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1 Introduction

The electronic structure of condensed matter is usually described in terms of one-electron basis
sets. Basis functions used for computation, or rather, their envelopes are usually mathemati-
cally simple functions, plane waves or Gaussians, in particular. A plane wave is a solution of
Schrodinger’s equation for a flat potential, and products of plane waves are plane waves; as a
result, the charge density and its Hartree potential are plane-waves as well. Similarly, a Gaus-
sian is a solution of Schrédinger’s equation for a parabolically increasing potential, products of
Gaussians are Gaussians, and the Hartree potential for a Gaussian charge density is 1/7 times
the error function. However, in order for such sets to give accurate results, the number of basis
functions must be orders of magnitude larger than the number of valence electrons to be de-
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By virtue of solving Schrédinger’s equation for a muffin-tin well, the classical linear muffin-tin
orbitals (LMTOs) [3,4] form a comparatively small basis set. But only in the atomic-spheres
approximation (ASA) where the MTOs are expanded in partial waves inside atomic spheres,
assumed to fill space, do the products ¢; (£,7) Y3, (F) X ¢7(2,7) Y- (F) have the same form,
Jrr (r) Y, (¥), as each factor, and this is what makes the LMTO-ASA method exceedingly
fast. However, the ASA is only accurate when the atoms are at high-symmetry positions.

For many purposes it is therefore desirable to extract a small set of intelligible, localized or-
bitals spanning merely selected conduction and/or valence states. For instance, if we want to
describe the bonding, we need a localized basis set which spans the occupied states only (bond
orbitals). If we want to construct models which add interactions to the one-electron Hamil-
tonian, e.g. electron-electron repulsions, we need a basis set of localized, atomic-like orbitals
which describes the one-electron energies and wave functions in a suitable region around the
Fermi level.



For an isolated set of energy bands in a crystal, ; (k) (2 = 1,., A), this can be done by pro-
jecting from their delocalized Bloch eigenstates, ¥; (k:r) (z = 1,., A) computed with the large
basis set, a suitable set of generalized Wannier functions, w, (r — t) . These are enumerated by
a (=1,.,A) and the lattice translations, t, of which there are N — oo, and they form a set of
orthonormal functions related to the orthonormal Bloch eigenstates by a unitary transformation:

A
; (k:r) = N3 S taexp(ik-t) we(r—t), (1)
The inverse transformation:

Wy (r —t) =N_5Z Z L, wexp(—ik-t) ¥ (kir), (2)

1s the Wannier projection. Wannier functions are not unique, because performing a unitary
transformation, Wz, . of one set of Wannier functions produces another set which also sat-
isfies Eq. (1), merely with different 7 and k-dependent phases of the Bloch functions. So the
art of Wannier projection from the Bloch states (2) 1s to choose the ¢ and k-dependent phases
of the latter in such a way that the Wannier functions attain desired properties, in particular
optimal localization — in some sense. Mazari and Vanderbilt chose to minimize the spread
(w ||r — (w|r]| -ua)|2| w) and developed an — otherwise general — numerical procedure for pro-
jecting such “maximally localized”™ Wannier functions from Bloch states expanded in plane
waves [J].



we (r—t) = N__Z Z i exp (—ik - t) ; (kir). (2)

We shall only be interested in generating locallzed Wannier functions which resemble atomic
orbitals, so-called Wannier orbitals, or simple linear combinations hereof such as bond orbitals.
In this case, it is obvious that the phases in the projection (2) should be chosen such that when
summing the Bloch states over 7 and k, the atomic-orbital characters chosen for the Wannier
functions should add up constructively. How localized the resulting Wannier orbitals are, then
depends on how well the set of A bands are described by the characters chosen. This procedure
was applied —presumably for the first time— by Satpathy and Pawlowska [6] to compute the sp?
bond orbital in Si. They used the TB-LMTO basis [4] which makes the procedure quite obvious
because the LMTO expansion has the same form as the expansion (2) in terms of Wannier
functions, except that the unitary A x A matrix u,, is replaced by the rectangular A x (A + P)
matrix of LMTO eigenvectors. The projection is thus seen to be a downfolding in which each
Wannier orbital becomes an active LMTO dressed by a tail of all the passive (P) LMTOs not
in the set of active (A) ones. With other local-orbital basis sets, somewhat similar techniques
can be used, but unless all basis functions are well localized, the Wannier orbitals obtained may

not be sufficiently localized. For a further discussion we refer to last year’s lecture notes by
Kunes [7].

For molecules, Boys [8] had a long time ago recognized that chemical bonds should be associ-
ated with those linear combinations of the occupied molecular orbitals which are most localized,
because those linear combinations are most invariant to the surroundings.
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The present notes deal with a different kind of basis set, specifically with minimal bases of
Nth-order muffin-tin orbitals (NMTOs), also known as 3rd generation MTOs [9-13]. We
shall demonstrate that with NMTOs it is possible to generate Wannier functions directly, in-
stead of via projection from the delocalized Bloch states. NMTOs are constructed from the
partial-wave solutions of Schrodingers equation for a superposition of overlapping spherical
potential wells (muffin tins, MTs) [14, 15] and NMTO sets are therefore selective in energy. As
a consequence, one can construct an NMTO set which picks a specific set of isolated energy
bands. Since NMTOs are atom-centered and localized by construction, they do —after sym-
metric orthonormalization— form a set of localized Wannier functions which, if needed, can be
recombined locally to have maximal localization. The NMTO technique is primarily for gen-
erating a localized, minimal basis set with specific orbital characters, and it can therefore be
used also to pick a set of bands which overlap other bands outside the energy region of inter-
est [16]. The corresponding NMTOs —orthonormalized or not— we refer to as Wannier-like.
Once a computationally efficient representation is implemented for products of NMTOs [17],
they should be suitable for full-potential, real-space calculations with a computational effort in-
creasing merely linearly with the size (N) of the system, so-called order-N calculations [18, 19].

Model: Materials are made of atoms, and atoms are round
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One step to the right adds one positively charged proton (and a neutron) to the
nucleus and this attracts one more negatively charged electron to the atomic shell.



2 The idea

The idea behind linear basis sets can be understood

by considering first how Wigner and Seitz thought
about solving the one-electron eigenvalue problem in

a solid; in case of a crystal, that is the band-structure
problem. They divided space into atom-centered cells
and assumed the potential to be spherically symmetric
inside each cell,

Vi(r)=> hvr(rg)-

Here and in the following, 7 = |[r — R|. and R labels
the sites, R. With this approximation, Schrédinger’s
equation (in atomic Rydberg units),

M=)V () = [~ 924V (1) =< W (er) = 0.

can be treated as a separable differential equation:
The eigenfunctions must have a partial-wave expan-

sion inside each cell,

V1) = Ze‘m ¥ RI (2.7R) Y1 (TR) €RIm-

and one may therefore proceed by first solving the

radial Schrodinger equations,

a2 [(l+1)

=+ e —vr(r) - =

rep(s.r) =0,
o3 ;. ri(e.7)

for all R and [ and a given energy, =, and then seek
coefficients, cgj,,, for which the partial-wave expan-
sions join together continuously and differentiably at
the cell boundaries. The energies for which this is
possible are the eigenvalues, ===, and W, (=,.r) the

eigenfunctions.

VIR i
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This point of view for instance leads to the approxi-
mate Wigner-Seitz rules stating that for an elemental,
close-packed crystal, where the cell can be substituted
by an atomic sphere of the same volume (9:471'11;3/3),
a band of [-character exists between the energies ;5
and =7 4 for which respectively the slope and the value
of ¢;(=,7) vanishes at the atomic sphere. These
band edges correspond to the bonding and antibond-
ing states of a homonuclear diatomic molecule. In
the atomic-spheres approximation (ASA), the input
to the band structure from the potential enters exclu-
sively via the dimensionless, radial logarithmic deriva-
tive functions evaluated at the sphere,

D{g(s.w)} = dIn|g (s,7)] /OInr|,, .
These are ever decreasing functions of energy, and the
bonding/antibonding boundary condition is:

D{g (=, w)} = 0/o0.

