Strongly correlated electrons: Estimates of model parameters

Why model Hamiltonians?

Simple example. Intuitive approach.

Applications: 3d, 4f and C_{60} compounds.

What is left out?

Max-Planck Institut Stuttgart, Germany

Density functional formalism

$$\{-\frac{\hbar^2}{2m}\bigtriangledown^2 + V_{ext}(\mathbf{r}) + V_H(\mathbf{r}) + v_{xc}(\mathbf{r})\}\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

If good approximation to v_{xc} known, tremendous simplification.

- 1. Effective, local one-particle potential.
- 2. Efficient numerical methods available.
- 3. Used in large majority of *ab initio* solid-state physics calculations.
- 4. Surprisingly successful.

But

1. No systematic procedure for improving approximations for v_{xc} . For strongly correlated systems, LDA and GGA often not good enough.

2. In principle only ground-state properties. ε_i often (successfully) treated as excitation energies. But even if exact v_{xc} known, ε_i in general *not* an exact excitation energy (But time-dependent DFT). Need for many-body theory.

GW approximation

Based on diagrammatic theory.

 $\Sigma = \frac{W}{G_0} = \text{Zeroth order Green's function.}$ $\Sigma = \frac{W}{G_0} = \text{Screened interaction.}$ Simplest diagram in an expansion in W.

Dyson's equation: $G = G_0 + G_0 \Sigma G$.

Improves LDA (or GGA) for semiconductors.

But not sufficient for strongly correlated systems.

More complicated diagrams can be calculated, but hard to choose diagrams. No systematic expansion.

Alternative: Find (simple) model which can be solved accurately.

Stuttgart

Model calculations

1. Often large systems: $YBa_2Cu_3O_7$ (13 atoms); K_3C_{60} (60 atoms).

2. Correlation effects important: Often close to Mott transition. Often 3d or 4f compound.

- 3. LDA(GGA) cannot address many of the interesting properties.
- 4. Ab initio quantum-chemical or many-body methods not feasible.

Often only model calculations possible.

Just keep strongest interactions and most important states.

Advantage: Easier to extract physics.

Danger: Use of oversimplified model, unrealistic parameters or too crude approximations in solving model.

Need to estimate parameters from *ab initio* calculations or experiments.

Ce. $\alpha - \gamma$ transition

Promotional model:

 $\mathbb{E}_{\mathbf{F}} \xrightarrow{\mathbf{5d}} \mathbb{E}_{4\mathbf{f}} \qquad |\varepsilon_{4f} - E_F| < 0.1 \text{ eV}; \Delta \sim 0.01 \text{ eV}.$ Explains: $\alpha - \gamma$ - transition (5d \rightarrow 4f trans.). Explains: Large specific heat and susceptibility.

But: 1. $\varepsilon_{4f} - E_F \sim -2$ eV (Johansson, 1978). 2. $\tilde{\Delta} \sim 0.1$ eV. Later:

Many-body effect produces narrow resonance at E_F .

Promotional model: Wrong parameters + simple (mean-field) solution appeared to give "correct" physics.

Hamiltonian

$$H = \sum_{i} \left[-\frac{\hbar^2}{2m} \bigtriangledown_i^2 + V_{ext}(\mathbf{r}_i) \right] + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}.$$

Find some complete one-particle basis set.

$$H = \sum_{i} \varepsilon_{i} n_{i} + \sum_{i \neq j} t_{ij} \psi_{i}^{\dagger} \psi_{j} + \frac{1}{2} \sum_{ijkl} v_{ijkl} \psi_{i}^{\dagger} \psi_{j}^{\dagger} \psi_{l} \psi_{k}.$$

This Hamiltonian can be solved for small atoms and molecules, using, e.g., quantum chemical methods. But it is too complicated for systems we have in mind here.

Need to

1) project out degrees of freedom

2) remove interaction terms

Stuttgart

Hubbard model

E.g., consider just the 3d electrons in a transition metal (compound). Include Coulomb interaction between two electrons on same atom.

$$\begin{split} H = \sum_{ij} \sum_{\sigma} t_{i,j} \psi^{\dagger}_{i\sigma} \ \psi_{j'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow},, \\ \text{Anderson model} \end{split}$$

E.g., consider 3d impurity in sp host. Include Coulomb interaction on impurity but not in host.

 $H = \sum_{\mathbf{k}\sigma} \varepsilon_{\mathbf{k}} \psi_{\mathbf{k}\sigma}^{\dagger} \psi_{\mathbf{k}\sigma} + \varepsilon_{3d} \sum_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma} + \sum_{\mathbf{k}\sigma} V_{\mathbf{k}} [\psi_{\mathbf{k}\sigma}^{\dagger} \psi_{\sigma} + h.c.] + U n_{\uparrow} n_{\downarrow}.$

Projecting out one-particle states

$$H = \sum_{i} \varepsilon_{i} n_{i} + \sum_{i \neq j} t_{ij} \psi_{i}^{\dagger} \psi_{j}.$$

Corresping Hamiltonian matrix:
We study

$$\left(\begin{array}{cccc} \varepsilon_1 & t_{12} & \dots \\ t_{21} & \varepsilon_2 & \dots \\ \dots & \dots & \dots \end{array}\right)$$

 $(z-H)^{-1} = \sum_{\nu} |\nu\rangle \langle \nu| (z-H)^{-1} \sum_{\mu} |\mu\rangle \langle \mu| = \sum_{\mu} |\mu\rangle \frac{1}{z-E_{\prime\prime}} \langle \mu|.$

Resolvent operator has poles at eigenvalues E_{μ} . Project out states Q and keep states P (Löwdin). Hamiltonian matrix is rewritten in block form: Look for poles of smaller matrix

$$\left(\begin{array}{cc}H_{PP} & H_{PQ}\\H_{QP} & H_{QQ}\end{array}\right)$$

$$[z - H_{PP} - H_{PQ}(z - H_{QQ})^{-1}H_{QP}]^{-1}.$$

Identical to poles of $(z - H)^{-1}$ if eigenvectors have weight in P.

Projecting out one-particle states. Continuation

Look for the poles of the smaller matrix

$$[z - H_{PP} - H_{PQ}(z - H_{QQ})^{-1}H_{QP}]^{-1}.$$

But matrix elements now energy dependent. Replace z by "typical" energy E_0 in $(z - H_{QQ})^{-1}$. Study energy independent "small" Hamiltonian

This down-folding done efficiently in LMTO and provides hopping integrals for models.

Systematic and controlled approach.

Stuttgart

Coulomb integrals

Coulomb integrals: $F_{ij} = e^2 \int d^3r \int d^3r' \frac{\Phi_i^2(\mathbf{r})\Phi_j^2(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$.

