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. Quantities one can get by QMC - correlation functions.
. Examples of useful correlation functions.
. Extracting physical information: necessity of

analytic continuation.

. General problem to solve: Fredholm integral equation

of kind |.

. Where similar problems are encountered?

. Why the naive methods fail?

. Tikhonov-Phillips regularization — first successful approach.

. More sophisticated methods: MaxEnt and Stochastic sampling.
. Stochastic optimization method (SOM) as the utmost

accomplishment of stochastic methods principles.
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Examples of problems where one can get an
important correlation function

Simple but not the simplest example: polaron
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Examples of problems where one can get an
important correlation function

Simple but not the simplest example: polaron

Green function by QMC

Gx(7) = (vac | (z.k('r)af( | vac)

No simple connection to measurable properties 7



Physical properties under interest: Lehman function
Lehmann spectral function (LSF)

LSF has poles (sharp peaks)
at the energies of stable
(metastable) states. It is a
measurable (in ARPES)

quantity.

Noninteracting one is
simple:




Physical properties under interest: Lenmann function.

Lehmann spectral function (LSF)

Z §(w — E, (k) |(v|al |vac)|?

LSF has poles (sharp peaks)
at the energies of stable
(metastable) states. It is a
measurable (in ARPES)

quantity.

LSF of one particle at T=0 can be
determined from equation:

Fredholm first kind.

00
00 05 10 15 20
E

25 30 35 40




Physical properties under interest: Z-factor and energy
Lehmann spectral function (LSF)

If the state with the lowest energy
in the sector of given momentum
IS stable

k(w) =2 §(w—-Ek)) + ...
The asymptotic behavior is




Physical properties under interest: Z-factor and energy

The asymptotic behavior is

Gk (T > max [W;i]) —3. ZE) exp|—E,ys.(k)T]

In[G(7)]

40
T

Fig. 12.1. Typical behavior of the GF of a polaron and determination of Z (%)_factor and
energy of the ground state from the fit of the linear asymptotics




Physical properties under interest: Lenmann function.
Lehmann spectral function (LSF)

Z §(w — E, (k) |(v|al |vac)|?

LSF of one particle at T=0 can
be determined from equation:

Solving of this equation is
a notoriously difficult problem

Li(w) = F ! [Gk(T)]
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Physical properties under interest: Lenmann function.
Lehmann spectral function (LSF)

Z §(w — E, (k) |(v|al |vac)|?

LSF of one particle at T=0 can
be determined from equation:

dw K{m,w) A(w)

Solving of this equation is
a notoriously difficult problem

Li(w) = F ! [Gk(T)]
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Solution of integral equation

dw K(m,w) A(w)




Examples of problems where one can get an
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Examples of problems where one can get an
important correlation function

H(l)’a'r = Z ga(k)a.;r(a.k + Z Eh(k)hkh;r(
k

k
Exciton
Ha—h — —A'T_l Z Z/{(p, k, k/)("I)+kh'1|)—kh"l3—k’a’p-l-k’
More pkk’
realistic
? - Q ;
Hpa.r—bos — Z Z(bq,f; - b—q,ﬁ)
k=1k,q
Exciton- Ao (K q')af(_ qk + Yhh.r(K, Q) h..L_qh..k + Yanx(k,q) hf(_ q0k| + h.c.
polaron
Infinite

system



Examples of problems where one can get an
important correlation function

Exciton-
polaron

Hon=-N""Y"U(p.k.K)al bl hy wap
pkk’

17



Examples of problems where one can get an

important correlation function
Exciton-polaron: two-particle Green function

GLP (1) = (vac | a.k+p/('r)h..k_pf(T)h..;r(_pa.l'{ Lp | Vac)

Optical absorption

18



Examples of problems where one can get an
important correlation function

Also Fredholm
integral equation
of the first kind

Optical absorption

19



Exact solution for optical spectra of exciton-polaron
A. S. Mishchenko and N. Nagaosa, CMRG, RIKEN ASI

Diagrammatic Monte Carlo Exciton-polaron

H= Zsc(k)eltek + st(k)hkh}: # Za)qb,];bq
K k 4

FI1G. 1. A typical d O(+). Solid (dashed) lines
represent E(H) prop % ircles (squares) designate
Coulomb (QP-phonon) interactions, and dotted lines are the
phonon propagators. Imaginary time runs from left to right.

ge(q) t gh(q) t ] t
— g t—="n_ Iy |(bg + b
é[ VA s (by b=y

Uip.k K)
g

pkk’

ei];hg__khp_k/ek!.

