Correlated Electrons: Why we need Models to Understand Real Materials?

> Alexander Lichtenstein University of Hamburg

In collaboration with A. Rubtsov, H. Hafermann, and M. Katsnelson

Outline

- 1. Introduction
- 2. Functional approach: Route to fluctuations
- 3. Local correlations and beyond
- 4. Solving quantum impurity problems
- 5. From models to real materials
- 6. Outlook

Strongly Correlated Electron Systems

- U<<W Charge fluct.
- U>>W Spin fluct.

- Kondo
- Mott-Hubbard
- Heavy Fermions
 High-Tc SC
- Spin-charge order
 Colossal MR

From Atom to Solids

- How to incorporate atomic physics in the band structure ?
- How good is a local approximation ?
- What is a best solution for atomic problem in effective medium ?
- What is different from one band Hubbard model?
- How to solve a complicated Quantum multiorbital problem ?
- What is the best Tight-Binding scheme for realistic Many-Body calculation for solids?

Computational Material Science

- Starting from Schrödinger?
- Kohn Density Functional Theory (DFT) of inhomogeneous electron gas in solids
- Strongly correlated electron systems ? Dynamical Mean-Field Theory (DMFT)

Quantum Theory & Electronic structure

DFT: KS-equation (1965)

Effective one-electron Schrödinger-like equation:

KS-ki

$$(-\frac{\hbar^{2}}{2m}\nabla^{2} - V_{eff}(\vec{r}))\psi_{i}(\vec{r}) = \varepsilon_{i}\psi_{i}(\vec{r})$$
Charge density:

$$n(\vec{r}) = \sum_{i}^{N} |\psi_{i}(\vec{r})|^{2}$$
Energy Functional:

$$E[n] = T_{s}[n] + V_{H}[n] + \int n(\vec{r})V_{ext}(\vec{r})d\vec{r} + E_{xc}[n]$$
KS-kinetic energy:

$$T_{s}[n] = \sum_{i}^{N} \int d\vec{r}\psi_{i}^{*}(\vec{r})(-\frac{\hbar^{2}}{2m}\nabla^{2})\psi_{i}(\vec{r})$$
Hartree potential:

$$V_{H}[n] = \frac{e^{2}}{2} \int d\vec{r} \int d\vec{r}' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|}$$
Effective potential:

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r}) + e^2 \int d\vec{r'} \frac{n(\vec{r'})}{|\vec{r} - \vec{r'}|} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})}$$

How well performs DFT?

- DFT successful approximations for extended states s, p, electrons...
 Why it is so good?
 - The Fermi Liquid Theory (1957-59):
 - Interactions are weak quasiparticle
 - Interactions are slowly switched on
 - Energy levels are modified
 - Eigenstate is given by occupation numbers

$$E = \sum_{\sigma,k} n_{\sigma}(k) \varepsilon(k) + \frac{1}{2} \sum_{\sigma,\sigma',k,k'} f_{\sigma,\sigma'}(k,k') n_{\sigma}(k) n_{\sigma'}(k')$$

- DFT bad for correlated electrons...
 - Mott insulators, Heavy Fermions etc.

Where is a small parameter?

Why DFT-LDA works?

• Errors in the approximation of exchange and correlation cancel

LDA does fulfill the sum rule for the exchange-correlation hole

$$\int d\mathbf{r}' n_{xc}(\mathbf{r}, \mathbf{r}' - \mathbf{r}) = -1$$

 $n_{xc}(\mathbf{r}, \mathbf{r}') = n(\mathbf{r}')[\tilde{g}(\mathbf{r}, \mathbf{r}') - 1] = \text{exchange-correlation hole density;}$ $\tilde{g}(\mathbf{r}, \mathbf{r}') = \text{pair correlation function averaged over coupling constant.}$

 The exchange-correlation energy depends only on the angle-averaged exchangecorrelation hole which is well described in LDA.

$$2E_{xc}[n] = \int \frac{n(\mathbf{r})n_{xc}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}' = \int n(\mathbf{r}) d\mathbf{r} \int \tilde{n}_{xc}(\mathbf{r},R) dR/R,$$
$$\tilde{n}_{xc}(\mathbf{r},R) = \int n_{xc}(\mathbf{r},\mathbf{r}+\mathbf{R}) d\Omega_R/4\pi.$$