Mn: $F_{3d,3d}\sim 21~{\rm eV}$, $F_{3d,4s}\sim 10~{\rm eV}$,

 $F_{nn}\sim 5-6~{\rm eV}$ (nearest neighbor).

Unjustified to keep $F_{3d,3d}$ and neglect everything else. Furthermore $F_{3d,3d} \sim 21$ eV is much too large to explain experiment.

Necessary to include neglected interactions implicitly as renormalization of parameters. (This reduces $F_{3d,3d}$).

What not included explicitly in model is (if possible) included implicitly as renormalization of parameters. What is included explicitly must not be included implicitly (double counting).

The values of the parameters depend on what model they are used in. Empirical parameters depend on the property considered.

Many-particle problem

For one-particle problem project out higher states. Hopping more long-ranged and procedure accurate over a smaller energy range as more states are projected out, but procedure still controlled.

$$H_{PP} - H_{PQ}(z - H_{QQ})^{-1}H_{QP}.$$

For many-body problem not practical.

H: Two-body operators with two creation + two annihilation operators.

Q projects out many-electron states with at least one electron in one-particle states to be projected out.

New terms with six operators. Very many terms.

We therefore rely on more intuitive and less rigorous approaches.

Simple model of 3d impurity

 $H = \sum_{\sigma} \left[\sum_{i=1}^{4} \varepsilon_{i} n_{i\sigma} + \left(t \psi_{1\sigma}^{\dagger} \psi_{2\sigma} + V \psi_{3\sigma}^{\dagger} \psi_{4\sigma} + h.c. \right) \right] +$

 $+ U_{dd} n_{2\uparrow} n_{2\downarrow} + U_{sd} \sum_{\sigma\sigma'} n_{2\sigma} \; n_{4\sigma'}.$

- 1. Orbital 2 very localized $\Rightarrow t$ small.
- 2. Orbitals 3+4 delocalized $\Rightarrow V$ large.

We want to project out dynamics of levels 3 and 4, assuming that electrons in space 3+4 can adjust perfectly to electrons in space 1+2. Consider spinless case. Put the electron in space 1+2 on one level

(1 or 2) and calculate the total energy.

Simple model of 3d impurity

 $H = \sum_{\sigma} \left[\sum_{i=1}^{4} \varepsilon_{i} n_{i\sigma} + \left(t \psi_{1\sigma}^{\dagger} \psi_{2\sigma} + V \psi_{3\sigma}^{\dagger} \psi_{4\sigma} + h.c. \right) \right] +$

$$\begin{split} + U_{dd} n_{2\uparrow} n_{2\downarrow} + U_{sd} \sum_{\sigma\sigma'} n_{2\sigma} n_{4\sigma'}. \\ \text{1. Orbital 2 very localized} \Rightarrow t \text{ small.} \end{split}$$

2. Orbitals 3+4 delocalized $\Rightarrow V$ large.

 $\varepsilon_1^{eff} = \varepsilon_1 + \varepsilon_{b1}, \qquad \varepsilon_2^{eff} = \varepsilon_2 + \varepsilon_{b2}.$ $H^{eff} = \varepsilon_1^{eff} n_1 + \varepsilon_2^{eff} n_2 + t(\psi_1^{\dagger}\psi_2 + \psi_2^{\dagger}\psi_1).$ $\varepsilon_2^{eff} - \varepsilon_1^{eff} = \frac{1}{2}U_{sd} - \frac{1}{8}\frac{U_{sd}^2}{V} + O(\frac{1}{V^2}).$

Renormalized by less than $U_{sd}/2$, due to readjustments of charge.

Exact solution

Introduce complete basis set.

$$\begin{split} |\tilde{1}\rangle &= \psi_1^{\dagger} \psi_{b1}^{\dagger} |0\rangle, \, |\tilde{2}\rangle = \psi_2^{\dagger} \psi_{b2}^{\dagger} |0\rangle \\ |\tilde{3}\rangle &= \psi_1^{\dagger} \psi_{a1}^{\dagger} |0\rangle, \, |\tilde{4}\rangle = \psi_2^{\dagger} \psi_{a2}^{\dagger} |0\rangle. \end{split}$$

Write down 4×4 Hamiltonian matrix. Project out states $|\tilde{3}\rangle$ and $|\tilde{4}\rangle$.

$$\begin{split} \tilde{H}_{11} &= \varepsilon_1 + \varepsilon_{b1} + \frac{t^2(z - \varepsilon_1 - \varepsilon_{a1})\sin^2\phi}{(z - \varepsilon_1 - \varepsilon_{a1})(z - \varepsilon_2 - \varepsilon_{a2}) - t^2\cos^2\phi}.\\ \phi &\sim U_{sd}/V. \text{ Put } z \sim \varepsilon_1 + \varepsilon_{1b}. \text{ Last term of order}\\ t(t/V)(U_{sd}/V)^2. \text{ For low energy properties:}\\ H^{eff} &= \varepsilon_1^{eff} n_1 + \varepsilon_2^{eff} n_2 + t\cos\phi(\psi_1^{\dagger}\psi_2 + \psi_2^{\dagger}\psi_1) + O(\frac{1}{V^3}).\\ \text{As elect. in 1+2 hops, elect. in 3+4 has to readjust. Hinders hopping.}\\ \text{To order} (U_{sd}/V)^2, \text{ neglect } \cos\phi \Rightarrow \text{ Simple effective Hamiltonian:} \end{split}$$

$$H^{eff} = \varepsilon_1^{eff} n_1 + \varepsilon_2^{eff} n_2 + t(\psi_1^{\dagger} \psi_2 + \psi_2^{\dagger} \psi_1).$$

O. Gunnarsson, PRB 41, 514 (1990).

Spin degenerate model.

