and z-component
of the spin, the problem in fact can be broken down to diagonalizing 2 × 2 matrices, i.e. the
reference system can be solved analytically. To further simplify the calculations, Potthoff used
a semielliptical density of states of width W = 4 for the conduction band

ρ0(�) =
1

2π

√
4− �2.
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Fig. 10: (a): Ω versus V at T = 0, variation of U , (b): Ω versus V at U = 5.2, variation with
T , (c): the resulting phase diagram.

Figure 10a then shows Ω(V ) at T = 0 for different values of U . For smaller U there are two
stationary points: a maximum at V = 0 and a minimum at finite V , which is the physical
solution. At Uc ≈ 5.85 the two extrema coalesce into a single minimum at V = 0, which is the
only stationary point for larger U . This change from finite V to V = 0 precisely corresponds to
the metal-insulator transition. To see this we note that in the special case of T = 0 and µ = U/2

the self-energy of the dimer can be evaluated exactly [17]:

Σ(ω) =
U

2
+

U2

8

�
1

ω + 3V
+

1

ω − 3V

�
. (30)

Note that this has exactly the form (11) derived by Luttinger [12]. The k integrated Green’s
function then is (note that µ = U/2)

G(ω) =

� 2

−2

d�
ρ0(�)

ω + U/2− �−Σ(ω)
. (31)

For real ω the single particle spectral density, i.e. the combined photoemission and inverse
photoemission spectrum, is given by

A(ω) = −
1

π
lim
δ→0

�G(ω + iδ) .

This is shown in Figure 11 for different V , together with the imaginary part of the self-energy.
Since we only want to see qualitatively the effect of vanishing V , U = 5 was kept throughout.
Then �Σ(ω) shows two Lorentzian peaks located at ±3V as expected from (30). Each of these
peaks creates a gap in the density of states, so that there are three regions with nonvanishing
spectral density. As V → 0 the two poles of Σ(ω) approach each other and the spectral weight
in the inner region around ω = 0 which corresponds to the Fermi energy, becomes smaller
and smaller. Eventually, at V = 0 the two peaks merge and there is no more spectral weight
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Fig. 11: Single particle spectral function and imaginary part of the self-energy (calculated
with an imaginary part of 0.05 for the frequency) obtained from the angle integrated Green’s
function (31) and the self-energy (30). Parameter values are U = 5 and V = 0.4 (top), V = 0.2
(center) and V = 0 (bottom).

at the chemical potential; the system is an insulator now, which is the scenario predicted by
dynamical mean-field theory (DMFT) [18]. It remains to be mentioned that DMFT calculations
find Uc ≈ 5.84 [19].
Next, Figure 10b shows Ω(V ) for the fixed value of U = 5.2 and different temperatures T .
For most temperatures there are three stationary points whereby the local maximum can be
discarded. It follows that there are actually two possible solutions for each temperature between
T = 0.10 and T = 0.12. This implies that there is a 1st order phase transition between these
two temperatures. Repeating the procedure for various U gives the phase diagram in Figure 10c.
There is only a metallic solution for small U , at a first Uc1 a second insulating solution starts
to appear, at Uc there is a first order metal-insulator transition and on from Uc2 there is only an
insulating solution. The results obtained in this way by the, essentially analytical, solution of
a dimer are qualitatively very similar to those obtained by extensive numerical renormalization
group [20] and quantum Monte Carlo [21] calculations in the framework of DMFT. The main
deficiency of the dimer calculation is the underestimation of the critical temperature Tc in Figure
10c by about a factor of two.
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Fig. 12: Variation of Ω with h in (32) for the half-filled 2D Hubbard model. The reference
system is an array of 10-site clusters. Reprinted with permission from [22], Copyright 2004 by
the American Physical Society.

5.2 Discussion of spontaneous symmetry breaking

As already mentioned, the VCA gives an estimate of the grand potential Ω. This property makes
the VCA of particular usefulness for the discussion of ordering transitions. For definiteness, let
us assume we want to discuss antiferromagnetism in the 2D Hubbard model and let us assume
that we partition the planar model into an array of finite clusters as in Figure 8. Then, since the
single-particle terms of the reference system are completely arbitrary, we may include a term

H̃S = h
∑

j

eiQ·Rj (nj,↑ − nj,↓) (32)

with Q = (π, π) into H̆0. This term represents a staggered magnetic field which breaks the
spin-rotation symmetry of the Hamiltonian. It has to be stressed, however, that no magnetic field
whatsoever is added to the Hamiltonian of the lattice system. The self-energy Σ̆(ω) computed
in the reference system with h "= 0, however, incorporates this broken symmetry in various
ways; for example the self-energy for the two spin-directions will be different and the sites of
the cluster are divided into inequivalent sublattices. If we now determine the optimum value of
the parameter h from the standard requirement