R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

Correlated Electrons: ARPES

Correlation driven MIT

What is the Mott transition?

a correlation driven metal-insulator transition Mott '49

 $\mathbf{\hat{\mathbf{0}}}$

cannot be obtained in band theory:

not due to Slater AF (weak coupling effect):

n

Mott transition in V₂O₃

pressure or chemical substitution

McWhan et al

Hubbard model for correlated electrons

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

• U/t

• Chemical potential

Scan ©American Institute of Physics

Correlated Electrons: Fluctuations

Fluctuation of charge, spin and orbital degrees of freedom related with complex behavior of correlated electronic systems

Metal-Insulator Transition

Phase diagram of Hubbard model

Uc=9.35t

Uc=6.05t

H. Park et al PRL (2008) C-DMFT with CT-QMC

Cluster DMFT (DCA)

M. Hettler et al, PRB 58, 7475 (1998) A. L. and M. Katsnelson, PRB 62, R9283 (2000) G. Kotliar, et al, PRL 87, 186401 (2001)

Charge transfer TMO insulators

Zaanen-Sawatzky-Allen (ZSA) phase diagram

Phys. Rev. Lett. 55, 418 (1985)

Orbital degrees of freedom

Mn $(3+) = 3d^4$

3d-ion in cubic crystal field

Matrix U₁₂₃₄

Multipole expansion:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{kq} \frac{4\pi}{2k+1} \frac{r_{<}^{k}}{r_{>}^{k+1}} Y_{kq}^{*}(\hat{r}) Y_{kq}(\hat{r}')$$

Coulomb matrix elements in Y_{Im} basis:

$$< mm' ||m''m'''> = \sum_{k} a_k(m, m'', m', m'')F^k$$

Angular part – 3j symbols

$$a_k(m,m',m''',m''') = \sum_{q=-k}^k (2l+1)^2 (-1)^{m+q+m'} \begin{pmatrix} l & k & l \\ 0 & 0 & 0 \end{pmatrix}^2 \begin{pmatrix} l & k & l \\ -m & -q & m' \end{pmatrix} \begin{pmatrix} l & k & l \\ -m'' & q & m''' \end{pmatrix}$$

Slater integrals:

$$F^{k} = e^{2} \int_{0}^{\infty} r^{2} dr |\varphi_{d}(r)|^{2} \int_{0}^{\infty} (r')^{2} dr' |\varphi_{d}(r')|^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}}$$

Average interaction: U and J

Average Coulomb parameter:

$$U = \frac{1}{(2l+1)^2} \sum_{mm'} U_{mm'} = F^0$$

Average Exchange parameter:

$$J = \frac{1}{(2l+1)^2} \sum_{mm'} J_{mm'} = \sum_{k \neq 0} \left(\begin{array}{ccc} l & k & l \\ 0 & 0 & 0 \end{array} \right)^2 F^k$$

For d-electrons:

$$J_d = \frac{1}{14}(F^2 + F^4)$$

Coulomb and exchange interactions:

$$U_{mm'} = < mm' ||mm' > J_{mm'} = < mm' ||m'm >$$

J - Hund's Materials

$$H_{t_{2g}} \,=\, (U-3J)\,\frac{\hat{N}(\hat{N}-1)}{2}\,-\,2J\,\vec{S}^2 - \frac{J}{2}\vec{L}^2 + \frac{5}{2}J\,\hat{N}$$

A. Georges et.al, arXiv:1207.3033

The Theory of Everything

Hamiltonian for multi-fermionic system in field-operators:

$$H = \sum_{\sigma} \int d\mathbf{r} \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{1}{2} \nabla^{2} + V(\mathbf{r}) - \mu \right) \hat{\psi}_{\sigma}(\mathbf{r}) \\ + \frac{1}{2} \sum_{\sigma\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\psi}_{\sigma'}^{\dagger}(\mathbf{r}') \, U(\mathbf{r} - \mathbf{r}') \, \hat{\psi}_{\sigma'}(\mathbf{r}') \hat{\psi}_{\sigma}(\mathbf{r})$$

