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Stochastic optimization 
method for analytic continuation 

1. Quantities one can get by QMC – correlation functions. 
2. Examples of useful correlation functions. 
3. Extracting physical information: necessity of  
                                                             analytic continuation. 
4. General problem to solve: Fredholm integral equation  
                                                  of kind I. 
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6. Why the naïve methods fail? 
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9. Stochastic optimization method (SOM) as the utmost  
                         accomplishment of stochastic methods principles.   
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Simple but not the simplest example: polaron 

Examples of problems where one can get an  
important correlation function 
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Simple but not the simplest example: polaron 

Examples of problems where one can get an  
important correlation function 

Green function by QMC 

No simple connection to measurable properties 
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Physical properties under interest: Lehman function 

Lehmann spectral function (LSF) 

LSF has poles (sharp peaks) 
at the energies of stable 
(metastable) states. It is a  
measurable (in ARPES) 
quantity.   

Noninteracting one is 
simple: 
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Physical properties under interest: Lehmann function. 

Lehmann spectral function (LSF) 

LSF has poles (sharp peaks) 
at the energies of stable 
(metastable) states. It is a  
measurable (in ARPES) 
quantity.   

LSF of one particle at T=0 can be  
determined from equation: 

Fredholm first kind. 
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Physical properties under interest: Z-factor and energy 

Lehmann spectral function (LSF) 

If the state with the lowest energy  
in the sector of given momentum 
is stable 

The asymptotic behavior is  
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Physical properties under interest: Z-factor and energy 

The asymptotic behavior is  
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Physical properties under interest: Lehmann function. 

Lehmann spectral function (LSF) 

LSF of one particle at T=0 can  
be determined from equation: 

Solving of this equation is  
a notoriously difficult problem 
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Physical properties under interest: Lehmann function. 

Lehmann spectral function (LSF) 

LSF of one particle at T=0 can  
be determined from equation: 

Solving of this equation is  
a notoriously difficult problem 



14 

Solution of integral equation 
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Exciton 

μ E 

k 

Coulomb 
attraction 

Examples of problems where one can get an  
important correlation function 
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Exciton 

Exciton- 
polaron 

More 
realistic 

Infinite 
system 

Examples of problems where one can get an  
important correlation function 
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Exciton- 
polaron 

μ E 

k 

Phonon  
exchange 

+ Hel-ph 

Coulomb 
attraction 

Examples of problems where one can get an  
important correlation function 
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μ E 

k 

Phonon  
exchange 

Coulomb 
attraction 

Exciton-polaron: two-particle Green function 

Optical absorption  

Examples of problems where one can get an  
important correlation function 
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μ E 

k 

Phonon  
exchange 

Coulomb 
attraction 

Optical absorption  

Examples of problems where one can get an  
important correlation function 

Also Fredholm 
integral equation 
of the first kind 



         Exact solution for optical spectra of exciton-polaron      
         A. S. Mishchenko and N. Nagaosa, CMRG, RIKEN ASI 

μ E 

k 

Diagrammatic Monte Carlo Exciton-polaron 

      Coulomb attraction 
No particle-phonon coupling 

     No Coulomb attraction 
   Particle-phonon coupling 



There are a lot of 
problems where  
one has to solve 
Fredholm 
integral equation 
of the first kind 



Many-particle Fermi/Boson system 
in imaginary times representation 



Many-particle Fermi/Boson system 
in Matsubara representation 



Optical conductivity at finite T in 
imaginary times representation 



Image deblurring with e.g. known 
2D noise K(m,ω)  

K(m,ω) is a 2D x 2D noise  
distributon function  

m and ω are 
2D vectors 



Tomography image  
reconstruction (CT scan) 

K(m,ω) is a 2D x 2D 
distribution function  

m and ω are 
2D vectors 



Aircraft 
stability 

Nuclear 
reactor 

operation 

Image  
deblurring 

A lot of 
other… 

What is dramatic 
in the problem?  



Aircraft 
stability 

Nuclear 
reactor 

operation 

Image  
deblurring 

A lot of 
other… 

What is dramatic 
in the problem?  

Ill-posed! 



Ill-posed! 

We cannot obtain an exact solution not because 
of some approximations of our approaches.  
 
Instead, we have to admit that the exact solution  
 does not exist at all! 
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1. No unique solution in mathematical sense  
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2. Some additional information is required which  

specifies which kind of solution is expected  



Ill-posed! 