To set up the matching problem correctly in a direct
way, however, makes it necessary to deal with cells
rather than spheres, and with all the partial waves
required to make the one-center expansion,

me ¥RI {: ?‘R)}}H? (iﬁ) CRIm:
converged at the cell-boundary. This takes ! = 15 and
is not practical.
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Next, consider the customary and more general way of
solving Schrodinger’s equation, namely by use of the
Raleigh-Ritz variational principle for the Hamiltonian
with a trial function expressed as a superposition of
basis functions, x, (r),

V(r)~ Zg Xg (T) bg.

Variation of the coefficients b, leads to the algebraic,
generalized eigenvalue problem:

Zg (<X§' I+ Xg> —€ <X§|Xg>) bg =0,

for all g, in terms of Hamiltonian and overlap ma-
trices, {x |H|x) and (x|x). The eigenvalues, ¢;, are
variational estimates of the one-electron energies, and
the eigenvectors, b, ;, give the wavefunctions W; (r).
The problem with this approach is to devise efficient
basis sets.

The idea is now to construct the basis set in such a

way that for the approximate model potential, > pvp (TR),

the set solves Schrodinger's equation exactly to linear
order in the deviation of the eigenvalue from an en-
ergy, €., chosen at the center of interest, i.e. such
that the error is

W, (r) — W (g4,1) o (5 — €1)?

By virtue of the variational principle, the errors of the
eigenvalues will then be of order (g; — e,/)4. Imagine
what such linear basis functions must look like if we

choose them as atom-centered orbitals, x g/, (*R):

- Bonding and antibonding states of a diatomic molecule.

In order that the linear combination }°, x, (r) by be
able to provide the correct eigenfunctions,

V(e,r) = Zlm er1 (&, 7R) Yim (FR) ¢Rim;

for a spectrum of eigenvalues, ¢;, near ¢, the tails of
the orbitals entering a particular cell (/) must, when
expanded in spherical harmonics around R, have radial
parts which are energy-derivative functions:

¢ri(ev:Tr) = Ry (e,mR) /02l
because then, the sum of the tails added to the head
of the orbital will be able to yield the result

eri(evirr) + (€5 — ev) i (ev, TR) =
ori(cisrr) + O ((si — e)?) .

Hence, the radial shape of a head must be ¢ (€1, 7R) ,

plus maybe a bit of ¢p; (v, 7R) -



Xrr (*r) = ¢rr (ev,TR)

+ > drp(ev,TR) (HR’L’,RL - 61/5R'L,RL>
RIL/

with L = Im. In order to show explicitly how the solu-
tions of the Schrodinger equation for the solid can be
described through overlap of orbitals, we may simply
diagonalize H. Naming its eigenvectors and eigenval-
ues respectively upy, ; and ¢;, the linear combination

of orbitals given by an eigenvector is:

X)ui = [[6) +|é) (H — )]
= [l0)+6) (ci — )] ws
= [¢(=) ui+ O ((ei — @)?),

as anticipated. LMTOs thus naturally describe the
way in which the overlap of orbitals leads to broaden-

ing of levels into bands.

The condition that the spherical-harmonics expansion
of the tail around site R have the radial behavior
Pt (ev,rR) for all Im and all R, might seem to deter-
mine the shape of the orbital completely and not even
allow it to be smooth, but merely continuous. How-
ever, adding ¢ to ¢ yields another ¢, corresponding
to a different energy-dependent normalization, e.g.

0 [1+(E—€y)0]90(<‘5:7‘) 7 :¢(€izgr)+0§0(€”’r)'

E)E (&7

Hence, ¢ (€, 7) can be adjusted to have, say, a re-
quired value and slope at some radius, ag, where a lin-
ear combination, >, ¢p; (€vsTR) Y, (TR) . can then

be matched smoothly onto any given orbital shape

More practical than matching the partial waves at the
cell boundaries, it is therefore to embed the partial
waves in a set of envelope functions or, from the
point of view of the latter, to augment the enve-
lope functions with partial waves. In order that the

one-center expansions 1, ¥r1 (&, 7R) Yim (Y R) Crim
converge in [, the envelope functions must be such
that they match ¢g; (g,7R) for high [, whereby aug-
mentation of the high-l waves becomes unnecessary,
as long as they are taken into account as the high-/
part of the envelopes. As [ increases, the centrifugal
term [ (I + 1) /72 of the radial Schrédinger equation
drives @ (¢,7) outwards such that eventually only
the outermost, flat part of the potential is being felt.



At that point,

PRI (E-. T') — ('F"H-H) — const. x ',
2

where k%, = ¢ — v (sp). Acceptable envelope func-
tions are therefore solutions of the wave equation,

{WQ + H-2] h(s,r) =0,

with energies K2 ~ s, where the zero of potential Is

taken as the average between the atoms. Spherical

waves are used for muffin-tin orbitals (MTOs) and
plane waves are used for APWs. Gaussians do not
seem suitable because they are Schrodinger solutions
for a parabolically increasing, rather than a flat po-
tential.

For all augmented basis sets, the model potential is a
superposition of spherically symmetric potential wells,
but their range, sp, varies. APWs and LMTOs used
in full-potential calculations employ muffin-tin poten-
tials with non-overlapping spheres. For open struc-
tures, empty spheres —i.e. without nuclei— are included
at interstitial sites. Owing to its sizeable remain-
ing interstitial region (~ 0.3Q2) and strong disconti-
nuities at the spheres, such a M T-potential remains
a bad approximation to the full potential, whose ma-
trix elements must therefore be included in the Hamil-
tonian. Nevertheless, such a basis is not optimal and

—whenever possible— one uses potential spheres with

a positive radial overlap,

.'-s'” —:-—'-:j-‘i, B

<, 8
R-R

; I-'l'1 o
“RR

of up to 20%, and neglects the associated errors. For
exact, energy dependent MTOs with k2= (EMTOs),
these errors turn out to be merely of 2nd order in
the potential overlap and, as a consequence, EMTOs
can handle up to 50% overlap. Another solution to
this problem is offered by the so-called smooth Hankel
functions devised by Methfessel and Schilfgaarde.

With EMTOs it is possible to construct not only energy-
independent /inear basis sets, but also basis sets of
arbitrary order without increasing the size of the set.
Specifically, for a mesh of NV 4+ 1 energies, €, ..., €nr,
a basis set of Nth order will span the solutions of
Schrodinger’'s equation for the model potential with

the error

W, (r) — W;(e,r) o< (g5 — e0) (g5 —€1) - (5 — en) -



Since distances between close-packed spheres are small compared with the shortest wavelength
27 kg of the valence electrons. the x° dependence of the spherical waves (12) is of far less
importance [27] than that of the = dependence of the logarithmic derivatives (7). For that reason
LMTOs of the 1st [22.3] and 2nd [4] generations used x“=0. thus simplifving the decayving
Hankel functions to multipole potentials oc #—'~!. which got screened in the 2nd generation.
With =0 and the ASA. the WS rules for the energies of the band edges in an elementary close-
packed solid could be generalized to the unhybridized band structures, =; (k) = fef (LY ). the

so-called canonical bands [22.3.23.24. 26, 28].
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For the exact. energy-dependent MTOs (EMTOs) [20] with x*=:. which we shall consider in
the following section, the everfap errors turn out to be merely of 2nd order in the potential
overlap | 14] and, as a consequence. EMTOs can handle up 10 ¥+ overlap. The overlapping
MT approximation (OMTA) i1s a least-squares hit 1o the full potential |14, 15] so that the MT
discontinuties decrease with increasing overlap.