Atomic Units: $\hbar = m = e = 1$ Coilomb interaction: $U(\mathbf{r} - \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|$

Second quantisation operators in orthonormal basis:

$$\hat{\psi}(\mathbf{r}) = \sum_{n} \phi_{n}(\mathbf{r}) \hat{c}_{n}$$

 $\hat{\psi}^{\dagger}(\mathbf{r}) = \sum_{n} \phi_{n}^{*}(\mathbf{r}) \hat{c}_{n}^{\dagger}$

Wannier Basis:

 $|n = (im\sigma)|$

QM-Alphabet

2-Q

$$\left(-\frac{1}{2}\Delta + V_{eff}(\vec{r})\right)\psi(\vec{r}) = \varepsilon\psi(\vec{r})$$

$$\hat{H} = \sum_{ij\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} U \hat{n}_{\uparrow} \hat{n}_{\downarrow}$$

3-PI

$$Z = Sp(e^{-\beta\hat{H}}) = \int D[c^*, c] e^{-\int_0^\beta d\tau \left[c_\tau^* \partial_\tau c_\tau + H(c_\tau^*, c_\tau)\right]}$$

Path Integral for Everything

Euclidean action

$$Z = \int \mathcal{D}[c^*, c] e^{-S}$$

$$S = \sum_{12} c_1^* (\partial_\tau + t_{12}) c_2 + \frac{1}{4} \sum_{1234} c_1^* c_2^* U_{1234} c_4 c_3$$

One- and two-electron matrix elements:

$$t_{12} = \int d\mathbf{r} \,\phi_1^*(\mathbf{r}) \left(-\frac{1}{2} \nabla^2 + V(\mathbf{r}) - \mu \right) \phi_2(\mathbf{r})$$
$$U_{1234} = \int d\mathbf{r} \int d\mathbf{r}' \,\phi_1^*(\mathbf{r}) \phi_2^*(\mathbf{r}') \,U(\mathbf{r} - \mathbf{r}') \,\phi_3(\mathbf{r}) \phi_4(\mathbf{r}')$$

Shot notation:

$$\sum_{1} \ldots \equiv \sum_{im} \int d\tau \ldots$$

One- and Two-particle Green Functions

One-particle Green function

$$G_{12} = -\langle c_1 c_2^* \rangle_S = -\frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S}$$

Two-particle Green function (generalized susceptibilities)

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_S = \frac{1}{Z} \int \mathcal{D}[c^*, c] c_1 c_2 c_3^* c_4^* e^{-S}$$

Vertex function:

$$X_{1234} = G_{14}G_{23} - G_{13}G_{24} + \sum_{1'2'3'4'} G_{11'}G_{22'}\Gamma_{1'2'3'4'}G_{3'3}G_{4'4}$$

$$\chi = -\chi + \Gamma$$

Baym-Kadanoff functional

Source term

$$S[J] = S + \sum_{ij} c_i^* J_{ij} c_j$$

Partition function and Free-energy:

$$Z[J] = e^{-F[J]} = \int \mathcal{D}[c^*, c] e^{-S[J]}$$

Legendre transforming from J to G:

$$F[G] = F[J] - \operatorname{Tr}(JG)$$

$$G_{12} = \frac{1}{Z[J]} \frac{\delta Z[J]}{\delta J_{12}} \Big|_{J=0} = \frac{\delta F[J]}{\delta J_{12}} \Big|_{J=0}$$

Decomposition into the single particle part and correlated part

$$F[G] = \operatorname{Tr} \ln G - \operatorname{Tr} \left(\Sigma G \right) + \Phi[G]$$

Baym-Kadanoff Functional

$$F[G] = -Tr \ln[-(G_0^{-1} - \Sigma[G])] - Tr(\Sigma[G]G) + \Phi[G]$$

Exact representation of $\Phi: \vee_{ee} = \alpha \vee_{ee}$

 $\Phi = \frac{1}{2} \int_0^1 d\alpha Tr[V_{ee}^\alpha < \psi^+ \psi^+ \psi \psi >]$

Different Functionals:

DFT: $G=\rho$ $J=V=V_h+V_{xc}$ DMFT: $G=G(i\omega)$ $J=\Sigma_{loc}(i\omega)$ BKF: $G=G(k,i\omega)$ $J=\Sigma(k,i\omega)$

Functionals: MFT- DFT- DMFT-BK

G. Kotliar et. al. RMP (2006), A. Georges (2004)

- Weiss Mean-Field Theory (MFT) of classical magnets
- Kohn Density Functional Theory (DFT) of inhomogeneous electron gas in solids
- Dynamical Mean-Field Theory (DMFT) of strongly correlated electron systems
- Baym-Kadanoff Functional

Hwo to find DMFT-functional?