1. No unique solution in mathematical sense 

      No function A to satisfy the equation  

 

2. Some additional information is required which  

specifies which kind of solution is expected. In order 

to chose among many approximate solutions.   
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Physics 
department: 
Max Ent. 

How to  
solve? 
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Ill-posed! 

Physics  
department: 
Max Ent. 

Engineering  
department: 
Tikhonov  
Regularization 

Statistical  
department: 
ridge regression 

Next player:  
stochastic  
methods 



Not settled! 

• Still highly competitive field 
• Many approaches developed, some 

specific ones are better for some specific 
cases 

• Different approaches speak different 
languages, need some unified analysis  

• Comparison of different methods, not just 
self-advertising, is needed 
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Ill-posed! 

Physics  
department: 
Max Ent. 
(Mark Jarrel) 

Historically first: 1943: 
Tikhonov  
Regularization 

Next player:  
stochastic  
Methods 
Since 1998 



Ill-
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The easiest way to explain the problem is to turn to  
a discrete form of the Fredholm equation  



Ill-
posed! 

The easiest way to explain the problem is to turn to  
a discrete form of the Fredholm equation  

Because of noise present in the input data G(m) 
there is no unique A(ωn)=A(n) which exactly  
satisfies the equation.  



Ill-
posed! 

Because of noise present in the input data G(m) 
there is no unique A(ωn)=A(n) which exactly  
satisfies the equation.  
Hence, one can search for the least-square fitted 
solution A(n) which minimizes: 



Ill-
posed! 

Choosing the Euclidean norm one admits the absence  
of unique solution because there is an infinite number 
of deviation norms. 



Ill-
posed! 

Unique solution for the least-square fit 
through singular values decomposition  
of the matrix K 



Ill-
posed! 

Unique solution for the least-square fit 
through singular values decomposition  
of the matrix K 

Explicit expression: 

Typical singular values: 



Ill-
posed! 

Explicit expression: 

Saw tooth noise 
 instability 
due to small singular  
values. 



Ill-
posed! 

Saw tooth noise 
 instability 
due to small singular  
values. 

Truncating small singuar 
values (from 1 to 11)  



Ill-
posed! 

Tikhonov regularization 
to fight with the  
saw tooth noise  
instability. 



Ill-
posed! 

Tikhonov regularization 
to fight with the  
saw tooth noise  
instability. 

Filter factors 



Ill-
posed! 

Tikhonov functional to minimize 
(Г is unitary matrix): 



Ill-posed! 

General formulation of methods to  

solve ill-posed problems in terms of 

Bayesian statistical inference.  



Bayes theorem: 
 
P[A|G] P[G] = P[G|A] P[A] 
 
P[A|G] – conditional probability that 
               the spectral function is A 
               provided the correlation function 
               is G 



Bayes theorem: 
 
P[A|G] P[G] = P[G|A] P[A] 
 
P[A|G] – conditional probability that 
               the spectral function is A 
               provided the correlation function 
               is G 

To find it is just the analytic continuation 



    P[A|G] ~ P[G|A] P[A] 
 
P[G|A]  is easier problem of finding G 
             given A: likelihood function 
 
P[A]      is prior knowledge about A:  

Analytic continuation 



    P[A|G] ~ P[G|A] P[A] 
 
P[G|A]  is easier problem of finding G 
             given A: likelihood function 
 
P[A]      is prior knowledge about A:  

All methods to solve the above problem 
can be formulated in terms of this relation  



Historically first method to solve the problem of  
Fredholm kind I integral equation. 
 
Tikhonov regularization method (1943) 
 
A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1943) 
 
A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1963) 
                         (Soviet mathematics)  

Tikhonov & Arsenin, Solution of Ill-posed 
problems,  (Washington, 1977). 



Historically first method to solve the problem of  
Fredholm kind I integral equation. 
 
A.N.Tikhonov, Dokladyu Akdemii Nauk SSSR (1943) 
 Tikhonov & Arsenin, Solution of Ill-posed 
problems,  (Washington, 1977). 

The regularization method was developed not by  
…… in 1977, it was rediscovered…. 



Historically first method to solve the problem of  
Fredholm kind I integral equation. 
 