Coulomb attraction
No particle-phonon coupling

0.6

No Coulomb attraction
Particle-phonon coupling

[~ Valence /1 2 3
T“ 11] Indirect w Direct
gap gap




—~ There are a lot of
problems where
G(m) = / dw KC(m,w) Alw) one has to solve
Fredholm
integral equation
of the first kind

TR




Many-particle Fermi/Boson system
Iin imaginary times representation

i) — / " i K(m,w) Aw)

TN




Many-particle Fermi/Boson system
in Matsubara representation

i) — / " i K(m,w) Aw)

TN




Optical conductivity at finite T in
imaginary times representation

i) — /_ " i K(m,w) Aw)

1 wexp(—Tmw)

) = 71— exp(—Bw)




Image deblurring with e.g. known
2D noise K(m,w)

m and w are

G’(m) :f dw ]C(m,w) A(w) 2D vectors

TN

Original

K(m,w) is a 2D x 2D noise
distributon function



Tomography image
reconstruction (CT scan)

G(m) = / dw K(m,w) A(w) m and w are

2D vectors

K(m,w) is a 2D x 2D
distribution function

Figure 7-10 Computer tomography



Aircraft
/ stability

o0 Nuclear
i) — f i Ko, o) Aludh reactor

operation

Image
deblurrlng

A lot of
other

TN
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/ stability

o0 Nuclear
i) — f i Ko, o) Aludh reactor

operation

Image
deblurrlng

A lot of
other

TN



i) — / " i K(m,w) Aw)

TN

We cannot obtain an exact solution not because
of some approximations of our approaches.

Instead, we have to admit that the exact solution
does not exist at all!
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1. No unigue solution in mathematical sense
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1. No unigue solution in mathematical sense

2. Some additional information is required which
specifies which kind of solution is expected



i) — f " i K(m,w) Aw)
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1. No unique solution in mathematical sense

2. Some additional information is required which
specifies which kind of solution is expected.



i) — / " i K(m,w) Aw)
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Physics
department:
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Physics

\ department:

Engineering
department:
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Physics

\ department:

Enai :
Statistical SEUSEE

department:
department: :



Next player:

P4

i) — f " i K(m,w) Aw)

TN

Physics

\ department:

Enai :
Statistical SEUSEE

department:
department: :



Not settled!

Still highly competitive field

Many approaches developed, some
specific ones are better for some specific
cases

Different approaches speak different
languages, need some unified analysis

Comparison of different methods, not just
self-advertising, is needed

37



Next player:

P4

Since 1998
i) — f i Ko, o) Aludh
Physics
department:

/ (Mark Jarrel)

Historically first: 1943:



i) — /_ " i K(m,w) Aw)

The easiest way to explain the problem is to turn to
a discrete form of the Fredholm equation

Approximating the spectral function by its values on a finite spectral mesh of N points

N
Aw) = A(wn)d(w —wy) ,

n=1

the integral equation (2) can be rewritten in matrix form

N
G(m) = > K(m,w)Alwn) , m=1,..., M,
n=1

or equivalently presented as




i) — /_ " i K(m,w) Aw)

The easiest way to explain the problem is to turn to
a discrete form of the Fredholm equation

Gim) =Y K(m,w)Alws), m=1,...,
=1

Because of noise present in the input data G(m)
there is no unique A(w,)=A(n) which exactly
satisfies the equation.



i) — f " i K(m,w) Aw)

TN

Gim) =Y K(m,w)Alws), m=1,...,
n=1

Because of noise present in the input data G(m)
there is no unique A(w,)=A(n) which exactly
satisfies the equation.

M N e

| KA — G [P=D" D K(m,wn)A(w,) — G(m)

m—1 |n=1



dw K(m,w) A(w)

N 2

KA—GP=> "> K(m,wy)Awn,) — G(m)

m=1 |n=1

Choosing the Euclidean norm one admits the absence
of unique solution because there is an infinite number
of deviation norms.



Unique solution for the least-square fit
through singular values decomposition
of the matrix K




Unique solution for the least-square fit
through singular values decomposition

of the matrix K
Typical singular values:

Explicit expression: ™




True scluticn X

| == truesobktion |

instability = Ty |
due to small singular
values.

i
True and TLS scluticns

Explicit expression: b =

|




Truncating small singuar
instability values (from 1 to 11)
due to small singular

values.
——truncated solution

159 20 25 30 3
|




Tikhonov regularization
to fight with the

instability.




Tikhonov regularization
to fight with the

instability. /




Tikhonov functional to minimize
(I is unitary matrix):




i) — f " i K(m,w) Aw)

TN

General formulation of methods to
solve ill-posed problems in terms of
Bayesian statistical inference.



i) — f " i K(m,w) Aw)

TN

Bayes theorem:

P[A|G] P[G] = P[G|A] P[A]

P[A|G] — conditional probability that
the spectral function is A

provided the correlation function
is G



i) — / " i K(m,w) Aw)

TN

Bayes theorem:
P[A|G] P[G] = P[G|A] P[A]

m conditional probability that
the spectral function is A

provided the correlation function
is G

To find it is just the analytic continuation



P[G|A] is easier problem of finding G
given A: likelihood function

P[A] is prior knowledge about A:

Analytic continuation



dw K(m,w) A(w)

P[A|G] ~ P[G|A] P[A]

P[G|A] is easier problem of finding G
given A: likelihood function

P[A] is prior knowledge about A:

All methods to solve the above problem

can be formulated in terms of this relation
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Historically first method to solve the problem of
Fredholm kind | integral equation.

Tikhonov regularization method (1943)
A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1943)

A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1963)
(Soviet mathematics)

Tikhonov & Arsenin, Solution of lll-posed
problems, (Washington, 1977).