Dual Fermions: Basic

Start from Correlated Lattice Find the optimal Reference System Bath hybridization Expand around DMFT solution

Superperturbation

Dual Fermion scheme

Dual Transformation
Gaussian path-integral

$$\int [\vec{f}^*, \vec{f}] \exp(-\vec{f}^* \hat{A} \vec{f} + \vec{f}^* \hat{B} \vec{c} + \vec{c}^* \hat{B} \vec{f}) = \det(\hat{A}) \exp(\vec{c}^* \hat{B} \hat{A}^{-1} \hat{B} \vec{c})$$

$$Mih \qquad A = g_{\omega}^{-1}(\Delta_{\omega} - h_{k})g_{\omega}^{-1}$$
Here Action:

$$\int d_{k}[f^*, f] = -\sum_{k\omega} \tilde{G}_{k\omega}^{-1} f_{k\omega}^* f_{k\omega} f_{k\omega} + \frac{1}{4} \sum_{1234} \gamma_{1234}^{(4)} f_{1}^* f_{2}^* f_{4} f_{3} + ...$$
Diagrammatic:

$$\int g_{k\omega} = \tilde{G}_{k\omega}^{DMFT} - g_{\omega}$$

$$\int \gamma_{1234}^{(4)} = g_{11'}^{-1} g_{22'}^{-1} \left(\chi_{1'2'3'4'} - \chi_{1'2'3'4'}^{0}\right) g_{3'3}^{-1} g_{4'4}^{-1}$$

$$g_{\omega} \text{ and } \chi_{\nu,\nu',\omega} \text{ from DMFT impurity solver}$$

Dual Fermion Action: Details Lattice - dual action

$$S[c^{*}, c, f^{*}, f] = \sum_{i} S_{\text{site},i} + \sum_{\omega \mathbf{k} \, \alpha \beta} f_{\omega \mathbf{k} \alpha}^{*} [g_{\omega}^{-1} (\Delta_{\omega} - t_{\mathbf{k}})^{-1} g_{\omega}^{-1}]_{\alpha \beta} f_{\omega \mathbf{k} \beta}$$

$$S_{\text{site},i}[c_{i}^{*}, c_{i}, f_{i}^{*}, f_{i}] = S_{\text{loc}}[c_{i}^{*}, c_{i}] + \sum_{\alpha \beta} f_{\omega i \alpha}^{*} g_{\omega \alpha \beta}^{-1} c_{\omega i \beta} + c_{\omega i \alpha}^{*} g_{\omega \alpha \beta}^{-1} f_{\omega i \beta}$$
For each site l integrate-out c-Fermions:
$$\int \mathcal{D}[c^{*}, c] \exp\left(-S_{\text{site}}[c_{i}^{*}, c_{i}, f_{i}^{*}, f_{i}]\right) =$$

$$\mathcal{Z}_{\text{loc}} \exp\left(-\sum_{\omega \alpha \beta} f_{\omega i \alpha}^{*} g_{\omega \alpha \beta}^{-1} f_{\omega i \beta} - V_{i}[f_{i}^{*}, f_{i}]\right)$$
Dual potential:
$$V[f^{*}, f] = \frac{1}{4} \gamma_{1234} f_{1}^{*} f_{2}^{*} f_{4} f_{3} + \dots$$

$$\gamma_{1234} = g_{11'}^{-1} g_{22'}^{-1} \left[\chi_{1'2'3'4'} - \chi_{1'2'3'4'}^{0}\right] g_{3'3}^{-1} g_{4'4}^{-1} \qquad \chi_{1234}^{0} = g_{14} g_{23} - g_{13} g_{24}$$

$$\chi^{1234} = \langle c_{1} c_{2} c_{3}^{*} c_{4}^{*} \rangle_{\text{loc}} = \frac{1}{\mathcal{Z}_{\text{loc}}} \int \mathcal{D}[c^{*}, c] c_{1} c_{2} c_{3}^{*} c_{4}^{*} \exp\left(-S_{\text{loc}}[c^{*}, c]\right)$$