Tikhonov regularization method (1943) 



Tikhonov regularization method (1943) 

If Г is unit  
matrix: 



Ill-
posed! 

Filter factors 



Ill-
posed! 

Tikhonov regularization 
to fight with the  
saw tooth noise  
instability. 



Ill-
posed! 

Tikhonov regularization 
to fight with the  
saw tooth noise  
instability. 

Is it not too 
smooth??? 



    P[A|G] ~ P[G|A] P[A] 
Maximum entropy method 

Likelihood 
(objective) 
function 

Prior  
knowledge  
function 



    P[A|G] ~ P[G|A] P[A] 
Maximum entropy method 

Prior  
knowledge  
function 

D(ω) is default model 



    P[A|G] ~ P[G|A] P[A] 
Maximum entropy method 

Prior  
knowledge  
function 

1. One has escaped extra smoothening. 
 

2. But one has got default model as an extra price.  



    P[A|G] ~ P[G|A] P[A] 

Prior  
knowledge  
function 

1. We want to avoid extra smoothening. 
 

2. We want to avoid default model as an extra price.  

Maximum entropy method 



    P[A|G] ~ P[G|A] P[A] 
Maximum entropy method 

Prior  
knowledge  
function 

 Both items (extra smoothening and arbitrary 
 default  model) can be somehow  
 circumvented by the group of stochastic  
 methods. 
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    P[A|G] ~ P[G|A] P[A] 
Stochastic methods 

The main idea of the stochastic methods is: 
 
1. Restrict the prior knowledge to the  
     minimal possible level (positive,  
     normalized, etc…). 
 
  
2. Change the likelihood function to the  
    likelihood functional. 



    P[A|G] ~ P[G|A] P[A] 
Stochastic methods 

The main idea of the stochastic methods is: 
 
1. Restrict the prior knowledge to the  
     minimal possible level (positive,  
     normalized, etc…). Avoids default   
     model. 
      
2. Change the likelihood function to the  
    likelihood functional. Avoids saw-tooth 
    noise. 



    P[A|G] ~ P[G|A] P[A] 
Stochastic methods 

    Change the likelihood function to the  
    likelihood functional. Avoids sawtooth 
    noise. 
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Sandvik, Phys. Rev. B 1998, is 
the first practical attempt to  
think stochastically. 



Stochastic methods 
Likelihood functional. Avoids sawtooth noise. 

Sandvik, Phys. Rev. B 1998, is 
the first practical attempt to  
think stochastically. 

SOM was suggested in 2000. 
Mishchenko et al,  
Appendix B in Phys. Rev. B. 



73 

Some applications of SOM: 
 
 Phys. Rev. Lett.,  vol. 86,   4624     (2001) 
Phys. Rev. Lett.,  vol. 87,   186402 (2001) 
Phys. Rev. Lett.,  vol. 91,   236401 (2003) 
Phys. Rev. Lett.,  vol. 93,   036402 (2004) 
Phys. Rev. Lett.,  vol. 96,   136405 (2006) 
Phys. Rev. Lett.,  vol. 99,   226402 (2007) 
Phys. Rev. Lett.,  vol. 100, 166401 (2008) 
Phys. Rev. Lett.,  vol. 101, 116403 (2008) 
Phys. Rev. Lett.,  vol. 104, 056602 (2010) 
Phys. Rev. Lett.,  vol. 107, 076403 (2011) 
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Beach, 2004, 
cond-mat  



Stochastic methods 
Likelihood functional. Avoids sawtooth noise. 

Sandvik, Phys. Rev. B 1998, is 
the first practical attempt to  
think stochastically. 

SOM was suggested in 2000. 
Mishchenko et al,  
Appendix B in Phys. Rev. B. 

Beach, 2004, 
cond-mat  

Other  variants 
   after 2004 



Stochastic methods 
Likelihood functional. Avoids sawtooth noise. 

What is the special need for the  
stochastic sampling methods? 
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What is the special need for the  
stochastic sampling methods? 
 

 
1. Avoid saw-tooth noise. 
2. Avoid over-smoothing  
    of the δ-function 

Typical spectrum of QP at T=0. 
 



Stochastic methods 

What is the special need for the  
stochastic sampling methods? 
 

 
1. Avoid saw-tooth noise. 
2. Avoid over-smoothing  
    of the δ-function 
 
Tikhonow regularization  
over-smoothes the  
δ-function. 
 