With EMTOs, also downfolding works perfectly [20], which was not the case with the old LM

10s [ 29]. However. with increasimg downlolding., the range of the EMTOs and herewith then
energy dependence mcreases, 5ol became necessary 1o construct not only energy -inde pendent
Lincar basis sets, but also basis sets of arbiivary ovder withoul increasing the size of the set

Specifically, for a mesh of N + 1 energies. ;. .... ex. a basis set of Nth order will span the

solutions of Schridinger’s equation for the model potential with the error
W) — W (s o (55 —ep) (55 —er) (55 —en) (14}

These are the so-called N\MTO and N APW basis sets. of which we shall consider the former.
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3 Crystals

In the above, R runs over all atoms in the system. If
it is a crystal with translations T, the wave functions
and the basis functions can be chosen to translate

according to:

V(r+T)=e*Tw(r).

Orbitals can then be Bloch-summed:

Xle ZT XRIm (rR T)

where R now labels the atoms in the primitive cell.
Rather than normalizing the Bloch sums over the en-
tire crystal, we have normalized them in the primitive
cell. Accordingly, > ) must be taken as the average,
rather than the sum, over the Brillouin zone. Matrices

like the Hamiltonian are translationally invariant,

<Xél_ﬁ?, (rR> |H| XRlm (r,R — T)> =
<X’Rim (rR + T) 'H| X rim (rR)> )

and as a consequence,

< le( ) ‘Hl Xle (I‘)>
ZT <XI~:1’I_1 (r}:{> ‘Hl XRIm (rR - T)> €ik'T.

Numerical calculations are often carried out in the
k-representation, but since it is trivial to add super-
scripts k and limit R to the sites in the primitive cell,
in formalisms for orbitals it is simpler and more general

to use the real-space representation.

4 Muffin-tin orbitals

Elastic scattering from a single atom:

) )

WG
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%

Multiple scattering in a solid (KKR 1947, 1954):

S [Srrmt, mim (€) = SR, Rimkeot ngy ()] viim = 0
Rlm



Atomic Spheres Approximation (1973): xk =0 Screening = Abinitio TB-LMTO-ASA (1984):
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Atomic Wigner- Seitz sphere Crystal structure



Closelv packed solid. ASA {1984}

Vilave fct W LI} —- E e I.E_,I I :| }:—:i:_r.rg [:fH:I' {r:'f]-:_l.!l;l';'_':!j-
KKR S St — Phy |'t,I T RLJ crr.; = 0, forall RL

o . . . "l

LMTO Xy (rrl =oprlce tplepp prtopp (S tp) Mepe gy
‘nshort = ¢ — ik, 2cHamiltonian: h =P 12(s —pyp e
Eigenvalue eq hcj = I:-E_i; — Eyjl C;

L R ! L S A I

A



Exact MTO theory (1994):

Give the partial wave, ¢z (£,rg), a tail, which sticks into the interstitial:
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4.1 EMTOs

In this section we define the set of exact, energy-
dependent MTOs (EMTOs) and use them to derive
the screened KKR equations and canonical band the-
ory. We first explain what the EMTOs are, start-
ing with their envelope functions, and only thereafter,
how to construct them.

Since EMT Os use overlapping MT-potentials, can form
truly minimal sets, and are usually localized, their de-
finition is tricky:

The members, h%-_ (e,rR), of the set of envelopes,

RIm
|h® (2)) , are superpositions of bare spherical waves,

2

hrim (,TR) , all with the same energy K“=¢, and are

called screened spherical waves:
|h () = h()) M (2).

Such a set is characterized, first of all, by the set of
Rlm-values to be included in the set, the so-called ac-
tive Rim-values. Secondly, by a set of non-overlapping
hard-spheres with radii ai. And, thirdly, for the pas-
sive Rlm-values, by the phase shifts ng; () of the
model potential. With such a division into active and
passive channels, a choice of hard spheres for the for-
mer, and the phase shifts for the latter, we can state
the boundary condition to be satisfied for a member,

h%f—m (=,rp) . of the set: Its spherical-harmonics pro-
jections onto the hard spheres,

Pt = /“’Sf'ﬁ(”sf — i)Y, (TR)
must vanish for all active Rlm-values, except for the
own value, Fﬁfﬁz, for which we choose to normalize
the hard-sphere projection to 1. For the remaining,
passive Rlm values, P%Emh’%fm (s,rg) should be a
spherical wave, phase shifted by 7g; (). This holds
automatically once [ is so large (> lingr=2-3) that

the phase shifts vanish.

With this boundary condition satisfied, the passive
channels can be augmented smoothly with the ap-
propriate Schrddinger solutions, ¢, (¢,7R), and the
active channels, which usually diverge at the origin of
TR, can be truncated inside the hard spheres, i.e. for
rr < ap. This truncation of the active channels is
continuous for Rlm # RE(TL, but jumps by 1 in the
own channel. In all active channels there is a discon-
tinuity of outwards slope,

o a
a,. — Y Rim.,Rlm (:) ?

Eplh a - _
()7' P_thh F_if_ﬁ?. (c,: I'R)

apR

{for the own channel, the derivative should be taken
slightly outside the sphere), specified by a slope ma-
trix, which can be calculated as shown in the next sec-

tion. The resulting augmented, truncated, and renor-



Q.

Rl
1 "I'—H—m (-‘. rp ] . is now ready to have the hole in its own
channel (head) filled:

renormalized screened spherical wave, )

[ = n s
’_’ _.liln

The radial filling function is obtained by integrating
the radial Schrodinger equation outwards from O to s 5
with the proper potential, and from there, smoothly
inwards to aj with the flat (zero) potential. The so-
lution, @ z7(e, 1), for the flat potential, and of course
the one, ¢ 57(e,7), for the proper potential, are sub-
sequently normalized such that the value of the former

is 1 at ap. This is indicated by a superscript a :

philer) = @pr(e.r) /g7 (e ag) .
Phi(er) = epr(er) /2 (s ag)

a_
Rl
: a o o :

a kink to h%; (carR); and it is truncated outside

Finally, %-(e,7) is matched continuously, but with

the interval ag < r < sp. The Schrodinger solu-
tion, wp7(e,7), is truncated outside the interval 0 <
r < Sp Hence, the resulting orbital has been con-
structed like an accordion: It starts from the origin
as the regular Schrodinger solution which extends all
the way out to the own potential sphere. Here, it
is matched smoothly to a phase-shifted wave, which
then runs inwards to the own hard sphere where it
matches the screened spherical wave with a kink. Fi-

nally, the screened spherical wave continues outwards.

The active channels of the screened spherical wave are
truncated inside all hard spheres with kinks, and the
passive channels are substituted smoothly inside all

hard spheres with regular Schrodinger solutions.

The EMTO, also called the kinked partial wave, is:

Ot (=7R) = |5 (e:75) = $h(e-7R)| Vi (P2)

T El}?fﬁa (5' rf‘-i'.) '

Here, the first term is the product of a spherical har-
monic times a radial function, which vanishes smoothly
at, and outside the own potential-sphere (sﬁ,) . The
second term is the augmented and truncated screened
spherical wave, which matches onto the first, pure-
angular-momentum term at the central hard sphere

with a kink of size
/
i (E, ”'Ifi') .
where

— (1 ! —
"=0/0r and LP;_—“— (5, (lﬁ,) =D {.‘,’:‘g(l,- (E, a [-{)} [ag.
Although the EMTO is everywhere continuous, it has

kinks at the hard spheres in all active channels, but is
smooth in the passive channels.

NnY 4 dedey

Kinked

Pa.rﬂal
wavye
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We can now try to make a linear combination,

14

Z (-f)?%hn (51'% TR) C%ﬂlm,i%
RIm

of active (A) EMTOs which is smooth. This requires
that its coefficients satisfy the kink-cancellation con-
dition,
A
_Z Kle le( ) “Rim —
Rim
for each RIm. Here we have multiplied each Rim-

equation by a% such that

a _
Kle Rl (C) —

2
aRL le Rim (C)

—apD{2% (c.ar)} d R0 0mim-

becomes a Hermitian matrix. Since the passive chan-
nels are smooth by construction, the kink-cancellation
condition must be solved only for the active channels
and therefore constitute a set of homogeneous, linear
equations. These have a proper solution for those en-
ergies, £;, which make the determinant of the matrix
vanish. Most importantly, the corresponding linear
combination is a solution of Schrédinger’s equation
at energy £; for the overlapping MT potential to 1st

order in the overlap.