Basic diagrams for dual self-energy

Condition for Δ and relation with DMFT

 $G^d = G^{DMFT} - a$

To determine Δ , we require that Hartree correction in dual variables vanishes. If no higher diagrams are taken into account, one obtains DMFT:

$$\frac{1}{N}\sum_{\mathbf{k}}\tilde{G}^{0}_{\omega}(\mathbf{k}) = 0 \quad \Longleftrightarrow \quad \frac{1}{N}\sum_{\mathbf{k}}G^{\mathrm{DMFT}}_{\omega}(\mathbf{k}) = g_{\omega}$$

Higher-order diagrams give corrections to the DMFT self-energy, and already the leading-order correction is nonlocal.

$$\Sigma(\mathbf{k},\omega) = \Sigma_{\text{DMFT}}(\omega) + \Sigma_{d}(\mathbf{k},\omega) / [1 + g\Sigma_{d}(\mathbf{k},\omega)]$$

Dynamical Mean Field Theory

 $\hat{G}(i\omega_n) = \frac{1}{\Omega} \sum_{k}^{BZ} \hat{G}(\vec{k}, i\omega_n)$

 $\hat{G}_0^{-1}(i\omega_n) = \hat{G}^{-1}(i\omega_n) + \hat{\Sigma}(i\omega_n)$

QMC ED Single Impurity Solver DMRG FLEX IPT

 $\hat{\Sigma}_{new}(i\omega_n) = \hat{G}_0^{-1}(i\omega_n) - \hat{G}^{-1}(i\omega_n)$

Dynamical Mean Field Theory

$$\hat{G}(i\omega_n) = \frac{1}{\Omega} \sum_{\vec{k}}^{BZ} \left[\hat{I}(\mu + i\omega_n) - \hat{H}_0(\vec{k}) - \hat{\Sigma}(i\omega_n) \right]^{-1}$$

$$\hat{G}_0^{-1}(i\omega_n) = \hat{G}^{-1}(i\omega_n) + \hat{\Sigma}(i\omega_n)$$

$$S_{eff} = -\int \int d\tau d\tau' c_{\sigma}^{\dagger}(\tau) G_0^{-1}(\tau - \tau') c_{\sigma}(\tau') + \int d\tau U n^{\dagger}(\tau) n^{\downarrow}(\tau)$$

$$\hat{G}(\tau - \tau') = -\frac{1}{Z} \int D[c, c^{+}]c(\tau)c^{+}(\tau')e^{-S_{eff}}$$

$$\hat{\Sigma}_{new}(i\omega_n) = \hat{G}_0^{-1}(i\omega_n) - \hat{G}^{-1}(i\omega_n)$$

W. Metzner and D. Vollhardt, PRL(1989) A. Georges et al., RMP 68, 13 (1996)

DMFT: SCF + Fluctuations

Quantum Impurity Solver

$$Z = \int \mathcal{D}[c^* \ c] e^{-S_{simp}}$$

$$S_{simp} = -\sum_{I J=0}^{N} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' c_{I\sigma}^{*}(\tau) \left[\mathcal{G}_{\sigma}^{-1}(\tau - \tau') \right]_{IJ} c_{J\sigma}(\tau') + \sum_{I=1}^{N} \int_{0}^{\beta} d\tau U n_{I\uparrow}(\tau) n_{I\downarrow}(\tau)$$

What is a best scheme? Quantum Monte Carlo ! Imputity solver: miracle of CT-QMC $S = \sum_{\sigma\sigma'} \int_0^\beta d\tau \int_0^\beta d\tau [-G_0^{-1}(\tau - \tau')c_{\sigma}^+(\tau)c_{\sigma}(\tau') + \frac{1}{2}U\delta(\tau - \tau')c_{\sigma}^+(\tau)c_{\sigma'}(\tau)c_{\sigma'}(\tau')c_{\sigma}(\tau')]$

$$G_0^{-1}(\tau - \tau') = \delta(\tau - \tau') \left[\frac{\partial}{\partial \tau} + \mu\right] - \Delta(\tau - \tau')$$