) — f " i K(m,w) Aw)

— 00
Historically first method to solve the problem of
Fredholm kind | integral equation.

A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1943)

Tikhonov & Arsenin, Solution of lll-posed
problems, (Washington, 1977).



) — /_ " i K(m,w) Aw)

Historically first method to solve the problem of
Fredholm kind | integral equation.

Tikhonov regularization method (1943)

/“\

P[G|A] ~exp{— || KA

P[A] ~ exp{—X° || ['A ||*}




Tikhonov regularization method (1943)

If I is unit
matrix:



PG|A] ~ exp{~ | CA- G |’}

PIA] ~ exp{—X* || A |}




Tikhonov regularization
to fight with the

instability.




True and TLS scluticns

Tikhonov regularization
to fight with the

instability.



P[A|G] ~ P[G|A] P[A]

P o

P(G|A] = exp{—x?*[A]/2} ,

Likelihood
(objective)

B M N function
X2[A] = > e (m)[G(m) — G(m))?

m=1

P[ A] =exp{a 'S[A]},

Prior
knowledge
function

o~

SIA] = / dio Aw) 1n[A(w) /D(w)]



P[A|G] ~ P[G|A] P[A]

D(w) is default model

P[ A] = exp{a~'S[A]}

Prior
knowledge
function

o~

SIA] = / dio Aw) 1n[A(w) /D(w)]




P[A|G] ~ P[G|A] P[A]

1. One has escaped extra smoothening.

2. But one has got default model as an extra price.

P[ A] =exp{a 'S[A]},

Prior
knowledge
function

o~

SIA] = / dio Aw) 1n[A(w) /D(w)]



P[A|G] ~ P[G|A] P[A]

1. We want to avoid extra smoothening.

2. We want to avoid default model as an extra price.

P[ A] =exp{a 'S[A]},

Prior
knowledge
function

o~

SIA] = / dio Aw) 1n[A(w) /D(w)]



P[A|G] ~ P[G|A] P[A]

Both items (extra smoothening and arbitrary
default model) can be
circumvented by the group of

P[ A] =exp{a 'S[A]},

Prior
knowledge
function

o~

SIA] = / dio Aw) 1n[A(w) /D(w)]



P[A|G] ~ P[G|A] P[A]

Both items (extra smoothening and arbitrary
default model) can be

circumvented by the group of stochastic
methods.



P[A|G] ~ P[G|A] P[A]
The main idea of the stochastic methods is:
1. Restrict the prior knowledge to the

minimal possible level (positive,
normalized, etc...).

2. Change the likelihood function to the
likelihood functional.



P[A|G] ~ P[G|A] P[A]
The main idea of the stochastic methods is:

1. Restrict the prior knowledge to the
minimal possible level (positive,

normalized, etc...). Avoids default
model.

2. Change the likelihood function to the

likelihood functional. Avoids saw-tooth
noise.



P[A|G] ~ P[G|A] P[A]

Change the likelihood function to the
likelihood functional. Avoids sawtooth
noise.

A= /dﬁ’ﬁp[ma]




Likelihood functional. Avoids sawtooth noise.

A= /dﬁﬁp[ﬁ\a]

Sandvik, Phys. Rev. B 1998, is
the first practical attempt to
think stochastically.



Likelihood functional. Avoids sawtooth noise.

A= /dﬁﬁp[ﬁ\a]

Sandvik, Phys. Rev. B 1998, is
the first practical attempt to
think stochastically.

Mishchenko et al,
Appendix B in Phys. Rev. B.



Some applications of SOM:

Phys.
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Phys.
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Phys.
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86, 4624 (2001)
87, 186402 (2001)
91, 236401 (2003)
93, 036402 (2004)
96, 136405 (2006)
99, 226402 (2007)
100, 166401 (2008)
101, 116403 (2008)
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107, 076403 (2011)
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Likelihood functional. Avoids sawtooth noise.

A= /dﬁﬁp[ﬁ\a]

Sandvik, Phys. Rev. B 1998, is
the first practical attempt to
think stochastically.

Mishchenko et al,
Appendix B in Phys. Rev. B.



Likelihood functional. Avoids sawtooth noise.

A= /dlﬁp[mq

Sandvik, Phys. Rev. B 1998, is Beach, 2004,
the first practical attempt to cond-mat
think stochastically.

Mishchenko et al,
Appendix B in Phys. Rev. B.



Likelihood functional. Avoids sawtooth noise.

A= fdA"A”P[Z|G]

Sandvik, Phys. Rev. B 1998, is Beach, 2004,
the first practical attempt to cond-mat
think stochastically.

'SOM was suggested in 2000. Other variants

Mishchenko et al, after 2004
Appendix B in Phys. Rev. B.



Likelihood functional. Avoids sawtooth noise.

What is the special need for the
stochastic sampling methods?



1. Avoid saw-tooth noise.  1YPical spectrum of QP at T=0.

2. Avoid over-smoothing
of the &-function

Spectral
function

|

FT T

What is the special need for the
stochastic sampling methods?