That this is true, can be seen from the following
arguments: The kinks of an EMTO are always be-
tween two solutions of the same radial wave equa-
tion, either partial-wave projections of screened spher-

ical waves, zero, or inwards integrated, phase-shifted
waves. Since only two linearly independent radial so-

lutions exist, e.g. Bessel and Neumann functions, it
follows that, if they match without a kink at ap, as
they are required to do for the smooth linear combi-
nation of EMTOs, then they must be identical in the
entire range ap < r < sp. This means that through-
out the MT-sphere at R,

a
Z h’Rim (Eh I‘R) CRIm.i

le

1 ~ \ .a
RE_ i IH Y}m (rﬁ’) CRim.i

MM#

+ZV§

Im

T R) Im (rﬁ’) ‘Rlm.i’

The last term comes from the passive (P) channels
and the corresponding coefficients, ¢, are given by
the solutions, Cfﬁl._i, of the kink—cancellafion condition,
times PA expanéion coefficients. If site R is passive
(downfolded), only that term is present on the right-

hand side. As a result, the smooth linear combination



reduces to:

A
Z (fb%’,mz (Ei= 'rR) c(;?lm,i -
Rim
A+P
a Nvo (a_) .a
> o (cioma) Yim (F2) it (U

Z Z [\,O%,E (g5,7R) — @GR; (s 7R)] Yim (TR) C%{,Em.'i?

near site R. This is a solution of Schrédinger's equa-
tion, W;(g;,r), plus an error consisting of tongues
from the overlap of the neighboring muffin tins.

Now, the radial part of such a tongue is

1 2
5 (5R = 7R) VR (5R) PR (< 5R)

to lowest order in sp — 1R, as may be seen from the
radial Schrédinger equation. Here, v (sp) isthe MT-
discontinuity. Operating finally with ‘'H — &; on the

smooth linear combination of which (1) is the expan-

sion around site R, yields the error:

> vn(rs)

R

A A
L L [?iii’{ (c5.7R) — @l}s’f (cismrR) Yim (TR) ({i{‘hn.f ™~
{{?Ef{ {m
1 pairs

E 2
5 Y vp (-rﬁ,) l(sﬁ - "l'?) +(sp—rr) | vr(sr)V;(r).
R
which is obviously of 2nd order in the potential over-

lap; Q.E.D.

The set of homogeneous linear equations:

A
_Z: Ii’j%fm.ﬁfﬁ:r (E) C%f_ﬁl =0,
Rim
are the screened KKR equations, albeit in radial-derivative
gauge (denoted by a latin superscript, e.g. a) rather
than in phase-shift gauge (denote by the correspond-

ing greek superscript, a).
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4.1.1 Structure matrix

The bare Hankel function, h%’,l-m. (e,rR), to be used

in the construction:

|h (2)) = |h(g)) M (¢),

of the envelopes, is a spherical harmonics times a ra-

dial function,

kT g (k) — iy (k)] —

(ﬂ—lﬂ!1+ er?
- [ qm—lfl

o (er) er?

fore — 0. Here, (2l + 1)1 = (21 +1)(2l —1)-..-3-1
and (—1)!! = 1. For e=k? < 0, this Hankel func-
—7I5] /1 The

spherical Neumann and Bessel functions, normalized

tion is real and decays asymptotically as e

as respectively x!tln; (kr) and &7 (kr), are real
for all real energies and they are respectively irregu-
lar and regular at the origin. For ¢ > 0, the Hankel
function therefore has an imaginary part, which is the
solution for the homogeneous problem. The energy
region of interest for the valence and low-lying con-
ductions bands is £ ~ 0, and the advantage of using
screened Hankel functions, |h% (¢)) = |h(e)) M“ (&),

is that in this region there are no solutions to the ho-
mogeneous hard-sphere problem; they start at higher
energies. The screened Hankel functions are therefore

localized and real.

In order to obtain explicit expressions for the trans-
formation and slope matrices, M (g) and S%(¢), we
first need to expand a bare spherical wave centered

at R in spherical harmonics around R # R. Since the
wave is regular around R, its expansion is in terms of

Bessel functions and is:

np(krg) Yig (B5) =

—H—l I’

ZJ[ (k7R) Yim (TR) Z 47X

Im

*
lm im0 T (K’ R — RD }/l’-m—ﬁz (R - R) '
Here, nyand ny can be any /-independent linear com-
bination of a Neumann and a Bessel function. For
a pure Bessel function, the expansion holds for all

7R, while for an irregular function, it holds for rp <
)1:_{ — R) # 0. The I’-summation runs over

V—ﬂﬂp—q+2pwl+ﬁ

T
g IH= g real, and

lm Am.l —] lm(r Yzm )YE’ m—ﬁz(r’g)d’?ﬁ'



Now, since we shall renormalize the Bessel and Neu-
mann functions when changing to radial-derivative gauge,
we can start out in phase-shift gauge and use these
functions without prefactors which make them real,
and for the Hankel function use: & [n; (k1) — ij; (k1)] =
h? (k7). The conventional bare structure matrix is
then

=>.(-)

Rh?’ (K’ ‘R o RD Y}’)'km—ﬁz (ﬁ>

B.Rhn,.zfi[_ﬁz (E)

cw

Il 1

and if we define the on-site part of the structure ma-
trix as Btfmnﬁl-m (¢) = —iKkd;Omm, the one-center
expansions may be written as:

1%) = |kn) + 1) B. (2)

Here and in the following |.) is a row-vector of func-
tions, B a matrix, and we have dropped the common

energy argument.

This screening transformation, |h% (¢)) = |h (g)) M (¢),
is now defined by the requirement that the set of
screened Hankel functions have one-center expansions
formally similar to (2):

1) = [n0) M = k) + 15 B (3)

but with modified radial tail-functions:

(4)

Here, ap,, (2) is the hard-sphere phase shift when

Inm (2.7) = gy (k1) — ng (k) tan acgy,, (2) .
Rlm is active and the proper phase shift when Rim
Is passive, l.e.

tan apim (¢) = i (kag) D {j}%f”? (E'ﬂ)} = D {ji (kar)}
m ny(kag) D {j}%hn (=, E!)} — D {ny(rag)}

with
-"x:.

DAJgim (e.a)} = { D{;‘R; (z.ap)}

«v(z) depends on m, only when the division into ac-

Rlm e A
Rlm e P

tive and passive channels is m-dependent. This is the

case, say, when one wants to select the Cud_»_ > con-

[
duction band in a high-temperature superconcfucting
cuprate. If we now insert Eq.s(4) and (2) in (3) and
compare the coefficients of |kn) and |j). we obtain
the following expressions for the screening transforma-
tion and the screened structure matrix:

tan o

M B<,

}_gf'l.

1 - (5)

K
)cota — Kk cotar [B + k cot n]_l K cot a

Here, all matrices are square with the high-I blocks ne-
glected and r cot v is a diagonal matrix. We see that



the amount of Im-multipole charge at site R which
screens the l/m-multipole at site R, is

(tan (IR{/K) BR{m Rim’

By taking the radial derivatives at the hard spheres,

we can find the desired expression for the slope matrix:
a?S%(s) = aD {j (ka)} +
1 1
j (ra) J (ra)
Note that kcota () is real for all real energies and
that

[B(2) + Kk cot (s)]_1

j(ka)kecota ()] (ka) —
B 1 D{j*(c,a)}+1+1
(20+1)a D{j%(s,a)} —1

For most purposes, the hard spheres can be taken to
depend only on the type of atom, and it turns out
that for respectively spdf-, spd-, sp-, and s-sets, the
shortest range of the spherical waves is obtained for
PE = = —15, -23, -36, and -52% .
In the first two cases, the range of the structure matrix
iIs so short that it can be generated by inversion of
B (¢) + Kk cota (¢) in real space, using clusters of 20-
50 sites. This is the basis of the tight-binding (TB)
LMTO method to be derived below. Whereas a bare
Hankel function has pure I/ character, and the bare
structure matrix therefore transforms according to the
Slater-Koster scheme, the screened structure matrix
does not, because a screened Hankel function merely

for e — 0.

radial overlaps of w“

has dominant lim-character and tends to avoid the
surrounding hard spheres.