MaxEnt – default model 
has to fix δ-function in 
advance.  
 
 
 

Typical spectrum of QP at T=0. 
 



Stochastic methods 

What is the special need for the  
stochastic sampling methods? 
 

 
1. Avoid saw-tooth noise. 
2. Avoid over-smoothing  
    of the δ-function 
 
 
Stochastic methods  
is a way to circumvent  
these problems. 
 

Typical spectrum of QP at T=0. 
 



Stochastic methods 

Back to Sandvik approach 
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through difference “configurations” (spectral functions 
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by fictitious “temperature” T and fictitious “energy” χ2.  
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the Metropolis  algorithm for Monte Carlo to sample 
through configurations.   
 
1. T is not too high. Otherwise A is far from spectra which 
     fit well the correlation function G. 
2. T is not too small otherwise we are back again to the  
     sawtooth noise problem. Ower-fitting of the noise. 



Stochastic methods 

One interprets χ2 as an “energy” of fictitious Hamiltonian 
and T as a fictitious “temperature”. Hence, one involves 
the Metropolis  algorithm for Monte Carlo to sample 
through configurations.   
 

Simple rule T = M 

1. T is not too high. Otherwise A is far from spectra which 
     fit well the correlation function G. 
2. T is not too small otherwise we are back again to the  
     sawtooth noise problem. Ower-fitting of the noise. 



Stochastic methods 

One interprets χ2 as an “energy” of fictitious Hamiltonian 
and T as a fictitious “temperature”. Hence, one involves 
the Metropolis  algorithm for Monte Carlo to sample 
through configurations.   
 

Which features of Sandvik method are artificial? 
1. There is no real Hamiltonian and T and, hence, one has no  
       requirement to  sample through Metropolis 
2. Algorithm is not effective at low T and use the tempering  
      procedures with sampling at different Ts. 



Stochastic optimization method. 

1. One has to sample through solutions  
  A(ω) which fit the correlation function 
   G well. 
 

2. One has to make some weighted sum 
  of these well solutions A(ω).    



SOM is very similar to Sandvik 
method but circumvent its artificial  
features and, as a result, turns out 
more effective  

88 



Stochastic optimization method. 

One collects and averages large amount of  
“well” solutions and take an average.  

1. What is the likelihood function (deviation measure of  
      fit quality? 
2. How the spectrum is parameterized 
3. How to find one “well” solution? 
4. When the number of solutions is enough? 
5. Tests. 



Stochastic optimization method. 

1. What is the likelihood function (deviation measure of  
      fit quality? 



Stochastic optimization method. 
Parameterization of the particular solution: 



Stochastic optimization method. 
Parameterization of the particular solution: 

No predefined  
mesh for the  
energy (ω)  
space. 



Stochastic optimization method. 
Contribution of rectangle to  

If no analytic expression.  

One tabulates:  

Contribution: 



Stochastic optimization method. 
Contribution of rectangle to  

Particular cases.  
Imaginary time, T=0: 

K(m,ω) = exp(-iτmω) 

Kernel is  

Contribution: 



Stochastic optimization method. 
Contribution of rectangle to  

Particular cases.  
Matsubara, any T: 

Kernel is  

Contribution: 
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Stochastic Optimization method. 

 Particular solution L(i)(ω) for LSF is presented as a sum  
    of a number K of rectangles with some width, height and  
    center. 

L 

L 

ω 

ω 
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How to find  

one of solutions? 
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Stochastic Optimization method. 

 Particular solution L(i)(ω) for LSF is presented as a sum  
    of a number K of rectangles with some width, height and  
    center. 
 Initial configuration of rectangles is created by random  
    number generator (i.e. number K and all parameters of 
    of rectangles are randomly generated).  

L 

ω 
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Stochastic Optimization method. 

Particular solution L(i)(ω) for LSF is presented as a sum of a number K of  
    rectangles with some width, height and center. 
 Initial configuration of rectangles is created by random number generator (i.e.  
   number N and all parameters of of rectangles are randomly generated). 
 Each particular solution L(i)(ω) is obtained by a naïve method without  
    regularization (though, varying number K). 

L 
~ ~ 

Deviation measure for configuration: 
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How to minimize  

the deviation? 
 

Which updates? 

L 
~ ~ 
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Stochastic Optimization method: update procedures. 