1. Avoid saw-tooth noise. Typical spectrum of QP at T=0.
2. Avoid over-smoothing
of the d-function

Spectral

Tikhonow regularization Shelsn
over-smoothes the

O-function.

MaxEnt —

has to fix d-function in m
advance.

What is the special need for the
stochastic sampling methods?



1. Avoid saw-tooth noise.  1YPical spectrum of QP at T=0.

2. Avoid over-smoothing

of the 6-function

Spectral
function

Stochastic methods
Is a way to circumvent
these problems.

FT T

What is the special need for the
stochastic sampling methods?



PIAIG] = exp{~x/4)/T)

Back to Sandvik approach



One does not search for a single solution but samples
through difference “configurations” (spectral functions
A) Using the likelihood function P which is characterized
by fictitious “temperature” T and fictitious “energy” x>.



One does not search for a single solution but samples
through difference “configurations” (spectral functions
A) Using the likelihood function P which is characterized
by fictitious “temperature” T and fictitious “energy” x>.

One interprets x? as an “energy” of fictitious Hamiltonian
and T as a fictitious “temperature”. Hence, one involves
the Metropolis algorithm for Monte Carlo to sample
through configurations A.



One interprets x2as an “energy” of fictitious Hamiltonian
and T as a fictitious “temperature”. Hence, one involves
the Metropolis algorithm for Monte Carlo to sample
through configurations.

1. T is not too high. Otherwise A is far from spectra which
fit well the correlation function G.

2. T is not too small otherwise we are back again to the
sawtooth noise problem. Ower-fitting of the noise.




One interprets x2as an “energy” of fictitious Hamiltonian
and T as a fictitious “temperature”. Hence, one involves
the Metropolis algorithm for Monte Carlo to sample

through configurations.

1. T is not too high. Otherwise A is far from spectra which
fit well the correlation function G.
2. T is not too small otherwise we are back again to the

sawtooth noise problem. Ower-fitting of the noise.




One interprets x2as an “energy” of fictitious Hamiltonian
and T as a fictitious “temperature”. Hence, one involves
the Metropolis algorithm for Monte Carlo to sample
through configurations.

Which features of Sandvik method are artificial?

Joiv - - J J1C DUC V1€ J DU

2. Algorithm is not effective at low T and use the tempering
procedures with sampling at different Ts.




A= /dZEP[A“\G]

1. One has to sample through solutions

2. One has to make some weighted sum
of these well solutions A(w).




A= /dﬁiﬁp[ﬁm

SOM is very similar to Sandvik
method but circumvent its artificial
features and, as a result, turns out
more effective

88
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One collects and averages large amount of
“well” solutions and take an average.

What is the likelihood function (deviation measure of
fit quality?

How the spectrum is parameterized

How to find one “well” solution?

When the number of solutions is enough?

Tests.



1. What is the likelihood function (deviation measure of
fit quality?

deviation measure >f SOM is given by expression

M
=>_|A(m)|.

Here A(m) is the deviation function

G(m) — G(m)
S(m)

Al = (30)

which characterizes individual deviations of specific data points G (m) from the values of the
simulated function G (m) defined by the particular spectral function A in terms of relation

G(m) = /_ " g K(m,w) Aw) . (31)



Parameterization of the particular solution:

We parameterize the spectral function Aasasum

K
Aw) =) neyw)
=1
of rectangles { P} = { hs, wy, ¢}

B ht ] WE[Ct—wt/Q,Ct+wt/2],
o) = { 0 , otherwise

determined by height h; > 0, width w; > 0, and center ;.
A configuration

C={{B),t=1,. K

with the normalization constraint

K
Y =1,
t=1

(b

, W

Fig. 2: An example of a configuration with K = 4. Panel (b) shows how the intersection of
rectangles in panel (a) is treated




Parameterization of the particular solution:

No predefined
mesh for the
energy (w)
space.

W

Fig. 2: An example of a configuration with K = 4. Panel (b) shows how the intersection of
rectangles in panel (a) is treated




Contribution of rectangle to el - /OO dw K(m,w) A(w)

— 0

We parameterize the spectral function A as a sum If no analytic expression.

K
Alu) = ;”{Pt}<w) One tabulates:
of rectangles { P} = { hs, wy, ¢}

B ht ] WE[Ct—wt/Q,Ct+wt/2],
o) = { 0 , otherwise

determined by height h; > 0, width w; > 0, and center ;.
A configuration

C={{B),t=1,. K

with the normalization constraint

K
Y =1,
t=1



Contribution of rectangle to el - /OO dw K(m,w) A(w)

— 0

We parameterize the spectral function Aasasum Particular cases.

» ¥ Imaginary time, T=0:
T = el ginary

of rectangles { B} = {hy, w;, ¢;} Kernel is

fid= he , we€ e —w/2,6+w/2, K(m!w)=exp('ime)
HRRT=1 . otherwise ,

determined by height h; > 0, width w; > 0, and center ;.
A configuration

Contribution:

C={{F},t=1,..,.K} I =0,

Gelrm) =4 K
e LY hye ™ sinh(wir, [2) | T £0.