Interaction expansion CT-INT: A. Rubtsov et al, JETP Lett (2004)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} Tr \det[G_0(\tau - \tau')]$$

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{1}{k!} Tr \left\langle c_{\sigma}^+(\tau) c_{\sigma}(\tau') \dots c_{\sigma'}^+(\tau) c_{\sigma'}(\tau') \right\rangle_0 \det[\Delta(\tau - \tau')]$$

Efficient Krylov scheme: A. Läuchli and P. Werner, PRB (2009)

E. Gull, et al, RMP 83, 349 (2011)

Comparison of different CT-QMC

CT-QMC review: E. Gull et al. RMP (2011)

Dual Fermions: Diagrams

Convergence of Dual Fermions: 2d

$$F[J^*, J; L^*, L] = \ln \mathcal{Z}_f \int \mathcal{D}[c^*, c; f^*, f] \exp\left(-S[c^*, c; f^*, f] + J_1^*c_1 + c_2^*J_2 + L_1^*f_1 + f_2^*L_2\right)$$

$$F[L^*, L] = \ln \tilde{\mathcal{Z}}_f \int \mathcal{D}[f^*, f] \exp\left(-S_{\rm d}[f^*, f] + L_1^* f_1 + f_2^* L_2\right)$$

Hubbard-Stratanovich transformation:

$$F[J^*, J; L^*, L] = L_1^*[g(\Delta - h)g]_{12}L_2 + \ln \int \mathcal{D}[c^*, c] \exp\left(-S[c^*, c] + J_1^*c_1 + c_2^*J_2 + L_1^*[g(\Delta - t)]_{12}c_2 + c_1^*[(\Delta - t)g]_{12}L_2\right)$$

Relation between Green functions:

$$\tilde{G}_{12} = -\frac{\delta^2 F}{\delta L_2 \delta L_1^*} \bigg|_{L^* = L = 0}$$

$$\tilde{G}_{12} = -[g(\Delta - t)g]_{12} + [g(\Delta - t)]_{11'}G_{1'2'}[(\Delta - t)g]_{2'2}$$
-matrix like relations via dual self-energy

$$G_{\omega}(\mathbf{k}) = \left[\left(g_{\omega} + g_{\omega} \tilde{\Sigma}_{\omega}(\mathbf{k}) g_{\omega} \right)^{-1} + \Delta_{\omega} - t_k \right]^{-1}$$

2d-Hubbard: Spectral Function

paramagnetic calculation U/t = 8, T/t = 0.235DMFT

Pseudogap in HTSC: dual fermions $S[f, f^*] = \sum g_{\omega}^{-2} \left((\Delta_{\omega} - \epsilon_k)^{-1} + g_{\omega} \right) f_{\omega k\sigma}^* f_{\omega k\sigma} + \sum V_i$ $\omega k\sigma$ 0.3 DMFT ····· 0.25 DF -----0.2 LDFA — - 5.0 DOS 0.15 × 2.5 0.1 0.05 - 0 0.0 k 2 6 0 4 FS, n=0.85 *(*1) n=1

TPGF: Bethe-Salpeter Equations

Non-local susceptibility with vertex corrections

Susceptibility: 2d – Hubbard model

Theory of Correlated Materials Models approaches DFT

- Materials-specific Input parameters unknown Fast code packages
 - Computationally expensive
- Fails for strong correlations Systematic many-body scheme

Correlated Electrons in Crystals

Projector mapping

Idea: Use of projections of DFT wave functions $|K\rangle$ onto localized orbitals $\downarrow \downarrow \downarrow$ to obtain hybridization functions

Local Green function and hybridization function $\hat{G}_{0}^{\text{loc}}(\omega) = \sum_{K,L,L'} |L\rangle \frac{\langle L|K\rangle \langle K|L'\rangle}{\omega + i0^{+} - \epsilon_{K}} \langle L'|$ $\Rightarrow \hat{\Delta}(\omega) = \omega + i\delta - \epsilon_{d} - \left[\hat{G}_{0}^{\text{loc}}(\omega)\right]^{-1}$