Downfolding of channels with attractive potentials in-
creases the range and energy dependence of the struc-
ture matrix a25a(5). Downfolding is therefore usu-
ally performed as a second, k-space step, after the
strongly screened structure matrix has been generated
in real space and subsequently Bloch-summed to k-
space.

4.1.2 Canonical band theory

Screening provides short range and removes the vio-
lent energy dependence of the structure matrix which
originates from the oscillatory behavior of the bare
Hankel functions for positive energy. For closely packed
structures and with strong screening, one may even
approximate the energy dependence of the structure
matrix by its 1st-order Taylor series around =0. For
this, only the simple power-law expressions for the
Bessel and Neumann functions given by:

!Imoh!—i_l [ng (k7)) — ij; (k7)] =
(21 — 1)1 er?
——— (1 —...
ES 220 — 1)

, (C!){ er?
2 n [ Y +3)"} |



are needed. The kink-cancellation equations:

A
- ={1 . a .
L K Rim. Rl [; }r Rim — 0

Rim

now offer an intelligible and general solution to the
Wigner-Seitz problem (Sect. 2) in terms of radial log-
arithmic derivative functions, D {® (¢,a)}, character-
izing the potential and matrices, a.5% (0) and a5 (0),
specifying the boundary conditions set by the struc-

ture.

This canonical band theory originally relied on the
atomic spheres approximation (ASA), but the current
form includes both the so-called combined-correction
term, expressed by S (0), and also allows for down-
folding, to the extent that the approximation 5% (¢) =~
S%(0) 4+ =5 (0) holds. In order to come even closer
to the original form in which the structure constants
are completely independent of energy, we must ne-
glect the off-diagonal elements of a.S®(0) and sub-
tract the diagonal element from DD {&(=,a)} . The re-
sulting diagonal element can finally be related to the
logarithmic derivative, D {@p;(z,q91/,,)}, evaluated

at a "magic" radius qpj,,, to be specified in Sect. 77,

With original normalizations, the screened KKR-ASA
matrix is P% () — S®, which is Hermitian. Here, the

ever increasing potential functions are:

o . WHn(r).g(s,7)} _ P (=)
P(e) = W{ja(r),e(e,7r)} T 1—aP (2)
w\ 2
— o (E) (D{(c,a)} + 1 +1].
with

WAL (), g} =2 [f()a(r) = £0) 9(r)],

being the Wronskian, which is independent of r, if
f and g are solutions of the same radial Schrodinger

equation. The original structure matrix is:

w

S0 = 2 (—)Z [S?(0) + L + 1] (5

a ’

with [ + 1 to be regarded as a diagonal matrix. With
these normalizations, the screening relation:

BY = kcotaw — kcota [B + kcot oz]_l K cot o

becomes:
—1
S = o1 (a_l — S) a1 — a1
with screening constants:
o = (a/w)? /220 +1)] .

The bare structure matrix is given by:



SH"m - (_)F el 2 (l + l’)!x

(20 4+ 1) (21" + 1) 2 s\ [+
(C+m)(l—m)l+m) (I - -m.)!] (E)

when the z-axis is turned from the first to the second

orbital, and d is the distance. This simple expression

yields bare canonical hopping integrals such as

de(amﬁ) - (*63 4, *1) ]'O(u"/d)5 3

which are useful for rough estimates, in particular for
p, d, and f orbitals. To turn the z-axis in an arbitrary
direction, the Slater-Koster scheme may be used. For
the hopping integrals involving d orbitals, the canon-
ical values were used in W.A. Harrison's Periodic Ta-
ble, which however for the s and p orbitals used free-
electron-like scaling, S d—2.

The KKR-ASA matrix has been used to explain the
band structures of close packed, elemental crystals in
terms of potential parameters and canonical [-bands:
The band positions, 7}, widths, 4A;. and shapes, 7,

parametrize the bare potential function,

< w2l
PY(c) = % - (—) [D{@(e.a)} +1+1]
1 o1 BAm
Pﬁf(s)+ (= Pm (e —Cg ERT

and the canonical I-bands, S%k! are the mm-diagonalized

li-blocks of the screened structure matrix in k-space.
In terms of these quantities, the unhybridized [-bands

are:
k
s |
— (Vi — 1) S{X

The KKR equations of course include hybridization,

K
e =Cr+Ap

and with the screening constants chosen to be the
band-shape parameters vp;. the KKR-ASA matrix,
P7(g) — S7K, takes the form of a 2-center Hamil-
tonian:

I.i%’.!m.._f?i-ﬁ: — (JTRE(SRE’(?H{S””TI + Afcéi/fgsé]?nz.ﬁfm&g’?'
Its eigenvalues turn out to be the energies to 2nd
order in their deviation from the energy, ¢, for which
the potential parameters are calculated. This form
is general and includes the hybridization between RI
bands in compounds. The form valid for arbitrary,
potential independent screening is a Hamiltonian to
1st order, only. It is given by

1.1 : L1 .1
H=P2EP™ 2 =¢,— (P/P)+ PT2SP72.
Screened canonical band theory based on the approx-
imate KKR matrix, P’ (z) —S“, has been very useful
in combination with the coherent-potential approxi-
mation (CPA) for substitutionally disordered alloys,
as well as in Green-function calculations for extended
defects, such as surfaces and interfaces. Recently,
the EMTO method was implemented for such calcu-

lations.



Multiplet ligand-field theory using Wannier orbitals
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but the electron count is non-trivial



5.2 NMTOs

We now want to construct energy-independent or-
bitals. Specifically, we want to make a superposition
of the set of EMTOs,

;{1'__ - o e ¢ a;_ = g = _.f?a__;:- a — ™
P Rlm (C=7.R) - {“’?R! (‘ﬂ ’.R) Prile R)J Yim (I"R)

evaluated at a mesh of energies, €q, ..., €)y, such that
the resulting set of NMT Os,
. N (v\;)
‘X(i\ )> = |(-b (En)> Lni
n—>0
- Alo) N
= |Olen E( ) — €N ..
() + Ziv—1 v eN) +
AN

o a (B =) (B = ey,

spans the solutions of Schrodinger’s equation for the

model potential to within an error given by:

Y, (r) —WV;(g5,1) x (g, —€0) (5 —€1) ... (65 — €n) .

This is discrete polynomial approximation for a Hilbert

N . .
space and Lg,, ) are Lagrangian matrices, whose sum

is the unit matrix. For N=0, the NMTO set is the
set of EMTOs evaluated at the energy ep=e¢,. The
second, rearranged series is Newton interpolation in

terms of descending, i.e. starting at mesh-point N, fi-

nite differences. Here, (E(l) — 61) (E(N) — EN) ,
Is a product of energy matrices, which in general are
not Hermitian and do not commute. The NMTO is
independent of the order of the energy points, but the
individual terms in the Newton series are not, and this
series is only used with the energies ordered according
to size, in which case it has a clear interpretation. If

the energy mesh condenses onto ¢, then

AN 1 dVe¢
— ]
A[0..N] ~ NtdeN| °

L/

and the Newton series becomes a truncated Taylor
series. For the present purpose, where we want to be
able to use up to about 5 energies, the Taylor series is
not practical, in particular because evaluation of the
NMTO Hamiltonian and overlap matrices will require
taking energy derivatives of orders 2N and 2N + 1
respectively. A useful, general expression for a divided

difference is:
ﬂ'\-r’: - '\; ) {f n]
ﬂ[U*\] r U”‘\‘ D-_a’rfﬁ{[” _{’”).