=1

with the normalization constraint

K
Y =1,
t=1



Contribution of rectangle to el - /OO dw K(m,w) A(w)

— 0

We parameterize the spectral function Aasasum Particular cases.

. ¥ Matsubara, any T:
T =Y 1y y
=1

of rectangles { B} = {hy, w;, ¢;} Kernel is

1
Kl )= -
Wy, — W

B ht ] WE[Ct—wt/Q,Ct+wt/2],
o) = { 0 , otherwise

determined by height h; > 0, width w; > 0, and center ;.

A configuration Contribution:
C={{R}t=1,.,K}

with the normalization constraint

~ - Cy — Wy /2 — tw
Ge (twp,) = ith In [ — m]
=1

C; + Wi /2 — iy,

K
Y =1,
t=1



Stochastic Optimization method.

> Particular solution L®(w) for LSF is presented as a sum
of a number K of rectangles with some width, height and

center.
'\




How to find

one of solutions?

97



Stochastic Optimization method.

> Particular solution L®(w) for LSF is presented as a sum
of a number K of rectangles with some width, height and
center.

» Initial configuration of rectangles is created by random
number generator (i.e. number K and all parameters of
of rectangles are randomly generated).

98



Stochastic Optimization method.

> Particular solution L/)(w) for LSF is presented as a sum of a number K of
rectangles with some width, height and center.

> Initial configuration of rectangles is created by random number generator (i.e.
number N and all parameters of of rectangles are randomly generated).

> Each particular solution L0(w) is obtained by a naive method without
regularization (though, varying number K).

Deviation measure for configuration:

deviation measure of SOM is given by expression
_ M
D[A] = E |[A(m)] -
m=1

Here A(m) is the deviation function

G(m) — G(m)

B~ S(m)

D[Li(w)] = /0 Gi(7) = Gy()| €




How to minimize

the deviation?

Which updates?



Stochastic Optimization method: update procedures.

Shift of rectangular.

I




Stochastic Optimization method: update procedures.

Change of height of rectangular
with fixed Z-factor.

I

}




Stochastic Optimization method: update procedures.

Split of rectangular.

I




Stochastic Optimization method: update procedures.

Glue two rectangles.

I




Parameters for changing are obtained by
optimizing some continuous parameter
making quadratic (intra)extrapolation.

For example: Measure of deviation for the
shift of rectangle is calculated for distances
X, 2X, and 3x and then 3 points D(x) is
reproduced by parabola.

Variable x can be any other continuous
parameter of the update.

105



Stochastic Optimization method: update procedures.

ST A
Deviation /-
measure.

CONFIGURATON

Accept only updates which decrease the deviation measure

WRONG STRATEGY

106



Stochastic Optimization method: update procedures.

Deviation
measure.

CONFIGURATON

Always accept with some probability some updates which
decrease the deviation measure

WRONG STRATEGY: Sandvik 1998, Beach 2004 107



Stochastic Optimization method: update procedures.

Deviation
measure.

CONFIGURATON

Step 1: Increase of deviation measure is allowed during
M steps with high probability

Step 2: Only decrease of deviation measure is allowed_
during last K steps.



Stochastic Optimization method: update procedures.

Deviation
measure.

K+M chain
Is rejected
if final D
Is larger
I EL R EL

CONFIGURATON

Shake-off two-step strategy:

Step 1: Increase of deviation measure is allowed during
M steps with high probability

Step 2: Only decrease of deviation measure is allowed

during last K steps. 109



Stochastic Optimization method: update procedures.

Deviation
measure.

K+M chain
Is
accepted
if final D
iIs smaller

than initial
CONFIGURATON

Shake-off two-step strategy:

Step 1: Increase of deviation measure is allowed during
M steps with high probability

Step 2: Only decrease of deviation measure is allowed
during last K steps.
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How to judge that
one of solutions

1S



How to judge that one of solutions is

20 ¢ 40

Fig. 6: (a) Typical spectrum A ;(w) (red solid line), corresponding to a particular configuration
C;, compared to the actual spectrum (blue dashed line). Typical dependence of the deviation

function A(m) (30) on imaginary timest,, corresponding to a spectrum A;(w) which (b) under-
fits and (c) over-fits the uncorrelated noise of imaginary time data.

deviation measure of SOM is given by expression

DA = |AGm)

Here A(m) is the deviation function

aimy = A K>1/4 (Ideal limit k=1/2)




Stochastic Optimization method.

> Particular solution L®(w) for LSF is presented as a sum
of a number K of rectangles with some width, height and
center.

>

» Each particular solution L0)w) is obtained by a naive
method without regularization (though, varying number K).
» Final solution is obtained after M steps of such procedure
L(w) = M5 L0(w)

» Each particular solution has saw tooth noise
>
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We can find many particular
solutions each of which
fits the input data reasonably.
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We can find many particular
solutions each of which
fits the input data reasonably.

115



Self-averaging of the saw-tooth noise.

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢) M = 500
particular solutions.




Self-averaging of the saw-tooth noise.

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, :.nd (¢) M = 500
particular solutions.




Self-averaging of the saw-tooth noise.

Fig. 7. Comparison of the actual spectral function (dashed line) with the reanlts
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢ M = 500
particular solutions.