Projector augmented wave basis $|K\rangle = |\tilde{K}\rangle + \sum_{i}(|\phi_i\rangle - |\tilde{\phi}_i\rangle)\langle \tilde{p}_i |\tilde{K}\rangle$ $|L\rangle = |\phi_i\rangle$ $\langle L|K\rangle = \sum_{\nu'} \langle L|\phi_{\nu'}\rangle\langle \tilde{p}_{\nu'}|\tilde{K}\rangle$

Implementation with PP, PAW code

 $|K\rangle$

F. Lechermann et I, PRB **77**, 205112 (2008), PRB **81**, 085413 (2010),

$$G_{LL'}^{-1}(\vec{k},i\omega_n) = i\omega_n + \mu - H_{LL'}^{LDA}(\vec{k}) - \Sigma_{LL'}^{DMFT}(i\omega_n)$$

$$G_{LL'}(i\omega_n) = \sum_{\vec{k}\in BZ} G_{LL'}^{-1}(\vec{k},i\omega_n)$$

$$\hat{G}(i\omega_n) = \sum_{\alpha\in O_h} \hat{U}(\alpha) \sum_{\vec{k}\in IBZ} \hat{G}(\vec{k},i\omega_n) \hat{U}^+(\alpha)$$

 $\alpha \in \mathbf{O}_{h}$

Correlated d-states:

Constrain GW calculations of U

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{i}^{occ} \sum_{j}^{unocc} \psi_{i}(\mathbf{r})\psi_{i}^{*}(\mathbf{r}')\psi_{j}^{*}(\mathbf{r})\psi_{j}(\mathbf{r}') \times \left\{ \frac{1}{\omega - \varepsilon_{j} + \varepsilon_{i} + i0^{+}} - \frac{1}{\omega + \varepsilon_{j} - \varepsilon_{i} - i0^{+}} \right\}$$
F. Aryasetiawanan et al PRB(2004)
$$W_{r}(\omega) = [1 - vP_{r}(\omega)]^{-1}v$$

$$W = [1 - vP_{r}]^{-1}v$$

$$= [1 - vP_{r} - vP_{d}]^{-1}v$$

$$= [(1 - vP_{r})\{1 - (1 - vP_{r})^{-1}vP_{d}\}]^{-1}v$$

$$= \{1 - (1 - vP_{r})^{-1}vP_{d}\}^{-1}(1 - vP_{r})^{-1}v$$

$$= [1 - W_{r}P_{d}]^{-1}W_{r}$$

Wannier - GW and effective U(ω)

$$|\varphi_{n\mathbf{R}}\rangle = \frac{V}{(2\pi)^3} \int e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}^{(\mathrm{w})}\rangle d^3k$$

T. Miyake and F. Aryasetiawan Phys. Rev. B 77, 085122 (2008)

Strength of Coulomb interactions: Graphene

Mott Transition in Ca₂RuO₄

• DFT (Grey) vs DFT+DMFT:

E. Gorelov et al, PRL104, 226401 (2010)

 $|1\rangle \sim d_{xy}, |2,3\rangle \sim d_{xz,yz}$

DC- NiO: peak positions and spectral weights

Spectral functions and double counting

NiO: Spectral Function

CT-QMC for Multiorbital system: Fe pnictides

Full rotational-invariant U matrix with 5-orbitals LDA+DMFT calculations

Spectral function vs. ARPES A. Kutepov et al PRB (2010)

BaFe₂As₂ Occupation probabilities

Superconductivity related with non-local spin-fluctuations: How to calculate non-local correlations effects - EDMFT? BUT: there is a problem with conservation low: NEED: more elaborate "non-local" scheme! $\Omega^{2} \langle \rho \rho \rangle_{\Omega K} = K^{2} \langle jj \rangle_{\Omega K} \langle \rho \rho \rangle_{\omega,K \to 0} \propto \frac{K^{2}}{\Omega^{2} + \Omega^{2}}$

Summary

- DFT+DMFT scheme is the simplest way to treat strongly correlated materials
- CT-QMC is numerically exact and very useful Quantum Impurity Solver
 (Lecture of A. Rubtsov)
- DF is an efficient scheme to describe long-range non-local correlation effects in solids