 $H^{eff} = \sum_{\sigma} [\varepsilon_1^{eff} n_{1\sigma} + \varepsilon_2^{eff} n_{2\sigma} + t(\psi_{1\sigma}^{\dagger} \psi_{2\sigma} + \psi_{2\sigma}^{\dagger} \psi_{1\sigma})] + U^{eff} n_{1\uparrow} n_{1\downarrow}.$ $U^{eff} = E(n_2 = 2) - E(n_2 = 0) - 2E(n = 1).$ 3 Ligand $\varepsilon_{2}^{eff} - \varepsilon_{1}^{eff} = U_{sd} - \frac{1}{4} \frac{U_{sd}^{2}}{V} + O(\frac{1}{V^{2}}).$ Usd orbitals $U^{eff} = U - \frac{1}{2} \frac{U_{sd}^2}{V} + O(\frac{1}{V^2}).$ Údd

\overline{V}	$arepsilon_2^{ ext{eff}}$ - $arepsilon_1^{ ext{eff}}$	$U^{ m eff}$	$E_0 +$	2V	n_2	2	χ	
			Renorm.	Exact	Renorm.	Exact	Renorm.	Exact
1.0	1.17	3.18	-1.05	-0.95	0.380	0.364	0.314	0.312
1.5	1.39	3.21	-0.97	-0.90	0.339	0.326	0.266	0.262
2.0	1.53	3.29	-0.92	-0.88	0.317	0.307	0.240	0.237
3.0	1.68	3.44	-0.87	-0.85	0.292	0.287	0.214	0.213
4.0	1.75	3.55	-0.85	-0.84	0.280	0.277	0.202	0.201
6.0	1.83	3.68	-0.83	-0.82	0.268	0.267	0.190	0.190
10.0	1.90	3.80	-0.81	-0.81	0.259	0.258	0.181	0.181
20.0	1.95	3.90	-0.80	-0.80	0.252	0.252	0.174	0.174

Accurate for V large. Two types of electrons.

O. Gunnarsson, PRB 41, 514 (1990).

4s

3d

Spin degenerate model.

V	$\varepsilon_2^{\mathrm{eff}}$ - $\varepsilon_1^{\mathrm{eff}}$	U^{eff}	$E_{0} +$	$+2V$ n_2 χ				
			Renor.	Exact	Renor.	Exact	Renor.	Exact
1.0	1.17	3.18	-1.05	-0.95	0.380	0.364	0.314	0.312
1.5	1.39	3.21	-0.97	-0.90	0.339	0.326	0.266	0.262
2.0	1.53	3.29	-0.92	-0.88	0.317	0.307	0.240	0.237
3.0	1.68	3.44	-0.87	-0.85	0.292	0.287	0.214	0.213
4.0	1.75	3.55	-0.85	-0.84	0.280	0.277	0.202	0.201
6.0	1.83	3.68	-0.83	-0.82	0.268	0.267	0.190	0.190
10.0	1.90	3.80	-0.81	-0.81	0.259	0.258	0.181	0.181
20.0	1.95	3.90	-0.80	-0.80	0.252	0.252	0.174	0.174

O. Gunnarsson, PRB 41, 514 (1990).

Two types of electrons?

In model of a 3d compound, we could renormalize out levels involving very delocalized electrons (hopping integrals large, electrons "fast").

Can we separate electrons of real systems into localized and delocalized?

System	Localized	Delocalized
4f compounds	4f	5d
3d compounds	3d	4s, $4p$

Pretty good for 4f compounds ($W_{4f}/W_{5d}\sim 0.1$)

Questionable for 3d compounds, in particular at beginning of series.

Stuttgart

Other high-lying excitations A_3C_{60} (A= K, Rb)

Interesting physics in a partly occupied t_{1u} band.

We want to project out other bands. This leads to important renormalization of U, due to important interband transitions, which are not explicitly included in effective model.

Add two electrons to one molecule. The surrounding molecules polarize. This reduces the energy cost.

The polarization is described by (fairly) high-energy interband transitions. These can be projected out and U is renormalized.

"Perfect screening" (Herring)

Change occupancy of localized orbital (3d, 4f).

Screening partly due to charge transfer to delocalized orbital on same atom (4s, 5d).

Assume that screening is "perfect", i.e., that atom stays neutral. Then calculation of U is reduced to (renormalized) atomic calculation.

$$\begin{split} E(n_{4f}) &= \frac{1}{2} U n_{4f} (n_{4f} - 1) + \varepsilon_{4f} n_{4f}. \\ U &= E(5d^2 4f^{n+1}) + E(5d^4 4f^{n-1}) - 2E(5d^3 4f^n). \\ \text{E.g., Ce: } U &= E(5d^2 4f^2) + E(5d^4 4f^0) - 2E(5d^3 4f^1). \end{split}$$

Calculations show that "perfect" screening is a good approximation for rare earths but not for transition metals.

- Ce: 105% of screening inside the WS sphere.
- Fe: 50% of screening inside the WS sphere (LMTO).

But in general we cannot assume "perfect" screening.

Constrained density functional formalism

On-site Coulomb (Hubbard) interaction:

To estimate U we need to know how the energy varies with the occupancy. This can be done by using a constrained DFT.

$$E[n_{3d}^{i}] = F[n] + \int d^{3}r V_{ext}(\mathbf{r})n(\mathbf{r}) + \mu \{ \int d^{3}r n(\mathbf{r}) - N \} + \mu_{3d}^{i} \{ \int d^{3}r n_{3d}^{i}(\mathbf{r}) - n_{3d}^{i} \}.$$

Normally, we adjust μ so that number of electrons is N. Here we in addition adjust μ_{3d}^i so that number of 3d electrons on site i is N_{3d}^i . $0 = \frac{\partial F}{\partial n} + V_{ext}(\mathbf{r}) + \mu + \mu_{3d}^i P_{3d}^i$

Results in constant potential μ_{3d}^i acting on 3d electrons on atom i.

$$E(n_{3d}+1)-E(n_{3d}) \approx \varepsilon_{3d}(n_{3d}+1/2)$$

$$U = E(n_{3d}+1) + E(n_{3d}-1) - 2E(n_{3d}) \approx \partial \varepsilon_{3d} / \partial n_{3d}.$$

Dederichs, Blügel, Zeller, Akai, PRL 53, 2512 (1984).

"Subtract the kinetic energy"

Changing n_{3d} also changes kinetic energy. Straightforward application of constrained DFT incorrectly gives kinetic energy contribution to U. Calculate $E[n_{3d}^i]$ in constrained mean-field theory for $H = \sum_{ij\sigma} t_{ij} \psi^{\dagger}_{i\sigma} \psi^{i\sigma} + \frac{1}{2} \sum_{ij\sigma\sigma'}^{\prime} U_{ij} n_{i\sigma} n_{j\sigma'}$ Adjust U_{ij} so that $E[n_{3d}^i]$ from constrained DFT reproduced. Model and DFT give similar contribution from kinetic energy. Hybertsen, Schlüter, Christensen, PRB **89**, 9028 (1989).

Cococcioni, Gironcoli, PRB **71**, 035105 (2005).

Stuttgart

"Cut the hopping"

Remove the hopping integrals from localized orbital (LMTO).