Log [P(D/D_.)]

L Y5 2

min

Fig. 7: (a) Self-averaging of the sawtooth noise after summation of 4, 30, and 500 solutions.
(b) Typical probability distribution P(D/ D,,;,) of solutions with different deviation measures.




One has to include solution
with deviation measure D[A]
which is less that twice of
minimal MIN{D[A]}

D[A] < 2 MIN{D[A]}

Fig. 7: (a) Self-averaging of the sawtooth noise after summation of 4, 30, and 500 solutions.
(b) Typical probability distribution P(D/ D) of solutions with different deviation measures.

deviation measure of SOM is given by expression
- M
D[A] = > |A(m)] .
m—=1

Here A(m) is the deviation function

G(m) — G(m)
S(m) 120

Algn) —




1. T is not too high. Otherwise A is far from spectra which
fit well the correlation function G.

2. T is not too small otherwise we are back again to the
sawtooth noise problem. Ower-fitting of the noise.

[Simple rule T = M|



Tikhonov functional:
similar strategy for choice of A




Max Ent

Similar strategy everywhere;
equate noise contribution
with regularization contribution

Avoid over-fitting
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Similar strategy everywhere:
equate noise contribution
with regularization contribution

Tikhonov & Arsenin, Solution of lll-posed problems,
(Washington, 1977).

Arsenin (1986):

the art of finding solution for ill posed
problem lies in an intuition which tells us
when to stop improve the deviation
before the noise of input data

overruns the information contained

in the input data.
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One has to include solution
with deviation measure D[A]
which is less that twice of

minimal MIN{D[A]}

Log [P(D/D,, )]

D[A] < 2 MIN{D[A]}

Fig. 7: (a) Self-averaging of the sawtooth noise after summation of 4, 30, and 500 solutions.
(b) Typical probability distribution P(D [ D,;,,) of solutions with different deviation measures.

deviation measure of SOM is given by expression
- M
D[A] = > |A(m)] .
m—=1

Here A(m) is the deviation function

G(m) — G(m)
S(m)

A(m) = 125







Some tests

i) — f_ " i K(m,w) Aw)

B=10-



Some tests

Particular cases.

Imaginary time, T=0:

Kernel is

K( m,w ) = exp ( T W ) Fig. 8: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red line).
Panels (a) and (b) show the whole spectrum and its low energy part, respectively.




Some tests

dw K(m,w) Alw)

Particular cases.

Imaginary time,
finite T, fermions

Kernel is

I (Tm ) (,d) =_. D ( _ me) Fig. 9: The test spectrum (dashed hiue line) and the spectrum obtained by SOM (solid red line)

exp( = ﬁ w) i) for the Lehmann spectral function of fermions at finite temperature.




Some tests

Particular cases.

Imaginary time,
finite T, optical
conductivity

Kernel is

Fig. 10: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red
1l we Xp( — T UJ) line) for optical conductivity at finite temperature. Panels (a) and (b) show the whole range and

= — low energy part, respectively.
T 1 — exp(—pw) R

K7, 0)




Some tests

Particular cases.

Matsubara frequencies,
finite T, fermions

0 5 10 15720

Ke rne I IS Fig. 11: (a) First 200 Fourier components of the real (red circles) and imaginary (black squares)
part of the GF in Matsubara representation obtained from the GF in imaginary time. (b) Imag-
inary time GF (solid line) and imaginary time GF obtained from first the M = 200 GF's in
Matsubara representation. The inset shows low imaginary times. (c) Actual spectrum (dashed
blue line) and that restored from 200 Matsubara components (red solid line).




Back to optical conductivity. Let us compare
MaxEnt and Stochastic.

Particular cases.

Imaginary time,
finite T, optical
conductivity

Kernel is

Fig. 10: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red
line) for optical conductivity at finite temperature. Panels (a) and (b) show the whole range and
low energy part, respectively

Ko 1) = 1 wexp(—Tmw)

Crl- exp(—pw)




PHYSICAL REVIEW B 76, 035115 {2007)

Analytical continuation of spectral data from imaginary time axis to real frequency axis
using statistical sampling

K. Vafayi and O. Gunnarsson
Max-Planck-Insutut fiir Festkorperforschung, D-70506 Stuttgart, Germany
(Received 27 February 2007; revised manuscript received 2 May 2007; published 19 July 2007)

We present a method for performing analytical continuation of spectral data from imaginary time to real
frequencies based on a statistical sampling method. Compared with the maximum entropy method (MEM). an
advantage is that no default model needs to be introduced. For the problems studied here, the statistical
sampling method gives comparable or slightly better results than MEM using quite accurate default models.

DOIL: 10 1103/PhysRevB. 76 035115 PACS numberis): 72.15.Eb, 02.70.5s

ity in Eq. {7) as a weight function. Comparing with the maxi-
mum entropy method (MEM), an advantage is that there is
no need to provide a default model, which influences the
MEM results if the method 15 close to 1ts limit of applicabil-
ity. For the problems considered here, the statistical sampling
method gives comparable or shightly better results than
MEM using default models close to the exact result. The !