I




We have dropped all superscripts a because, from now
on, they do not change; screening and downfolding
is done at the level of forming the EMTOs. Note
that, in contrast to LMTO sets of the 2nd genera-
tion, NMTO sets for different screenings span differ-

ent Hilbert spaces; the factor in front of (¢; — €g) . (; — €n7)

depends on a. It is obvious that for N given, the error
must increase with the degree of downfolding, because
downfolding decreases the size of the basis set. This,
on the other hand, makes it necessary to go beyond
linear basis sets if one wants to generate truly minimal
basis sets, able to select merely the occupied bands of
an insulator, or a few narrow d-bands of a transition-

metal oxide.

Downfolding followed by construction of an NMTO
basis set is very different from standard Lowdin down-
folding, which partitions a given, large (say orthonor-
mal) basis into active and passive subsets, then finds

the downfolded Hamiltonian matrix as

(A(e) [H| A(e)) = (A|H| A)
— (AH| P) (P|H — 2| P)" (P |H

A),

and finally removes the z-dependence of the down-
folded basis by linearizing (P |H — =| P)~! and treat-
ing the term linear in £ as an overlap matrix. Obvi-
ously, an NMTO set with V >1 is more accurate.

NMTOs can be used to generate Wannier functions
directly, because with an appropriate choice of ac-
tive channels, one can generate an NMTO set for the
isolated set of bands in question. Upon making the
mesh finer, the NMTO set will converge to the proper
Hilbert space spanned by any set of Wannier func-
tions. After orthonormalization, the NMTO set will
therefore be a set of Wannier functions. NMTOs are
localized a priori by virtue of the hard-sphere confine-
ment of the constituent EMTOs, and since NMTOs
are not orthonormal, they can —but must not— be more

localized than maximally localized Wannier functions.

We shall now see that the Lagrangian matrices as well
as the Hamiltonian and overlap matrices for the model
potential, are all expressed solely in terms of the kink-
or KKR matrix, K%, = = (), and its first energy
derivative matrix evaluated at points of the energy
mesh. In fact, the NMTO formalism is much simpler
if expressed in terms of the Green matrix, (G (c) =
K ()71, also called the resolvent and, in multiple

scattering theory, the scattering path operator.

Since a single EMTO, (f)%l—ﬁl (5, TR) , solves Schrodinger's
differential equation for the model potential, except at
the kinks, operation with the Hamiltonian gives a se-

ries of delta-functions at the hard spheres and for the



active channels:

(c = H)bpr (cr) =
A

Z. O(rr —agr) Y, (Tr) KRJm Rim (2).

Rim

Solving for 0 (rp —ap) Yy (¥R) . leads to:
o(rr—aRr) Yy (f“R) =

Z QFHm &, I'

Rlim

which shows that the linear combinations,

Rim Rim ( )

735”? &1 Z ORim Rfﬁz.f{!m- (C)

Rim
of EMTOs —all with the same energy and screening—
may be considered a Green function, (& (¢, T, r), which
has T confined to the hard spheres, i.e. r—RIm.
Considered a function of r. this Green function is a
solution with energy & of the Schrodinger equation,
except at its own sphere and for its own angular mo-
mentum, where it has a kink of size unity. This kink
becomes negligible when = is close to a one-electron
energy, because the Green function has a pole there.
The confined Green function is factorized into a vector
of EMTOs, |¢(2)), which has the full spatial depen-

dence and a weak energy dependence, and a Green

matrix, GG (£), which has the full energy dependence.

Now, we want to factorize the r and s-dependences

completely and, hence, to approximate the confined

Green function, |¢(¢)) G (¢), by ‘X(N)> G (e):

Note that subtracting from the Green function a func-
tion which is analytical in energy and remains in the
Hilbert space spanned by the set |¢ (¢5,)) produces an
equally good Green function, in the sense that both
yield the same solutions of Schrodinger's equation.
We therefore first define a set | (V) (:)> by:

\(»—\o(»o )-\W’ ) G (2)
+ Z ‘“ (r (H) 'n (5)-_

and then determlne the analytical functions, AﬁgN) (2),
in such a way that )X(N) (C)> takes the same value,

)X(N)>, at all mesh points. If that can be done,
XM (@) = M)+ 0 ((e = c0) - (e —en))
and )X(N)> is the set of NMTOs. Now, since
) () = o = XV (e

the Nth divided difference of )X(N) (c)> G (&) equals
)X(N)> times the Nth divided difference of G (2).



(N

Moreover, if we let Ay ) (¢) be a polynomium of (IN-

1)st degree (/Nth degree yields zero-solutions for the
NMTOs), their Nth divided difference on the mesh

will vanish. As a result
AN~y AN
Af0..N]/ AJ0..N]

and we have therefore found the solution:

() AN |¢) G( ANG )1

A[O...N] A[O...N]
for the NMTO set. The divided difference of the

product is easily evaluated:

)> ANG

) G= [V =
96 = x A0..N]

alNle) G _ g: ¢ (€n)) G (€n)

Af0..N] HTIN 0.2y (60 — €m)
in terms of the values of the EMTOs and the Green
matrix on the energy mesh. This expression, together

with the similar one for ANG/A0...N], are those

needed to determine the Lagrange matrices in:

N
KM = 3 I (en)) L) =
n=>0

A|(f)> ] ]
RS (M) —en) + .

AN ¢
+W|]\>f](E(1)_ ) (E(V)—GV)

¢ (en)) +

For N = 0, the NMTO set is of course the set of
EMTOs evaluated at ¢ :

XO) =16 (<0)) -

NMTOs with N >0 are smooth, because according to:

the kinks of |y (g)) are independent of =. This does
however not imply that for a single NMTO, the EMTO
accordion is completely compressed, like for a smooth

linear combination of EMTOs,

Z (‘)Hfm

RimeA

X a
€4 T.R) CRim.i

with the same energy. The linear combinations mak-
ing up an NMTO have different energies and, as a
consequence, discontinuities remain in (2/N+1)st ra-
dial derivatives at the hard spheres. Projecting an
NMTO onto an active channel, leads to a radial func-

Z(r)+P"h(r), where ¢ (1) —

@(r) o« (s— 7‘)2 near s, and where near a,

tion of the type ¢ (1) —

Ph(r) = (r) o< (r—a)* (e =) . (e —en).



Since the latter error is of the same order as W, (r) —
W, (s;,r) x (5, —€g) (g, — €1) ... (5, — €x7) . it should
be included there. This means that cross-terms be-
tween ¢, . and PTh can be neglected, and that leads
to the following simple prescription for evaluating the

product of two EMTOs with different energies:
[0) (6 = l¢Y) (Yol = 18Y) (Y| +|h) (h].  (6)

occurring in the expression for ',\('\'A <)\('\Y)Z. which
is needed for evaluation of matrix elements and the
charge density.

Si charge density

NI S

N

ole-ole P

The sum of the first two terms in (6) is simply a fi-
nite sum of spherical harmonics times radial functions
which vanish smoothly outside the MT spheres. The
third term is more complicated because the SSWs do
not have pure [m-character but merely short range.
What we know about the SSWs is the structure matrix
which specifies the spherical-harmonics expansions of
the radial derivatives at the hard spheres.

It is therefore practical to interpolate a product of
strongly screened spherical waves across the hard-
sphere interstitial by a sum of SSWs. Specifically,
we fit —at all spheres and for all spherical-harmonics
with | < 6— the radial values plus first 3 derivatives
of the product (e.g. the charge-density) to those of a
sum of SSWs with 4 different energies. The so-called
value-and-derivative functions, each one vanishing in
all channels except its own, are purely structural and

exceedingly well localized because the value and first
3 derivatives vanish at all other spheres.
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With this representation of the charge density Pois-
son's equation is solved analytically. We now have
an efficient self-consistent, full-potential NMTO code

employing this technique [Y. Nohara and OKA)|.