1. We can easily vary the occupation number of the level by hand.

2. No hopping from the localized level to the surrounding, i.e., no (3d) kinetic energy contribution to U.

Practical approach:

1. Impurity program: Cut hopping to localized level on impurity.

2. Band structure program: Use a large super cell and cut hopping to localized level on one atom in super cell.

McMahan, Martin, Satpathy, PRB 38, 6650 (88).

Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

Stuttgart _

Constrained RPA

In RPA the polarizability is written as $P(\mathbf{r}, \mathbf{r}' : \omega) = \sum_{i}^{\text{occ}} \sum_{j}^{\text{unocc}} \psi_i(\mathbf{r}) \psi_i^*(\mathbf{r}') \psi_j^*(\mathbf{r}) \psi_j(\mathbf{r}')$ $\times \left(\frac{1}{\omega - \varepsilon_j + \varepsilon_i + i0^+} - \frac{1}{\omega + \varepsilon_j - \varepsilon_i - i0^+}\right)$

Calculating a screened Coulomb interaction would involve double-counting. Screening of 3d-electrons by 3d electrons both in U^{eff} and in Hubbard model.

Remove transitions where *both* occupied and unoccupied states contain 3d-states by introducing an energy window around 3d-band.

Results sensitive to precise choice of window.

Aryasetiawan, Karlsson, Jepsen, Schönberger, PRB 74, 125106 (2006).

Aryasetiawan, Imada, Georges, Kotliar Biermann and Lichtenstein, PRB 70, 195104 (2004)

\boldsymbol{U} for Mn in CdTe

Mn atom

Unrenormalized (F^0)	21.4 eV	
Relaxation of $3d$ orbital	-5.2 eV	Relaxation of $3d$ orbital
Relaxation of $4s$, $4p$ orbitals	-2.2 eV	important.
Relaxation core, XC effects	-1.2 eV	
Atomic U	12.8 eV	
Mn in CdTe		
Mn in CdTe On-site relaxation	15.4 eV	
Mn in CdTe On-site relaxation Charge transfer from Mn	15.4 eV -7.6 eV	Charge transfer to $4sp$
Mn in CdTe On-site relaxation Charge transfer from Mn Charge transfer to n.n. ligand	15.4 eV -7.6 eV -0.4 eV	Charge transfer to $4sp$ important.

Screening charge. Mn in CdTe

Screening charge

 State
 Screening charge

 Mn 4s 24 %

 Mn 4p 25 %

 Te
 25 %

 Empty
 19 %

Only about half the screening charge sits on Mn.

Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

Stuttgart ____

Metallic Fe

"Cut off" method: $U \sim 6.2$ eV. Screening: 4s 24 %, 4p 29 %.

Simple estimate of screening charge:

Shift of 4sp levels:

$$\begin{split} \Delta E_s &= F^0(3d,4s) - \delta n_{4sp} F^0(4s,4s) - \frac{2}{d}(1 - \delta n_{4sp}) \\ \text{Screening charge } \delta n_{4sp} = N(0) \Delta E_s. \\ F^0(3d,4s) &= 1.01 \text{ Ry}, \ F^0(4s,4s) = 0.89 \text{ Ry}, \ d = 4.68 \ a_0, \\ N(0) &= 2 \text{ states/Ry.} \Rightarrow \delta n_{4sp} = 0.61. \text{ Calc. 0.53.} \end{split}$$

Simple estimate of U:

$$\begin{split} U &= \frac{\partial \varepsilon_{3d}}{\partial n_{3d}} \\ U &\approx F(3d, 3d) - \delta n_{4sp} F(3d, 4s) - (1 - \delta n_{4sp}) \frac{2}{d} \\ &= F(3d, 3d) - \delta n_{4sp} [F(3d, 4s) - \frac{2}{d}] - \frac{2}{d} \approx 16.2 - 7.9 \delta n_{4sp} - 5.8. \\ \text{``Perfect screening''} \Rightarrow U \sim 2.5 \text{ eV (renormalized atom 2.7 eV).} \end{split}$$

Anisimov, Gunnarsson, PRB 43, 7570 (1991)

Results for Fe and Ce

System	cLDA	"cut-off"	cRPA	"perfect screening"	Exp
Fe	2.2^1	6.2 ²	4^3	2.7 ⁴	2
Ce	4.5^{1}	6 ²	3.2-3.3 ³	5^5	5-7

1. Cococcioni, Giroconcoli, PRB 71, 035105 (2005)

2. Anisimov, Gunnarsson, PRB **43**, 7570 (1991)

3. Aryasetiawan, Karlsson, Jepsen, Schönberger, PRB 74, 125106 (2006).

4. Cox, Coultard, Loyd, J. Phys. F: Metal Physics 4, 807 (1974)

5. Herbst, Watson, Wilkins, PRB 13, 1439 (1976)

Charge transfer energy

Cuprates:

Keep Cu 3d and O 2p levels. Need relative energy of these levels.

Nominally: $Cu^{2+}(3d^9)O^{2-}(2p^6)$

Consider the hopping of an O electron into the Cu $3d^9$ shell.

Thus we calculate $E(3d^{10}L^{-1}) - E(3d^9) \approx \varepsilon_{3d}(n_{3d} = 9.5) - \varepsilon_{2p}(n_{3d} = 9.5).$

This can be done if, e.g., the hopping integrals are cut.

But results depend crucially on precise definition of 3d orbital.

Stuttgart -

Photoemission Nd_2CuO_4 (end of 3d series)

Agreement with experiment suggests a rather accurate U.

Gunnarsson, Allen, Jepsen, Fujiwara, Andersen,, PRB 41, 4811 (1990).

42

Neglected renormalizations

- Methods for calculating renormalized parameters non-rigorous.
- Involving uncontrolled approximations.
- Here two examples:
- 1. Configuration dependence of hopping matrix elements.
- 2. XAS like enhancement of hopping matrix elements.

Stuttgart -

Configuration dependence of hopping matrix elements

 \times 100 LMTO: Hopping integral proportional to $\begin{array}{c|c} n_l & n_c \\ \hline n_l^0 - 1 & n_c^0 \\ \end{array}$ $V^2 \sim \tilde{\Delta} \approx \frac{s}{2} [\phi_l(C,s)]^2$ $egin{array}{ccc} n_l^0 & n_c^0 \ n_l^0 + 1 & n_c^0 \end{array}$ $\phi_l(C, s)$ is wavefunction at WS radius s with $n_l^0 = n_c^0 - 1$.40 logarithmic derivative -l - 1. $n_l^0 + 1$ $n_c^0 - 1$.67 $\phi_l(C, s)$ sensitive to configuration. Increase # of val. elec. $n_l \Rightarrow \phi_l(C, r)$ expands $\Rightarrow \phi_l(C, s)$ larger. Core hole (reduce n_c) $\Rightarrow \phi_l(C, r)$ contracts $\Rightarrow \phi_l(C, s)$ smaller.