L 

ω 

Shift of rectangular. 

L 

ω 
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Stochastic Optimization method: update procedures. 

L 

ω 

Change of height of rectangular 
with fixed Z-factor. 

L 

ω 
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Stochastic Optimization method: update procedures. 

L 

ω 

Split of rectangular. 

L 

ω 
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Stochastic Optimization method: update procedures. 

L 

ω 

Glue two rectangles. 

L 

ω 
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Parameters for changing are obtained by 
optimizing some continuous parameter  
making quadratic (intra)extrapolation. 
 
 For example: Measure of deviation for the  
shift of rectangle is calculated for distances  
x, 2x, and 3x and then 3 points D(x) is  
reproduced by parabola. 
 
Variable x can be any other continuous  
parameter of the update.  
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Stochastic Optimization method: update procedures. 

CONFIGURATON 

Deviation 
 measure. 

Accept only updates which decrease the deviation measure 
 

WRONG STRATEGY  
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Stochastic Optimization method: update procedures. 

CONFIGURATON 

Deviation 
 measure. 

Always accept with some probability some updates which  
decrease the deviation measure 
 
  WRONG STRATEGY: Sandvik 1998, Beach 2004  
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Stochastic Optimization method: update procedures. 

CONFIGURATON 

Deviation 
 measure. 

Shake-off two-step strategy: 
Step 1: Increase of deviation measure is allowed during  
             M steps with high probability 
Step 2: Only decrease of deviation measure is allowed  
             during last K steps.  
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Stochastic Optimization method: update procedures. 

CONFIGURATON 

Deviation 
 measure. 

Shake-off two-step strategy: 
Step 1: Increase of deviation measure is allowed during  
             M steps with high probability 
Step 2: Only decrease of deviation measure is allowed  
             during last K steps.  

K+M chain 
is rejected  
if final D 
is larger  
than initial  
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Stochastic Optimization method: update procedures. 

CONFIGURATON 

Deviation 
 measure. 

Shake-off two-step strategy: 
Step 1: Increase of deviation measure is allowed during  
             M steps with high probability 
Step 2: Only decrease of deviation measure is allowed  
             during last K steps.  

K+M chain 
is  

accepted  
if final D 

is smaller  
than initial  
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How to judge that   
one of solutions 

is “GOOD” 



How to judge that one of solutions is 
“GOOD” 

Κ>1/4  (Ideal limit κ=1/2) 
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Stochastic Optimization method. 

 Particular solution L(i)(ω) for LSF is presented as a sum  
    of a number K of rectangles with some width, height and  
    center. 
 Initial configuration of rectangles is created by random  
    number generator (i.e. number K and all parameters of 
    of rectangles are randomly generated). 
 Each particular solution L(i)(ω) is obtained by a naïve  
    method without regularization (though, varying number K). 
 
 Final solution is obtained after M steps of such procedure  
   
                       L(ω) = M-1 ∑i

 L(i)(ω)  
 
 Each particular solution has saw tooth noise 
 Final averaged solution L(ω) has no saw tooth noise though 
    not regularized with sharp peaks/edges!!!! 
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We can find many particular  
solutions each of which 

fits the input data reasonably.  
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We can find many particular  
solutions each of which 

fits the input data reasonably.  

Which particular solutions  
one has to  

take into account? 
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Self-averaging of the saw-tooth noise. 
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Self-averaging of the saw-tooth noise. 
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Self-averaging of the saw-tooth noise. 



119 

Which particular solutions one has 
 to take into account? 
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Which particular solutions one has 
 to take into account? 

One has to include solution 
with deviation measure D[A] 
which is less that twice of 
minimal  MIN{D[A]} 
 
       D[A]  <  2 MIN{D[A]} 



Sandvik method 

1. T is not too high. Otherwise A is far from spectra which 
     fit well the correlation function G. 
2. T is not too small otherwise we are back again to the  
     sawtooth noise problem. Ower-fitting of the noise. 

Simple rule T = M 



Tikhonov functional: 
        similar strategy for choice of λ  



Max Ent 

123 

Similar strategy everywhere: 
equate noise contribution  

with regularization contribution  

Avoid over-fitting 
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Similar strategy everywhere: 
equate noise contribution  

with regularization contribution  

Tikhonov & Arsenin, Solution of Ill-posed problems, 
                                  (Washington, 1977). 
 