In order to figure out how the Hamiltonian operates

on an NMTO, we use:
(= = ) Oz (5.1) =
A
L 'ri [P!i-'lF — l‘{} 1’}”! {i.fl') !\h-f{,l'”r_lﬂ'j_;Tr {:-]
Him
for N=0 and obtain: 'H:}L(O]:} = —|8) K (¢p). For
the smooth NMTOs with N >0 we can neglect the

kink terms when operating on

5 N _
6(N G E) = XM @) GE+ Y 10(en) G len) AT (2)
n=>0

and then take the N'th divided difference to get rid of

the polynomials:

AN ~ AN
'A[O...N]> = ap.n e
B A;‘V—l,}, _ AJ\I,}/
- 'A[O..N - 1]> TEN A[O...N]>

Solving for the NMTOs gives:
(= ) ) = VD) (09— )

with matrices, which are those entering the Newton
series in:

N
XY = 3 o (en)) LY =
n—>0

Al “
6 (en)) + —12 (B _ ) 4

A[N —1,N]
AN|(/I)> I ]
o P ma) - (B —ew),

given by:

an . AMea [ aMa T
~ A[0..M] \A[0..M]

Expression (H — €x7) ‘X(N)> = ‘X(N_l)> (E(N) - e__y)
shows that increasing N increases the smoothness of
the NMTOs and also their range, unless EX) con-
verges as Is the case for a set of isolated bands. If
EWN) s converged, so is the NMTO basis, and so is
the Newton series. This series expresses the NMTO
as a kinked partial wave at the same site and with the
same angular momentum, plus a smoothing cloud of
energy-derivative functions centered at all sites and

with all angular momenta.



With the aim of obtaining the expressions for the over-
lap and Hamiltonian matrices needed in a variational
>y ((xg M xg) — = (xglxg)) g = O,
we first find expressions involving | (<)) and |~ (=)} .
Multiplication of

calculation:

(E — H) (/Jf{l?ﬁ?» (E, I‘) =
A

Z 9 ("'H - “H) Yim (f'H.) '[{H,[-,r,,»,,}_,’f;ﬂ (C) .
Rlim

from the left by (¢ (2)| and using:

[6) (6] = ¢Y) (Yo = |2Y) (V| + |R) (R

together with the facts that & (=, a)=1, that P%h (=, r):=]

in the own channel, O in the other active channels, and
solves the radial Schrodinger equation in the passive

channels, leads to the result:

(6(c) s = H| 6 (2)) = K (). (6)

Here again we have resorted to matrix notation. The

Hamiltonian matrix for the N=0 set is thus

<x(0) H — €0 ><‘.(O)> = —K (€0) .

In a similar way, and with the use of Green's second

theorem, one finds that the overlap matrix between
two EMTOs with different energies is:

(6@)16 () = L= KE) (7)

g — £

— K (¢),

Note that by virtue of the definition of ‘E> , there are

no 3-center terms here. Hence, the overlap matrix for

for z — e.

the N=0 set is simply:
(XD = (6 (c0) |6 (c0)) = K (e0) . (8)
From Eq.s(6), (7), and:

A
VRim (,1) = Z P Rim (=,1) Gﬁfﬁz,Rhn (¢).
Rim

one finds:

(@ () = -
— G(e)=G(e)K(2)G(g), forz — e,

G () — G (2)

=

If we now take the A/th divided difference with respect

to Z and the Nth with respect to =, both on the mesh,
A‘\r(.-'f) - N | N

then “Sem = L;?\ 0P (€n) /H;?z:(]._;én (en — €m)

and order such that A/ < N, we find a double sum.

If reordered to a single sum, with due care taken for
the terms where Z=¢, it reduces to the expression

AM ., AN 5 AM+N+1 ¢

<A [0....&[]‘& [O.“N]> A [[0..A1]..N] (9
where the right-hand side is minus the highest deriv-
ative of that polynomium of degree A/ + N 4+ 1 which

coincides with (+(¢) at the points €q,....ex and has
the same first derivatives (7 (=) at the points ¢q. ... €3




(Hermit interpolation). For the matrix element of the
Hamiltonian, expressions:

AN AN-1 AN
o= T\ e P B AR
A0...N] A[0.N —1] A0...N]

and (9) yield:
A'N Y A‘.\T ~
| H =N ) =
A[0...N] A[0...N]

AN ~ | AN-1 ~ B AQN e
A[0..N]'A[0.N —1]/  A[0.N —1]N]
The NMTO Hamiltonian and overlap matrices are

thus given by the following, most elegant expression
which involves nothing but the values and first deriv-

atives of the KKR Green matrix, G (¢), on the energy
mesh:

A N (; ( N ) N A N (:
= " NN — e N 2
A[0..N] XV =<l >A[0...N]

A2N AN+
= |- —(e—eny) | ———— .
( A[[0.N —1] N]) (& =) ( A [[O...N]])
and with a simplified notation for the divided differ-
ences:

G[0.N (XM H — | xM)) G o.N] =

~G[0.N — 1] N] + (¢ — e) G [[0..N]]

Hence, the variational expression for the OMTA part
of the Hamiltonian is:

(W) = ey 1Y) =

~G[0.N]7T G0N — 1] N] G[0.N]?
and the overlap matrix is:
OWN) = (x(N) | V) = ¢[o.N]72 G[0.N]) G 0. N]

The variational calculation will give eigenvalues, which
for the model potential has errors proportional to

(si —c0)? (55 — €1)® - (s — ).

In many cases one would like to work with a set of
orthonormal NMTOs, e.g. Wannier orbitals, and pre-
serve the Rlm-character of each NMTO. In order to
arrive at this, we should — in the language of Lowdin
— perform a symmetrical orthonormalization of the
NMTO set. According to the expression for the over-
lap matrix, such a representation is obtained by the
following transformation:

YWY = [ () fo() 3
= [\™)) G0N {=G[[0..N]]} 2.

because it yields:

<5[{'\-) | if-"'}}
_{—a 0. N2 G o...N]) {—G [[0..N]]} 2

Note that this means:

~G[[0.N]] = {~G [0.N]} 72 {~G o N} 2.



In this orthonormal representation, the Hamiltonian
matrix becomes:

(K — ey X)) =

(@O N3 G0N — 1 N] {~G [[0..N]]} 3

To find an efficient way to compute the square root
of the Hermitian, positive definite matrix —G' [[0...V]]
may be a problem. Of course one may diagonalize
the matrix, take the square root of the eigenvalues,
and then back-transform, but this is time consuming.
Cholesky decomposition is a better alternative, but
that usually amounts to staying in the original repre-

sentation. Lowdin orthogonalization works if the set
is nearly orthogonal, because then the overlap matrix

is nearly diagonal, and Lowdin's solution was to nor-
malize the matrix such that it becomes 1 along the
diagonal and then expand in the off-diagonal part, A :

_1 1 3 5
(1+A)2 =1—=-A+-A"— .
2 8
This should work for the NMTO overlap matrix when

the NMTOs are nearly orthogonal.