Consider hopping $4f^n \rightarrow 4f^{n+1}L^{-1}$

Use $\phi_l(C, s)$ for configuration $4f^n$ or $4f^{n+1}$ or some average?

Difference more than factor of two $V^2!$

[Ry].

Ce

0.08

0.19

0.38

0.05

0.11

U

0.72

0.91

1.12

0.53

0.69

Mn

.51

.85

1.29

Configuration dependence of hopping matrix elements $\tilde{\Delta} \times$ 100 [Ry].

n_l	n_c	Mn	Ce	U
$n_{l}^{0} - 1$	n_c^0	.51	0.08	0.72
n_l^0	n_c^0	.85	0.19	0.91
$n_{l}^{0} + 1$	n_c^0	1.29	0.38	1.12
n_l^0	$n_{c}^{0} - 1$.40	0.05	0.53
$n_{l}^{0} + 1$	$n_{c}^{0} - 1$.67	0.11	0.69

Model with breathing

 $\phi_l \equiv \phi_l(r, n_l)$ $\phi_l^1 \equiv A \frac{\partial}{\partial n_l} \phi_l(r, n_l) |_{n_l = n_l^0}$

Anderson impurity model with ϕ_l^0 and ϕ_l^1 . Describes breathing.

Project out high-lying states \Rightarrow Model with one orbital, but with prescription for hopping matrix element.

Mixing of two orbitals

$$\begin{split} \tilde{U} \sum_{m\sigma} (\psi_{1m\sigma}^{\dagger} \psi_{0m\sigma} + \text{H.c.}) (n_0 + n_1 - n_l^0) \\ n^0 + n^1 &= n_l^0 \text{: No mixing in of } \phi_l^1 \text{. } n^0 + n^1 \neq n_l^0 \text{: Mixing in } \phi_l^1 \text{.} \\ \text{Mn: } \tilde{U} &= 0.16 \text{ Ry. } \varepsilon_l^1 - \varepsilon_l^0 = 2.13 \text{ Ry. } |\tilde{U}| / (\varepsilon_l^1 - \varepsilon_l^0) \ll 1 \end{split}$$

Perturbation theory accurate.

Model with breathing

 $\varepsilon_l^1 - \varepsilon_l^0 = 2.13~\mathrm{Ry}$ is large.

The model tends to have two sets of states separated by $\varepsilon_l^1 - \varepsilon_l^0$.

Project out high-lying states. Then left with low-lying states corresponding to ordinary Anderson model.

Hopping matrix elements:

$$\begin{split} &\langle \tilde{\mu}n_l | H | \tilde{\nu}n_l - 1 \rangle \approx \frac{\phi_l(s,n_l)}{\phi_l(s,n_l^0)} \langle \mu n_l | H | \nu n_l - 1 \rangle_{n_l^0}. \\ &| \nu n_l - 1 \rangle \text{ config. Anderson model. } | \tilde{\nu}n_l - 1 \rangle \text{ renormalized model.} \\ &\text{Hopping } 4f^0 \to 4f^1L^{-1} \text{: Orbital extent for } 4f^0 \text{ does not matter since orbital empty. Calculate hopping for } n_l^0 = 1. \end{split}$$

Shows problems. Config. dependent hopping. Property dependent. Too complicated.

Many-body renormalization of hopping. Anderson model

Discussed: $U_{3d,4s}$ renorm. $U_{3d,3d}$. What about hopping?

Anderson orthogonality catastrophe:

 $\langle 0|1
angle
ightarrow 0$ as size of system $ightarrow \infty$.

 $|n\rangle$: Ground state of 3d space in presence of n 3d electrons.

Suggests $V_{3d,4s}^{\text{eff}} = V_{3d,4s} \langle 0|1 \rangle \rightarrow 0$?

Actually closer to X-ray absorption spectroscopy (XAS):

 $3d \rightarrow 4s$ makes potential for 4s more attractive. Exciton like effect.

Suggests enhanced hopping to low-lying 4s states.

XAS spectrum: $S(\omega) \sim (\frac{\tilde{\omega}}{\omega - \omega_0})^{\alpha} \Theta(\omega - \omega_0)$,

where α depends on phase shifts and is positive. ω_0 threshold.

Stuttgart -

NI.	11 Mar 11 Mar												_	
INO S	pin de	gene	racy				-			N	N_{el}	$\langle ilde{1} ilde{0} angle$		
H =	$=\sum_{k=1}^{N}$	$_{-1}^{\prime} \varepsilon_{k^{\prime}}$	$n_k + \epsilon$	$arepsilon_d r$	$+\frac{t}{\sqrt{N}}$	$=\sum_{k}^{I}$	$\overset{N}{{\cdot}}_{\cdot=1}(\psi$	$\psi^{\dagger}_{k}\psi_{d}$ +	- H.c.)	5	3	.93		
$\cup U_{\alpha}$	$d \sum_{n=1}^{n} \Lambda$		N $^{\prime}$	† /	\sqrt{N}	/ <u> </u>	— I ()	n ' u		9	5	.89		
$+\frac{\sigma sa}{N}$	$\frac{a}{2} \sum_{k}$	=1	$\psi_{l=1} \psi_{l}$	$_{k}\psi_{l}n$	d					13	7	.87		
Solve	e moc	lel usi	ng ED) (t =	1, 2.	B =	10)			17	9	.85		
				$-\Delta E$					n_d					
ε_d	U_{sd}	Exact	Renor.	Unre.	Fit	XAS	Exact	Renor.	Unre.	Fit	XAS	$arepsilon_d^{ ext{calc}}$	$arepsilon_d^{\mathrm{fit}}$	$t_{ m eff}^{ m fit}$
-1.5	1	1.33	1.28	1.66	1.33	1.31	0.89	0.91	0.94	0.89	0.89	-1.09	-1.09	1.12
-1.5	3	0.98	0.83	1.66	0.99	0.94	0.76	0.81	0.94	0.78	0.74	-0.57	-0.64	1.21
-1.5	5	0.83	0.62	1.66	0.88	0.78	0.66	0.70	0.94	0.69	0.62	-0.29	-0.41	1.30
-1.0	3	0.64	0.48	1.20	0.69	0.62	0.57	0.55	0.90	0.55	0.53	-0.07	-0.09	1.31
-0.5	3	0.42	0.29	0.78	0.44	0.41	0.33	0.24	0.79	0.31	0.31	0.43	0.36	1.22
0.0	3	0.29	0.21	0.44	0.30	0.29	0.18	0.11	0.50	0.17	0.17	0.93	0.76	1.15
10	3	.043	.040	.043	.044	.043	.004	.003	.004	.004	.004	10.9	10.1	1.00
			-											

Renor.: Calculate $\varepsilon_d^{\text{calc}} = E(n_d = 1) - E(n_d = 0)$; $U_{sd} = 0$. Fit: Choose best $\varepsilon_d^{\text{fit}}$ and $t_{\text{eff}}^{\text{fit}}$; $U_{sd} = 0$. XAS: $[t_{\text{eff}}(\varepsilon)]^2 = t^2 S(|\varepsilon - \varepsilon_F + \omega_0), \varepsilon_d^{\text{calc}}; U_{sd} = 0$. XAS and fit comp. $t_{\text{eff}}^{\text{fit}}$ enhanced. Consistent with Ce comp. results.