Arsenin  (1986):  
                 the art of finding solution for ill posed  
                 problem lies in an intuition which tells us  
                 when to stop improve the deviation  
                 before the noise of input data  
                 overruns the information contained  
                 in the input data.  
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Which particular solutions one has 
 to take into account? 

One has to include solution 
with deviation measure D[A] 
which is less that twice of 
minimal  MIN{D[A]} 
 
       D[A]  <  2 MIN{D[A]} 
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Some  
tests 
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Some tests 

B=10-4 
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Some tests 

Particular cases.  

Imaginary time, T=0: 

K(m,ω) = exp(-τmω) 

Kernel is  
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Some tests 

Particular cases.  

Imaginary time,  
finite T, fermions 

Kernel is  
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Some tests 

Particular cases.  

Imaginary time,  
finite T, optical  
conductivity 

Kernel is  
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Some tests 

Particular cases.  

Matsubara frequencies,  
finite T, fermions 

Kernel is  



132 

Particular cases.  

Imaginary time,  
finite T, optical  
conductivity 

Kernel is  

Back to optical conductivity. Let us compare  
MaxEnt and Stochastic. 



133 
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Stochastic Optimization method. 

 Particular solution L(i)(ω) for LSF is presented as a sum  
    of a number K of rectangles with some width, height and  
    center. 
 Initial configuration of rectangles is created by random  
    number generator (i.e. number K and all parameters of 
    of rectangles are randomly generated). 
 Each particular solution L(i)(ω) is obtained by a naïve  
    method without regularization (though, varying number K). 
 
 Final solution is obtained after M steps of such procedure  
   
                       L(ω) = M-1 ∑i

 L(i)(ω)  
 
 Each particular solution has saw tooth noise 
 Final averaged solution L(ω) has no saw tooth noise though 
    not regularized with sharp peaks/edges!!!! 
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                                           Conclusions: 
 
 
1. Analytic continuation is ill posed problem. 
2. Similar Fredholm I integral equatuion problem in many 

applications. 
3. Long history of the methods: Tikhonov -> MaxEnt -> 

stochastic. 
4. All methods bear similar strategy of regularization: not 

to over-fit the noise 
5. Each method is the best in each particular case. There 

is no universal method which is “the best” for all cases. 
6. We are still on the way to improve the analytic 

continuation. 
7. Combinations of methods might help.   
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Questions? 



 New Method for Low Temperature  
analysis of the ESR spectra  

137 

Andrey Mishchenko 
CMRG, RIKEN 

 
 

Collaborations: 
 

Tatsuo Hasegawa (AIST) 
Hiroyuki Matsui (AIST) 

Phys Rev. Lett. 104, 056602 (2010) 



 New Method for Low Temperature  
analysis of the ESR spectra  

138 

1. Nature of the inhomogeneous ESR lineshape and  
    line narrowing 
3. Analysis of the lineshape of an electron trapped 
    by an impurity 
4. Analysis of the fine structure of  the ESR line 
    can give a complete information on the   
    distribution of the traps versus localization  
    parameters 
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Basics of ESR 
Transition between Zeeman split levels under 
the influence of the electromagnetic field. 
 
For example, the frequency is fixed and 
magnetic field B is varied. Then, the intensity 
of signal I(B)  is 
                                I(B) ~ δ(B-B0)  
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Transition between Zeeman split levels under 
the influence of the electromagnetic field. 
 
For example, the frequency is fixed and 
magnetic field B is varied. Then, the intensity 
of signal I(B)  is 
                                I(B) ~ δ(B-B0)  

Hyperfine splitting 
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Basics of ESR 
Transition between Zeeman split levels under 
the influence of the electromagnetic field. 
 