5.2.1 LMTOs

For N=0, we have the results:
D) = o (<))
(XD 1 — e xV) = —K (e0),
OO = (6(c0) |6 (<)) = K (c0)-

For comparison with conventional LMTOs, consider
now the case N=1 with the two-point mesh con-
densed onto ¢, i.e., the tangent LMTO method. From

E(!\I) _ A‘/\lg(f'r' A!\IC-: -1
~ Af0..M] \A[0..A]]

we find the following energy matrix:

BN =, +aG 1 =¢, - KK
= ey + (O|P) " |H — | D),

Here and in the following an omitted energy argument
means that e=e¢,. Insertion in the Taylor series yields:

K1) =10) = |) (BW =) = |¢) — |¢) KK,
which shows that the LMTO is smooth and has the

form anticipated in Sect. 1. The Hamiltonian and

overlap matrices are:

<X(1) H— e X(l)> _ _3—1; =1 _

1K
- K+ I\"'I\"_lg—"h'_lf\',



() D) =~

K — I{ff—lg - %I{'_lh’ + I\"Ii'_1% KK
Had we instead used the Taylor series to compute
the overlap matrix, we would of course have got the
same result, and as consequences, K=2! <r/)|r])> and
K=3! <(})|r])> . This may also be obtained from the gen-
eral relation:

Al”’y AN ~ AMAN+L ¢
<A[0...A1]|A[o...N]> ~ TA[0.M]..N]

Had we used the Taylor series to compute the Hamil-

tonian matrix, we would have used: (H — ¢y) )X(N)> —

X(N_1)> (E(N) — ¢ N) with N =1, to obtain the same
result.

In order to make E(l) Hermitian and, hence, to trans-

form it into a Ist-order Hamiltonian:

-1 (1) 1 1 .1
H=KII'‘WK 2=¢ - K 2KK 2,
one must symmetrically orthonormalize the Oth-order

1
set, which now becomes: |¢) (¢|od) 2. After apply-
ing the same transformation to the LMTO set, it be-

comes:

)X(1)> = |¢) + )(/)> (H —¢y).

For simplicity of notation, we have not changed the
symbols for the orbitals. This expression for the LM TO

is the one envisaged in expression:

eri(ev.TR) + (i — €) pri(ev, TR) =
: 2
eri(zirR) + O (e — @)?) .

of Sect. 1: The tail-functions are & (r) and the head
of the Rlm-orbital is

("f)ﬁ'.l_ﬁ?. (r.ﬁ’) + Z PRim (rﬁ'.) (H o (“)I-:['Em.ﬁfﬁ? :

Im

In order to show explicitly how the solutions of Schrédinger's

equation for the solid can be described through over-
lap of orbitals, we may simply diagonalize H{. Naming

its eigenvectors and eigenvalues respectively wupj,,. ;

and =;, the linear combination of orbitals given by an
eigenvector is:

%) ui = |0) ui + &) Hu;
= | (=) ui + O ((si — e1)?)

as anticipated. LMTOs thus naturally describe the
way in which the overlap of orbitals leads to broaden-

u;

ing of levels into bands.



Great simplification occurs if the energy dependence
of the off-diagonal elements of the KKR matrix can
be neglected, because then we can define,

K ()= P(s)-S.

Now, there is only one matrix, K=S, and four poten-
tial parameters,

P, P=(s]6), P=2!(¢|d), and P=3!(d]0).

The assumption that the kinked partial waves are or-
thogonal, therefore constitutes a generalized atomic-
spheres approximation (ASA) with magic radii qp;,,

obtained by the requirement that the potential func-

tion satisfies Py, = (O pim|O pim). The 1st-order Hamil-
tonian reduces to:

1.1 . .1 .1
H=PIEP 3=¢,— (P/P)+ P 3SP2

which has the 2-center form, albeit with arbitrary screen-

ing.

i 1
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screened canonical s-, p- and d-bands for the b.c.c. structure.
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screened canomical s-, p- and d-bands for the f.c.c. structure.



The d,.- member of the V t,, kinked-partial-wave set
is a solution of the LDA Schrodinger equation at a
chosen energy and has V t,, character at no other
site. The KPWs are obtained by downfolding from
the complete set of all partial waves at all sites.

The NMTO V t,, set is that linear combination of the
KPW sets at the N+1 energies chosen, with the
property that the NMTO set is complete at those
energies. This is Nth-order polynomial interpolation
for a Hilbert space. The NMTO set has the same size
as the KPW set, i.e. its size is independent of N.
Hence, there are 3 NMTOs per V site in the V t,, set,.

Symmetrical orthonormalization of the

(converged) NMTO V t,, set yields a set of
localized Wannier functions (WFs).




Taking the spread of the Wannier function as a measure of its localization:
SOLOVYEV, PCHELKINA, AND ANISIMOV PHYSICAL REVIEW B 75, 045110 (2007)
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5 Standard Lowdin downfolding and

N-ization

In the NMTO method we first construct the set of
energy-dependent, downfolded KPWs (EMTOs) from
multiple scattering theory, i.e. we compute the struc-
ture matrix In a strongly screened (e.g. spd) repre-
sentation and then downfold this matrix to the desired
degree for each energy. Thereafter we N-ize the EM-
TOs to form the energy-independent NMTO basis
set. This is different from standard Lowdin down-
folding which partitions a given, large set of energy-
independent, strongly localized orbitals into active and
passive subsets, |x) = |x4) + [xpB), and then elimi-
nates the latter. Had one chosen this large basis set
to be one of strongly screened NMTOQOs, N-ization
would have come before downfolding, and this is also
the sequence in which LMTO downfolding was done
in the eighties. Below, we shall first review Lowdin

downfolding because it is similar to, but much more
familiar than screened multiple scattering theory, and

then indicate that subsequent use of the N-ization
technique might be useful.

Partitioning the generalized eigenvalue equations yields:

(-’f—:‘(})l‘f31+[ff—:‘{)]1';:fi;y:(]
(l’-" — :‘(}};r:l l;"! + (1’.’ — :-'{)};;.;;I'JI; = U

in block notation. Solving the bottom equations for
bP:
bp = —[(H —O)pp] * (H —O)paba, (12)

and inserting in the upper equations, yields the well-
known set of Lowdin-downfolded secular equations:

{ (H — EO)AA B }b —0
(I —20) 4p (I — 0)pp) 1 (IT —O)py | !

(13)
These, together with the "upfolding” (12) give the ex-
act eigenfunction coefficients by = (b4,bp), as long
as the proper energy dependences are kept. But in or-
der for the secular matrix to have the desirable [ —=O
form, the energy dependence of the complicated ma-
trix (H —eO) 4p [(H —0) pp]™t (H —£0) p 4 is ei-
ther neglected or linearized.

We are interested in the set of downfolded orbitals
giving rise to this secular matrix. This is the energy-
dependent set:

6a(e)) = Ixa)—Ixp) [(H—20)ppl ™ (H —0)p 4
IxA) + Ixp) Dpal(e), (14)
with each member |¢, (£)) being the active orbital
|X,) . dressed by an energy-dependent linear combi-
nation of passive orbitals. How well localized |¢, (2))
is, depends on how well the chosen set |\ 4) repro-
duces the eigenstates at =.

That the 'H — = represented in this set is the matrix in
(13), is seen by first operating on (14) with H —«&, and
then projecting onto the active and passive subsets:



(XalH=2]04(0)) = (H —20) 4,4 V,0,
— (H —20) 4p[(H —£0)pp] H (H —0)p 4

(xplH—¢lp4(c)) =0.

Forming finally the linear combination (14) yields the V tZQ NMTO

desired result:

(6a() |[H —[d4(2)) = (H—=20) 44
—(H = £0)4p [(H = =0) pp] ™ (H = =0)

One can show that this equals —(7 4 4 ()7}, exactly
as in MTO theory. In fact, the entire N-ization proce-
dure developed above could be used to remove the en-
ergy dependence of the Léwdin-downfolded set (14).

The result for the dress is:

DN = Gpy[0.N] Gyqf0.N]E
~ Gpa(s)Gaa(s) ™ =Dpa(e).
and therefore the major cause for delocalization seems
to be the Lowdin downfolding as given by (14).

This procedure seems to be computationally more de-
manding than the one we have described, and to yield
less localized downfolded obitals. It certainly only \ i

works for orbital basis sets with merely one radial func- ‘ \ A > = ¥ A/ g + P ‘;}J‘_ |

tion per Rlm.
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Three-orbital LDA Wannier-like function
La,CuQ, HgBa,CuO,




Three-orbital LDA Wannier-like function

La,CuQ, HgBa,CuQ,