Stochastic Optimization method.

> Particular solution L®(w) for LSF is presented as a sum
of a number K of rectangles with some width, height and
center.

>

» Each particular solution L0)w) is obtained by a naive
method without regularization (though, varying number K).
» Final solution is obtained after M steps of such procedure
L(w) = M5 L0(w)

» Each particular solution has saw tooth noise
>

(KZ



—

Conclusions:

. Analytic continuation is ill posed problem.
. Similar Fredholm | integral equatuion problem in many

applications.

. Long history of the methods: Tikhonov -> MaxEnt ->

stochastic.

All methods bear similar strategy of regularization: not
to over-fit the noise

Each method is the best in each particular case. There
is no universal method which is “the best” for all cases.
We are still on the way to improve the analytic
continuation.

. Combinations of methods might help.
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Questions?



New Method for Low Temperature
analysis of the ESR spectra

Andrey Mishchenko
CMRG, RIKEN

Collaborations:

Tatsuo Hasegawa (AIST)
Hiroyuki Matsui (AIST)

Phys Rev. Lett. 104, 056602 (2010)
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New Method for Low Temperature
analysis of the ESR spectra

1. Nature of the inhomogeneous ESR lineshape and

line narrowing

3. Analysis of the lineshape of an electron trapped
by an impurity

4. Analysis of the fine structure of the ESR line
can give a complete information on the
distribution of the traps versus localization
parameters
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Basics of ESR

Transition between Zeeman split levels under
the influence of the electromagnetic field.

For example, the frequency is fixed and
magnetic field B is varied. Then, the intensity
of signal I(B) is

I(B) ~ 3(B-B,)

Field off

139



Basics of ESR

Transition between Zeeman split levels under =41/
the influence of the electromagnetic field. o —‘|‘—
Field off /

Field on

For example, the frequency is fixed and

magnetic field B is varied. Then, the intensity
of signal I(B) is

I(B) ~ 5(B-B,)

Hyperfine splitting

lowy concentration

L

1
| | |II| ,
I I |
.4'.'"1"'1"1,h"'| | .""".""h"-l"""‘-"'L"‘"b, | M"‘n"-'v-'-ww'll""‘v'ﬁ | Sty
|
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Basics of ESR

Transition between Zeeman split levels under =41/
the influence of the electromagnetic field. o —‘|‘—
Field off /

Field on

For example, the frequency is fixed and

magnetic field B is varied. Then, the intensity
of signal I(B) is

I(B) ~ 5(B-B,)

Hyperfine splitting
A Jow concentration
\ \ i In complex system at low

' | i, |" ey [Ny temperatures the lineshape

" intermediate EiiIZ:ZII'IE:E!I'Itf'iﬂtiul:lf'l is Set by the sum Of random
| contributions coming from
hyperfine and superhyperfine

i

1
"

.: high I'” nce [j_t_r;ati 0 I'I"IUJ i n te ra Ct i ons.
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Hyperfine
splitting

In complex system at low temperatures the lineshape
is set by the sum of random contributions coming from
hyperfine and superhyperfine interactions.

The distribution of the sum of random variable is Gaussian:

S(B) = dG(B) / dB



Basics of ESR

The distribution of the sum of random variable is Gaussian:

If the electron is spread over N molecules, one has a distribution
over sum of random variables. Then, according to the Central Limit
Theorem the distribution is Gaussian with more narrow dispersion

O.

& B e N(Bl+82+...+BN)
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Basics of ESR

s
o

11 molecule (a)

o
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FIG. 1: (color online) Simulated ESR spectrum (black solid
lines) of 1, 2, and 1.54 pentacene molecules based on the ex-
perimental hyperfine splitting of one pentacene molecule and
fits by Gauss distribution (red dashed lines).

The ESR signal from single molecule in this case is Gaus-
sian. The standard expression describing the hyperfine
structure of one molecule reads!®

?’?,111 nka
fFB) = > ... > P(m,...,m) X
m1=—n1I1 mk=—nk1’k
: 4 . )
T k 2
(B—Xh dgms) +T2

Here % is the number of the groups of equivalent nuclei, n;
is the number of the equivalent nuclei in the ¢th group, I;
is nuclear spin in the ¢th group, I' is the linewidth of each
peak, P is the intensity of each peak and B is magnetic
field. If protons (I = 1/2) are the only paramagnetic
nuclei, as it is, e.g, in the case for pentacene molecule, P
18 given as
mi4-n:l;

C.
o ]f: 2?‘7,7;12‘
Plirsensiin) = 14 @+ 1) (2)

where C7%t%% are binomial coefficients.

N molecules, A=A./N, n=n./N




If the electron is spread over N molecules, one has a distribution
over sum jf random variables. Then, according to the Central Limit
Theorem the distribution is Gaussian with more narrow dispersion

Above knowledge is from the theory of inhomogeneous
lineshape . In solids? When an electron is
localized on , there is a charge and

one needs to look at the distribution of different variable
<B>:
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If the electron is spread over N molecules, one has a distribution
over sum jf random variables. Then, according to the Central Limit

Theorem the distribution is Gaussian with more narrow dispersion
o:

2 B S N(Bl—l—BQ—I—...—FBN)

g0

Above knowledge is from the theory of inhomogeneous
lineshape . In solids? When an electron is
localized on , there is a charge distribution f(i) and

one needs to look at the distribution of different variable
<B>:

Maybe this is the reason.