For example, the frequency is fixed and 
magnetic field B is varied. Then, the intensity 
of signal I(B)  is 
                                I(B) ~ δ(B-B0)  

Hyperfine splitting 

In complex system at  low 
temperatures the lineshape 
is set by the sum of random  
contributions coming from  

hyperfine and superhyperfine 
interactions.    
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Basics of ESR 

Hyperfine 
 splitting 

In complex system at  low temperatures the lineshape 
is set by the sum of random contributions coming from  

hyperfine and superhyperfine interactions.    
The distribution of the sum of random variable is Gaussian: 

 S(B) = dG(B) / dB 
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Basics of ESR 
The distribution of the sum of random variable is Gaussian: 

If the electron is spread over N molecules, one has a distribution 
over sum of random variables. Then, according to the Central Limit 
Theorem the distribution is Gaussian with more narrow dispersion 
σ: 
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Basics of ESR 

N molecules, Ai=Ai/N, ni=ni/N 



145 

If the electron is spread over N molecules, one has a distribution 
over sum jf random variables. Then, according to the Central Limit 
Theorem the distribution is Gaussian with more narrow dispersion 
σ: 

Above knowledge is from the theory of inhomogeneous  
lineshape in molecules. In solids? When an electron is  
localized on the trap, there is a charge distribution f(i) and  
one needs to look at the distribution of different variable 
 <B>: 
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If the electron is spread over N molecules, one has a distribution 
over sum jf random variables. Then, according to the Central Limit 
Theorem the distribution is Gaussian with more narrow dispersion 
σ: 

Above knowledge is from the theory of inhomogeneous  
lineshape in molecules. In solids? When an electron is  
localized on the trap, there is a charge distribution f(i) and  
one needs to look at the distribution of different variable 
 <B>: 
 

Experiment reveals non-Gaussian signal. 
Maybe this is the reason. 
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If the electron is spread over N molecules, one has a distribution 
over sum of random variables. Then, according to the Central Limit 
Theorem the distribution is Gaussian with more narrow dispersion 
σ: 

Above knowledge is from the theory of inhomogeneous lineshape in 
molecules. In solids? When an electron is localized on the trap, there 
is a charge distribution f(i) and one needs to look at the distribution  
of variables <B>: 
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If the electron is spread over N molecules, one has a distribution 
over sum jf random variables. Then, according to the Central Limit 
Theorem the distribution is Gaussian with more narrow dispersion 
σ: 

Above knowledge is from the theory of inhomogeneous lineshape in 
molecules. In solids? When an electron is localized on the trap, there 
is a charge distribution f(i) and one needs to look at the distribution  
of variables <B>: 

Numerical simulations  
 show that (although CLT 

does not work in this case) 
the distribution is still  

Gaussian. 
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CLT for non-uniformly distributed variables: nontrivial! 

The uniform distribution is the best case for narrowing 

In extreme limit of  localized case Neff  1. 
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CLT for non-uniformly distributed variables: nontrivial! 

Neff  = [ Σi p(i)2 ]-1/2 
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However, experimental 
signal is not Gaussian 
which means that there 
is no traps with some 
given value of Neff   
which dominate.  

Experimental ESR in pentacene  

For T<50K the wave saturation experiment shows 
that all carriers are localized and no broadening  
except nonhomogeneous one is expected!   
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However, experimental 
signal is not Gaussian 
which means that there 
is no traps with some 
given value of Neff   
which dominate.  

Experimental ESR in pentacene  

Two kinds of traps: 

  I(B) = α G(N1
eff ,B-B0) + β G(N2

eff ,B-B0)  
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However, experimental 
signal is not Gaussian 
which means that there 
is no traps with some 
given value of Neff   
which dominate.  

Experimental ESR in pentacene  

Two kinds of traps: 

  I(B) = α G(N1
eff ,B-B0) + β G(N2

eff ,B-B0)  

Three kinds of traps: 

 I(B) = α G(N1
eff ,B-B0) + β G(N2

eff ,B-B0) + γ G(N3
eff ,B-B0)  
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Experimental ESR in pentacene  
Broader  

view: 
distribution 

of 
traps  
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Experimental ESR in pentacene  

   
  Note, such interpretation  

  requires that all molecules  
  of molecular crystal are  

  equally oriented with respect 
to surface. 

 

Broader  
view: 

distribution 
of 

traps  
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Fredholm integral equation of the 1-st kind: 
so called ill posed problem 

Previously (A.S. Mishchenko et al, PRB v. 62, 6317 (2000)) 
a method more flexible and less capricious than MEM was  
developed for solving the analytic continuation problem - 

Stochastic  
Optimization  

method 
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There are 100-s 
methods to fit 
the signal.  
 
We say for the  
1-st time that 
we do not need 
any fit!!! 

ESR spectrum of organic FET 
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ESR spectrum of organic FET 
Reliability of result: 