∂Ωlatt

∂h
= 0

there are two possible outcomes: we will usually always find a solution with h∗ = 0, which
corresponds to the paramagnetic state. It may happen, however, that there is a second solution
with h∗ "= 0, see Figure 12 for an example, and if this gives a lower Ω it follows that even in the
complete absence of any magnetic field the grand potential of the lattice system can be lowered
by a self-energy which incorporates broken symmetry. The lattice system thus undergoes a
transition to a state of spontaneously broken symmetry. In this way, not only various kinds of
magnetic ordering but also superconductivity, charge, or orbital ordering can be discussed, see
the review by Potthoff [6].
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5.3 Photoemission spectra of NiO, CoO and MnO

Lastly, we consider beyond-band-structure calculations for realistic models of 3d transition
metal compounds. Very often these have a rock-salt structure, such as NiO, CoO and MnO,
or a Perovskite structure, such as LaCoO3. In both cases the transition metal ion is surrounded
by an octahedron of oxygen ions.
It is well-known that these materials are often not well described by LDA calculations and it
is widely accepted that the reason is the strong Coulomb-repulsion between electrons in the 3d
shells of the transition metal ions. The description of this Coulomb interaction is the subject of
multiplet theory, which was initiated in the 1920’s to explain the optical spectra of atoms and
ions in the gas phase. Multiplet theory is discussed in many textbooks of atomic physics, in
particular the books by Slater [23] and Griffith [24] should be mentioned, as well as [25].
We assume that the orbitals which describe the 3d electrons in the Hamiltonian (2) are anal-
ogous to atomic wave functions in that they can be labeled by the set of quantum numbers
ν = (n, l,m, σ) where n = 3 is the principal quantum number, l = 2 the total orbital angular
momentum quantum number, m ∈ {−l, . . . l} the z-component of orbital angular momentum,
and σ = ±1/2 the z-component of spin. n and l could be omitted because they are identical
for all 3d orbitals, but we keep them to stay consistent with Slater and Griffith. We introduce
creation and annihilation operators d†

i,ν
and d

i,ν
for electrons in the 3d shell of the transition

metal ion i. The Coulomb interaction between the 3d electrons then can be written as

H1 =
1

2

�

i

�

ν1,ν2,ν3,ν4

V (ν1, ν2, ν3, ν4) d
†
i,ν1

d†
i,ν2

d
i,ν3

d
i,ν4

V (ν1, ν2, ν3, ν4) = δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4 (33)

×

∞�

k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2)R

k(n1l1, n2l2, n3l3, n4l4) .

Here the Gaunt coefficients ck(lm; l�m�) are given by

ck(lm; l�m�) =

�
4π

2k + 1

� 2π

0

dφ

� 1

−1

dcos(Θ)Y ∗
lm,

(Θ,φ)Yk,m−m�(Θ,φ)Yl�,m�(Θ,φ) (34)

and the Slater integrals Rk by

Rk(n1l1, n2l2, n3l3, n4l4) = e2
� ∞

0

dr r2
� ∞

0

dr� r�2Rn1l1(r)Rn2l2(r
�)

rk
<

rk+1
>

Rn4l4(r)R
l

n3l3
(r�) . (35)

The Gaunt coefficients are pure numbers, which do not depend on the specific ion and are
tabulated in textbooks [23–25]. The calculation of the Slater integrals requires knowledge of
the radial wave function R3,2(r) of the 3d shell, which is often obtained from Hartree-Fock
wave functions for the free transition metal ion in question. In any case, the parameters ck and
Rk can be assumed to be known. More detailed analysis shows, moreover, that for a d-shell
only the terms with k = 0, 2, 4 in the sum in (33) differ from zero; the sum thus is finite and the
Coulomb matrix elements can be calculated without problems. The noninteracting part of the
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Hamiltonian can be written as

H0 =
�

i,j

�

ν,λ

�
t(i,ν),(j,λ) d

†
i,ν

p
j,λ

+H.c.
�
+
�

i

�

ν1,ν2

Cν1,ν2 d
†
i,ν1

d
i,ν2

+
�

i,j

�

λ1,λ2

t(i,λ1),(j,λ2) p
†
i,λ1

p
j,λ2

. (36)

The first term describes hybridization between the 3d-orbitals and orbitals on other atoms,
which are created by p†

j,λ
where λ is shorthand for some set of quantum numbers which specify

these orbitals. The second term contains the orbital energies of the d-electrons and the effects
of the crystalline electric field. The third term describes hybridization between orbitals other
than the 3d orbitals. The matrix elements t(iν),(jλ) and t(i,λ1),(j,λ2) can be expressed in terms of
relatively few parameters such as (pdσ), (pdπ) . . . by use of the Slater-Coster tables [26]. For a
given compound the parameters in (36) can be obtained, e.g., by a fit to an LDA band structure.
It was shown in the pioneering work by Fujimori and Minami [27] that the momentum integrated
photoemission spectra of transition metal oxides can be reproduced very well by considering
an octahedron-shaped cluster comprising only a single transition metal ion and its six nearest
neighbor oxygen ions. If only the transition metal 3d and the oxygen 2p shells are taken into
account such a cluster has 5 + 6 · 3 = 23 orbitals per spin direction. This number can be re-
duced considerably by noting that in octahedral symmetry for each of the five 3d orbitals there
is precisely one linear combination of O-2p orbitals on the neighboring oxygen atoms that hy-
bridizes with it, so that the number of relevant orbitals is only 10 per spin direction, which is
well manageable by the Lanczos algorithm. The Hamiltonian for the cluster reads