Gunnarsson, Schönhammer, PRB 40,4160 (199).

```
-\Delta E
```

ε_d	U_{sd}	Exact	Renor.	Unre.	Fit	XAS	$\varepsilon_d^{\mathrm{calc}}$	$arepsilon_d^{ ext{fit}}$	$t_{ m eff}^{ m fit}$
-1.5	1	1.33	1.28	1.66	1.33	1.31	-1.09	-1.09	1.12
-1.5	2	1.12	1.02	1.66	1.12	1.08	-0.79	-0.81	1.18
-1.5	3	0.98	0.83	1.66	0.99	0.94	-0.57	-0.64	1.21
-1.5	5	0.83	0.62	1.66	0.88	0.78	-0.29	-0.41	1.30
-1.0	3	0.64	0.48	1.20	0.69	0.62	-0.07	-0.09	1.31
-0.5	3	0.42	0.29	0.78	0.44	0.41	.43	0.36	1.22
0.0	3	0.29	0.21	0.44	0.30	0.29	.93	0.76	1.15
10	3	.043	.040	.043	.044	.043	10.9	10.1	1.00

 n_d

ε_d	U_{sd}	Exact	Renor.	Unre.	Fit	XAS	$arepsilon_d^{ ext{calc}}$	$arepsilon_d^{ ext{fit}}$	$t_{ m eff}^{ m fit}$
-1.5	1	0.89	0.91	0.94	0.89	0.89	-1.09	-1.09	1.12
-1.5	2	0.82	0.87	0.94	0.83	0.81	-0.79	-0.81	1.18
-1.5	3	0.76	0.81	0.94	0.78	0.74	-0.57	-0.64	1.21
-1.5	5	0.66	0.70	0.94	0.69	0.62	-0.29	-0.41	1.30
-1.0	3	0.57	0.55	0.90	0.55	0.53	-0.07	-0.09	1.31
-0.5	3	0.33	0.24	0.79	0.31	0.31	0.43	0.36	1.22
0.0	3	0.18	0.11	0.50	0.17	0.17	0.93	0.76	1.15
10	3	.004	.003	.004	.004	.004	10.9	10.1	1.00

λ	
X	c

$arepsilon_d$	U_{sd}	Exact	Renor.	Unre.	Fit	XAS	$arepsilon_d^{ ext{calc}}$	$arepsilon_d^{ ext{fit}}$	$t_{ m eff}^{ m fit}$
-1.5	1	0.12	0.10	0.05	0.12	0.13	-1.09	-1.09	1.12
-1.5	2	0.20	0.19	0.05	0.20	0.23	-0.79	-0.81	1.18
-1.5	3	0.27	0.30	0.05	0.28	0.32	-0.57	-0.64	1.21
-1.5	5	0.36	0.55	0.05	0.38	0.40	-0.29	-0.41	1.30
-1.0	3	0.47	0.74	0.12	0.50	0.47	-0.07	-0.09	1.31
-0.5	3	0.41	0.41	0.35	0.43	0.37	0.43	0.36	1.22
0.0	3	0.21	0.14	0.75	0.22	0.19	0.93	0.76	1.15
10	3	.0006	.0005	.0006	.0006	.0006	10.9	10.1	1.00

Discovery of Fullerenes

60 equivalent carbon atoms.
12 Pentagons, 20 Hexagons.
Same shape as a soccer ball.
Discovered during astrophysical studies 1985.
Curl, Kroto, Smalley: Nobel prize 1996.

Narrow band system

Energy scales:

$$\begin{split} W &\sim 0.6 \; \text{eV} \qquad t_{1u} \text{ one-particle band width} \\ \omega_{ph} &\sim 0.2 \; \text{eV} \qquad \text{Phonon energies} \\ U &\sim 1 - 1.5 \; \text{eV} \qquad \text{On-site Coulomb interaction} \\ \text{Alkali-doped: Gives off electrons to } t_{1u}. \text{ Often metallic.} \end{split}$$

Due to unusual parameter range, many interesting issues raised.

1. $W < U \Rightarrow$ Correlation important.

2. Im $\Sigma_{el-ph} \sim W \Rightarrow$ Boltzmann equ. questionable (l << d).

3. $\omega_{ph} \sim W \Rightarrow$ Retardation effects small. Why large T_c ?

4. $\omega_{ph} \sim W \Rightarrow$ Migdal's theorem questionable.

Organics: Cano-Cortes, Dolfen, Merino, Behler, Delley, Reuter, and Koch, Eur. Phys. J. B **56**, 173 (2007).

Hopping

2s and $2p \Rightarrow$ approx. sp^2 hybrids in C₆₀ surface. Strong coupling. Bonding and anti-bonding states far from E_F .

Remaining approx. p_r orbitals couple weakly. Close to E_F . Point towards neighboring mol. Important for band structure.

Two
$$2p - 2p$$
 hopping integrals $V_{pp\sigma}$ and $V_{pp\pi}$:
 $V_{pp\sigma} = v_{\sigma} \frac{R}{R_0} e^{-\lambda(R-R_0)}; \quad \frac{V_{pp\pi}}{V_{pp\sigma}} = -\frac{1}{4} \quad R_0 = 3.1 \text{ Å}.$
Adjust v_{σ} to I DA band width and λ to lattice parameter der

Essential hopping between molecules via to equivalent hopping matrix elements. Determines band width.

Band structure depends primarily on geometrical structure.

Gunnarsson, Erwin, Koch, and Martin, PRB 57, 2159 (1998).

Satpathy, Antropov, Andersen, Jepsen, Gunnarsson, and Liechtenstein, PRB 46, 1773 (1992).

Coulomb interaction U. C₆₀ molecule

Theory:

Simple estimate: Assume the charge of the (t_{1u}) orbital is spread out as a thin shell over the C₆₀ molecule.

$$U_{
m Molecule} \sim rac{e^2}{R} \sim 4$$
 eV.