If the electron is spread over N molecules, one has a distribution
over sum . Then, according to the Central Limit

Theorem the distribution is Gaussian with more narrow dispersion
o:

£ B = N(Bl+82+...+BN)

g0

Above knowledge is from the theory of inhomogeneous lineshape in
molecules. In solids? When an electron is localized on the trap, there
is a charge and one needs to look at the distribution

of variables <B>:
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If the electron is spread over N molecules, one has a distribution
over sum jf random variables. Then, according to the Central Limit
Theorem the distribution is Gaussian with more narrow dispersion

O.

2 B S N(81+Bg+...+BN)

go

Above knowledge is from the theory of inhomogeneous lineshape in
molecules. In solids? When an electron is localized on the trap, there
is a charge and one needs to look at the distribution

of variables <B>:

Numerical simulations
show that (although CLT

does not work in this case)
the distribution is still
Gaussian.




CLT for non-uniformly distributed variables: nontrivial!

4 N=9
fﬂrnobcubs : Exponential
¢ equal ~0. distribution
fémgbi | i dBV“ over 9 molecules
N 1 . §f 1 bution
# distri- % | .
F: . % F with
P bution % 1. ] 3 “10
with LY § 1 o=l
c=3.0 ™ / 5

= EXponen- £
5 tal 20. {1 Actual
j L distri- {4 distri-
% bution § } bution

4 with Otf i with
45=1.86 g ;o=1.63

The uniform distribution is the best case for narrowing

In extreme limit of localized case N 4« 2> 1. e




CLT for non-uniformly distributed variables: nontrivial!

£ N=9

# { molecules : Exponential

;  equal ~0. distribution

x | 43 distri- : over 9 molecules

A | . 1 bution

¢ distri- .

: ) with
bution i 5=1.0
with 87
c=3.0

= EXponen- %
tial 20. | & Actual

. distri- i 4 distri-
% bution { | bution
% with Oty 4 with

G=1_86 A 0.10- g c=1.63




Experimental ESR in pentacene

However, experimental
signal is not Gaussian
which means that there
is no traps with some
given value of N
which dominate.

For T<50K the wave saturation experiment shows
that all carriers are localized and no broadening
except nonhomogeneous one is expected!
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Experimental ESR in

However, experimental
signal is not Gaussian
which means that there
is no traps with some
given value of N
which dominate.

Two kinds of traps:

I(B) = " G(N's; ,B-Bg) + '~ G(N?. ,B-By)
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Experimental ESR in pentacene

However, experimental
signal is not Gaussian
which means that there
is no traps with some
given value of N
which dominate.

Two kinds of traps:

I(B) = G(N'. ,B-By) + G(NZ?.; ,B-By)

Three kinds of traps:

I(B) = " G(N',B-Bg) + - G(N°,B-Bg) + = G(N°, ,B-B)



Experimental ESR in pentacene
Broader

view:

distribution

1 B — By)?
GN.;; (B) = L ( o 2]
T ™ (T /R
400 +00 d
I(B) = 4 D(Ness)Gn,,;(B—Bo)dNeys S(B) = 1 D(Negy) [EGNGH(B—BO)} d N,y

+o0
G(r) = / p(@)K[r, e



Experimental ESR in pentacene

Broader
view: Note, such interpretation

distribution requires that all molecules
of molecular crystal are

of equally oriented with respect
traps to surface.

GNeff (B) -

—+o0 —+oo d

IB)= | D(Ners)Gn.,,(B=Bo)dNers S(B)= [ D(Negy) [EGNW(B—BO)} dN.s

—+o0
G(r) = / o)K7,



Fredholm integral equation of the 1-st kind:
so called ill posed problem

1
2rloo//Negsl*
+o0 d

I(B) = j D(Neys)Gn.,,(B—Bo)dNesy S(B) = 1 D(Negy) {EEGNQ’J’(B — Bo)| dNegs

GNeff (B) -

—+oc
G(r) = / p(@)K [,

Previously (A.S. Mishchenko et al, PRB v. 62, 6317 (2000))
a method more flexible and less capricious than MEM was
developed for solving the analytic continuation problem -

Stochastic
Optimization
method




1 (B — By)? ]
@it an(B) = exp
! \/2’”[00/ Neys]? 2lo0//Negs]
—+oc —+oe d
I(B) = j D(Neys)Gn.,,(B—Bo)dNesy S(B) = 1 D(Neff)[ GnN.,; (B — Bo)| dNeys

—+oc
G(r) = / o(@)K [r, ]
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ESR spectrum of organic FET

1-st time that
we do not need
any fit!!!

There are 100-s qg
methods to fit R
. >

the signal. 3
0

We say for the Lf
3

Q

[3
Spatial extent N (molecules)




ESR spectrum of organic FET

LGS

Reliability of result: ~
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