H =
�

α,σ

�
tα d

†
α,σ

pα,σ +H.c.
�
+

�

α,β,σ

cα,β d
†
α,σ

d
β,σ

+
�

α,βσ

c̃α,β p
†
α,σ

p
β,σ

+H1 . (37)

Here p†
α,σ

create electrons in the bonding combinations of O-2p orbitals and H1 is given in (33).
The finding of Fujimori and Minami immediately suggests an obvious generalization of Pot-
thoff’s treatment of the single-band Hubbard model: instead of a dimer consisting of a sin-
gle correlated site and a single bath site. see Figure 9 and the Hamiltonian (29), we use an
octahedron-shaped cluster comprising the 5 correlated 3d orbitals and 5 bath sites correspond-
ing to the the bonding combinations of oxygen 2p orbitals, i.e., precisely the Hamiltonian (37)
as reference system. The larger size of the clusters makes the calculation more demanding in
that the eigenstates of the reference system and the Green’s functions now have to be obtained
by the Lanczos algorithm. Moreover, the reference system contains more than just one parame-
ter so that (28) actually represents a system of coupled nonlinear equations. The problem still is
manageable, however, for the necessary numerical procedures and possible algorithms for the
solution of (28) see Refs. [28] and [29].
Here we proceed to some of the results. Figure 13 shows angle-integrated valence band photoe-
mission spectra for the three transition metal oxides NiO, CoO, and MnO. For each compound
the figure compares the computed spectral density with transition metal 3d character and for
oxygen 2p character to experimental valence band photoemission spectra obtained with high
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Fig. 13: Angle integrated valence-band photoemission spectra obtained by the VCA for transi-
tion metal oxides NiO (left), CoO (center), and MnO (right), compared to experimental spectra
taken with high and low photon energy. Reprinted with permission from [28], Copyright 2008
by the American Physical Society.

(top) and relatively low photon energy (bottom). It can be seen that the experimental spectra
change substantially with photon energy, and the main reason is the dependence of the pho-
toionization cross section on photon energy [30]. As a rule of thumb, one may say that at X-ray
energies the spectra show predominantly the transition-metal 3d-like spectral density, whereas
it is the oxygen 2p-like spectral density at low photon energy. Taking this into account, there
is good overall agreement between the theoretical and experimental spectra. One may also
compare k-resolved spectra and also find good agreement [28].

6 Summary

In summary, Potthoff’s new idea of introducing a reference system to generate trial self-energies
[4] allows one to combine the classic field theoretical work of Luttinger and Ward [1] with the
numerical technique of exact diagonalization of finite systems, resulting in a method for treating
strongly correlated lattice systems by exact diagonalization: the variational cluster approxima-
tion. Its variational nature makes the VCA particularly useful as exemplified by the ‘dimer-
DMFT’ description of the metal-insulator transition. Since the VCA always gives an estimate
for the grand potential, it is particularly useful for treating ordering transitions. By combining
this with the very successful cluster method for transition metal oxides [27], it allows one to
perform electronic structure calculations using realistic models of transition metal oxides.
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7 Appendix: A theorem on determinants

Here we prove the identity
∂ ln(detA)

∂Aij

= A−1
ji

.

We use Lapalace’s formula and expand det(A) in terms of minors

det(A) =
�

l=1,n

(−1)i+l AilMil .

Since none of the minors Mil contains the element Aij we find

∂ ln(detA)

∂Aij

=
(−1)i+jMij

det(A)
.

Next, the ith column of A−1 is the solution of the system of equations

Ac = ei ,

where ei is the ith column of the unit matrix, which has all elements equal to zero, except for
the ith, which is one. We use Kramer’s rule and find for the jth element of the ith column

A−1
ji

=
det(Āj)

det(A)
,

where Āj is the matrix where the jth column has been replaced by ei. Now we use again
Laplace’s formula for det(Āj) and obtain

A−1
ji

=
(−1)i+jMij

det(A)
,

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
We then find

∂ ln(detA)

∂α
=

�

i,j

∂ ln(detA)

∂Aij

∂Aij

∂α
=

�

i,j

A−1
ji

∂Aij

∂α
= Tr

�
A−1 ∂A

∂α

�
.
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