This neglects the relaxation of the orbitals as an electron is added to the molecule.

Better: LDA-LMTO U = E(n+1) + E(n-1) - 2E(n) $\Rightarrow U \approx 2.7$ eV.

Antropov, Gunnarsson, Jepsen, PRB 46, 13647 (1992).

Stuttgart ____

Coulomb interaction U. C_{60} molecule

The two experiment measure different U's!

Experiment 1: Repulsion of two electrons.

Experiment 2: Attraction between electron and hole.

Parameters renormalized differently in diff. experiments!

Coulomb interaction U. C₆₀ solid

U screened by the polarization of surrounding molecules.

Include dipole interactions between C_{60} molecules self-consistently.

 $U_{\text{Solid}} = U_{\text{Molecule}} - \delta U.$

Polarizability $\alpha \sim 90 \text{ Å}^3 \Rightarrow \delta U \sim 1.7 \text{ eV}.$

 $\Rightarrow U_{
m Solid} \sim 2.7 - 1.7 = 1.0~{
m eV}$ [Antropov, Gunnarsson, Jepsen, PRB 46, 13647 (1992)].

CRPA: $U\sim 0.8~{\rm eV}$ [Nomura, Nakamura, Arita, PRB 85, 155452 (2012)].

At surface U screened less efficiently $\Rightarrow U_{\rm Surface} = 1.3$ eV.

Auger (surface sensitive): U = 1.4 eV.

Estimate of U from Auger spectroscopy

One-particle theory: $T = \varepsilon_{\text{valence1}} + \varepsilon_{\text{valence2}} - \varepsilon_{1s}$

Convolute PES spectra.

Two valence holes interact by U. Shift convoluted PES spectra by U. Average shift about 1.6 eV. Shift for highest occupied level 1.4 eV. Lof, van Veenendaal, Koopmans, Jonkman, and Sawatzky, PRL **68**, 3924 (1992).

Phonons and electron-phonon coupling. A_3C_{60}

Electron-phonon interaction believed to cause superconductivity. Electron-phonon interaction important for transport properties and electronic properties in general.

- 1. Librations. 4-5 meV. $\lambda \sim 0.01$ (Theor.) $\lambda < 0.08$ (Exp.).
- 2. Intermolecular modes. 0-8 meV. $\lambda \sim 0.01$ (Theory).
- 3. Alkali modes. 5-16 meV. λ "small".
- 4. Intramolecular modes. 34-195 meV. $\lambda \sim 0.5-1.0.$

Focus on intramolecular phonons.

 H_g , A_g intramol. phonons couple to t_{1u} level. H_g Jahn-Teller phonons.

Calculation of electron-phonon coupling

Calculation of electron-phonon coupling for C_{60} solids very complicated.

For intramolecular modes: If intramolecular hopping much larger than intermolecular hopping:

 $\lambda \sim N(0) \sum_{\nu \alpha} \frac{\Delta \varepsilon_{\nu \alpha}^2}{\omega_{\nu}^2}$,

 $\Delta \varepsilon_{\nu\alpha}$ shift of $\varepsilon_{\nu\alpha}$ per unit displacement. ω_{ν} phonon frequency.

Stuttgart

Results for coupling strength

		(0)	λ_{ν}/N			
	Iwahara	Manini	Faulhaber	Antropov	$\omega_{ u}$	Mode
oov, Gunnarsson, and Liechtenstein, PRB	.018 Antropo	.014	.009	.022	1575	H_g (8)
1993).	.023 7651 (19	.015	.015	.020	1428	$H_g(7)$
aber, Ko, and Briddon, PRB 48 , 661 (1993).	.002 Faulhab	.003	.002	.008	1250	${\sf H}_g$ (6)
i, Corso, Fabrizio, and Tosatti, Phil. Mag. B	.005 Manini,	.004	.002	.003	1099	H_g (5)
001).	.006 793 (200	.004	.010	.003	774	$H_g(4)$
ra, Sato, Tanaka, Chibotaru, PRB 82 , 2454	.012 (2010)	.009	.001	.003	710	H_g (3)
	.011	.011	.010	.006	437	${\sf H}_g$ (2)
	.006	.005	.001	.003	273	$H_g(1)$
	.083	.065	.049	.068		$\sum H_g$

Antropov, Faulhaber and Manini LDA calculations.

Iwahara hybrid functional B3LYP (20 % HF).

Rather large deviations illustrating numerically difficult calculations.

 $\lambda_{\nu}/N(0)$

Mode	$\omega_{ u}$	Antropov	Faulhaber	Manini	Iwahara
H _g (8)	1575	.022	.009	.014	.018
$H_g(7)$	1428	.020	.015	.015	.023
H_g (6)	1250	.008	.002	.003	.002
H _g (5)	1099	.003	.002	.004	.005
$H_g(4)$	774	.003	.010	.004	.006
H _g (3)	710	.003	.001	.009	.012
H_g (2)	437	.006	.010	.011	.011
$H_g(1)$	273	.003	.001	.005	.006
$\sum H_{g}$.068	.049	.065	.083

Sensitivity of coupling to eigenvectors

$$\begin{split} e_{\nu\tau}^{\text{exact}} &= \sum_{\nu'=1}^{8} c_{\nu\nu'} e_{\nu'\tau} \\ \Delta \varepsilon_{\nu\alpha}^{\text{exact}} &= \sum_{\nu'=1}^{8} c_{\nu\nu'} \Delta \varepsilon_{\nu'\alpha} \quad \sum_{\nu\alpha} (\Delta \varepsilon_{\nu\alpha}^{\text{exact}})^2 = \sum_{\nu\alpha} (\Delta \varepsilon_{\nu\alpha})^2. \\ \lambda &\sim N(0) \sum_{\nu\alpha} \frac{\Delta \varepsilon_{\nu\alpha}^2}{\omega_{\nu}^2}. \\ \text{I.} \ e_{7\tau}^{\text{exact}} &= \sqrt{0.95} e_{7\tau} - \sqrt{0.05} e_{8\tau} \\ e_{8\tau}^{\text{exact}} &= \sqrt{0.05} e_{7\tau} + \sqrt{0.95} e_{8\tau} \\ \lambda_7/N(0) &= 0.010, \ \lambda_8/N(0) = 0.030 \text{ instead of} \\ \lambda_7/N(0) &= 0.020, \ \lambda_8/N(0) = 0.022 \\ \text{II.} \ e_{2\tau}^{\text{exact}} &= \sqrt{0.95} e_{2\tau} + \sqrt{0.05} e_{8\tau} \\ e_{8\tau}^{\text{exact}} &= \sqrt{0.05} e_{2\tau} - \sqrt{0.95} e_{8\tau} \\ \lambda_2/N(0) &= 0.033, \ \lambda_8/N(0) = 0.019 \text{ instead of} \\ \lambda_2/N(0) &= 0.006, \ \lambda_8/N(0) = 0.022 \end{split}$$

Antropov, Gunnarsson, Liechtenstein, PRB 48, 7651 (1993).

Experimental estimate from Photoemission for free C_{60}^- molecule

As the t_{1u} electron is removed, phonons are excited.

These excitations show up as satellites. Final states very simple.

The weight of satellites give information about electron-phonon coupling.

Gunnarsson, Handshuh, Bechthold, Kessler, Ganteför, and Eberhardt, PRL 74, 1875 (1995).

Photoemission C_{60}^-

Hamiltonian:

$$H = \varepsilon_0 \sum_{m=1}^3 \psi_m^{\dagger} \psi_m + \sum_{\nu=1}^{42} \omega_{\nu} b_{\nu}^{\dagger} b_{\nu} + \sum_m \sum_n \sum_{\nu} c_{nm}^{\nu} \psi_m^{\dagger} \psi_n (b_{\nu} + b_{\nu}^{\dagger}).$$

- 1. 3-fold degenerate t_{1u} level.
- 2. 42 phonon modes; 8 5-fold deg. H_g + 2 A_g modes.
- 3. Electron-phonon interaction.

 $\begin{array}{l} \text{Ground-state: } |\Phi > = [\sum_{m=1}^{3} a_{m} \psi_{m}^{\dagger} + \sum_{m=1}^{3} \sum_{\nu=1}^{42} a_{m;\nu} \psi_{m}^{\dagger} b_{\nu}^{\dagger} + \\ \sum_{m\mu\nu} a_{m;\mu,\nu} \psi_{m}^{\dagger} b_{\mu}^{\dagger} b_{\nu}^{\dagger} + \ldots] |vac > . \end{array} \\ \\ \text{Final states: } |vac >; \quad b_{\nu}^{\dagger} |vac >; \quad b_{\mu}^{\dagger} b_{\nu}^{\dagger} |vac >. \end{array}$

Photoemission spectrum:

 $\rho(\omega) = \sum_{s} |\langle N - 1, s | c_m | N, 0 \rangle|^2 \delta[\omega - E_s(N - 1) + E_0(N)].$

Solve Hamiltonian and adjust parameters until agreement with exp.

Photoemission C_{60}^{-}

H_g Mode	1	2	3	4	5	6	7	8
$\lambda_ u/N(0)$.019	.040	.013	.018	.012	.005	.017	.023

Gunnarsson, Handshuh, Bechthold, Kessler, Ganteför, and Eberhardt, PRL 74, 1875 (1995).

Stuttgart

Experimental estimate from Raman scattering

Phonon line width γ_{ν} for mode ν due to electron-phonon interaction:

 $\gamma_{\nu} = 2\pi\hbar^2 \omega_{\nu}^2 N(0) \lambda_{\nu},$

where ω_{ν} is the phonon frequency.

Measure change in line width between undoped (insulating) and doped (metallic) fullerides using Raman scattering \Rightarrow estimate of λ_{ν} .

Theoretical and experimental estimates of λ

	Theory				Photoemi	Raman	
$\omega_ u$	Antropov	Faulhaber	Manini	Iwahara	Gunnarsson	Iwahara	Kuzmany
1575	.022	.009	.014	.018	.023	.011	.003
1428	.020	.015	.015	.023	.017	.028	.004
1250	.008	.002	.003	.002	.005	.007	.001
1099	.003	.002	.004	.005	.012	.009	.001
774	.003	.010	.004	.006	.018	.007	.003
710	.003	.001	.009	.012	.013	.015	.003
437	.006	.010	.011	.011	.040	.012	.020
273	.003	.001	.005	.006	.019	.007	.048
$\sum H_g$.068	.049	.065	.083	.147	.096	.083

Iwahara photoemission: New high resolution measurement.

Iwahara, Sato, Tanaka, Chibotaru, PRB 82, 245409 (2010).

Reasonable agreement B3LYP, Iwhara photo. Raman total coupling. Large deviation between Raman and other estimates for coupling strength distribution.

Tendency to move coupling strength to lower modes in solids.

	Theory				Photoem	Raman	
$\omega_{ u}$	Antr.	Faulh.	Manini	Iwah.	Gunnar.	Iwah.	Kuzmany
1575	.022	.009	.014	.018	.023	.011	.003
1428	.020	.015	.015	.023	.017	.028	.004
1250	.008	.002	.003	.002	.005	.007	.001
1099	.003	.002	.004	.005	.012	.009	.001
774	.003	.010	.004	.006	.018	.007	.003
710	.003	.001	.009	.012	.013	.015	.003
437	.006	.010	.011	.011	.040	.012	.020
273	.003	.001	.005	.006	.019	.007	.048
$\sum H_g$.068	.049	.065	.083	.147	.096	.083

Spectral weight transfer

Phonon ν decays in an electron-hole pair.

This pair decays in phonon μ .

Coupling between different phonon modes.

$$H = \sum_{i\nu} \omega_{\nu} b^{\dagger}_{i\nu} b_{i\nu} + \sum_{i\sigma} [\varepsilon_0 + \sum_{\nu} g_{\nu} (b_{i\nu} + b^{\dagger}_{i\nu})] n_{\sigma}$$
$$+ U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_{ij} t_{ij} c^{\dagger}_{i\sigma} c_{j\sigma}$$

Four sites, two phonon modes.

 $\begin{array}{ll} \lambda_1^{\rm eff} = (1 + c\lambda_2)\lambda_1 & W = 3.7, \quad \omega_1 = 0.5, \quad \omega_2 = 1, \\ \lambda_2^{\rm eff} = (1 - c\lambda_2(\frac{\omega_1}{\omega^2})^2)\lambda_2 & g_1 = 0.3, g_2 = 0.4 \\ \text{Transfer of spectral weight to lower mode. } U \text{ reduces phonon width.} \end{array}$

Han and Gunnarsson, PRB B 61, 8628 (2000)

30

Summary

Complicated systems with strong correlation effects: Need for models.

No systematic (practical) procedure for deriving models without uncontrolled assumptions.

Assume two types of electrons, only a few types of Coulomb integrals.

Effects left out included as renormalization of parameters.

Works fairly well for quite a few cases.

But many effects left out.

Parameters property dependent.

Stuttgart

