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from the many-body problem to DFT



the theory of nearly everything

The underlying laws needed for the description of all 
chemistry as well as a large part of physics are now 
entirely known. The only problem that remains is  that 
the exact equations of quantum mechanics  are too 
difficult to be solved. It is therefore necessary to derive 
approximations that allow us to calculate the properties 
of complex molecular systems with an acceptable 
computational effort.

P.M.A. Dirac 1929
Nobel Prize in Physics 1933

Paul Adrien Maurice Dirac
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the many-body problem

electronic Hamiltonian

Born-Oppenheimer Ansatz
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Ψ({ri}, {Rα}) = ψ({ri}; {Rα})Φ({Rα})

(atomic units: Appendix A)
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a single iron atom

26 electrons, 78 arguments, 1078 values
10 X 10 X 10 grid

Ψ0(r1, r1, . . . , r26)



independent electrons

exact solution for Vee=0

many-body states
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unfortunately Coulomb repulsion is large

e.g. Bloch states, bands



density-functional theory

Kohn-Sham equations

Hartree Coulomb energy

n(r) = n0(r) =
occ∑

n

|ψn(r)|2

ĥ0
e(r) ψn(r) = [−1

2
∇2 + vR(r)]ψn(r) = εnψn(r)

vR(r) = −
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dr′ n(r′)
|r− r′| +

δExc[n]
δn

auxiliary independent electrons model

E[n] = F [n] +
∫

dr vext(r)n(r) + Enn = F [n] + V [n] + Enn

F [n] = T0[n] + EH [n] + Exc[n] = T0[n] +
1
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∫
dr

∫
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|r− r′| + Exc[n]

universal

long range and large



exchange-correlation energy

g(r, r′) =
∫ 1

0
dλ gλ(r, r′)

Exc[n] = Eee[n]− EH [n] + Te[n]− T0[n]

Exc[n] =
∫

dr
∫

dr′ n(r)n(r′)(g(r, r′)− 1)
|r− r′|

Vee → λVee

n(r, r′) =
∑

σ,σ′

n(rσ, r′σ′) = n(r′)n(r)gλ(r, r′)
pair-correlation function

coupling-constant integration

(see Lecture Notes, 6.3)

joint probability of finding electrons at r and r!

short-range and small



from DFT to LDA, GGA,...

homogeneous electron gas

Nobel Prize in Chemistry (1998)

Exc[n] =
∫

drεLDA
xc (n(r))n(r)

Exc[n] =
∫

dr
∫

dr′ n(r)n(r′)(g(r, r′)− 1)
|r− r′|

Walter Kohn 

Kohn-Sham equations

understand and predict properties 
of solids, molecules, biological 
systems, geological systems...



strongly correlated materials
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Heavy fermions

Narrow bands and localized electrons

example: Mott insulators metallic in LDA, GGA,..



localized electrons
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(hydrogen-like atom: Appendix B)



an example: KCuF3

K+ Cu2+ F-

K 4s0 Cu 3d9 F 2p6

odd number of electrons

K

F



LDA band structure
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in reality: insulator, paramagnetic for T>40 K

LDA,GGA,...



back to the many-body problem
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simple models



from ab-initio to simple model 
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energy scales
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simple models

real Hamiltonian

Hubbard model
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Ĥ = −t
∑
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c†iσci′σ + U
∑

i

n̂i↑n̂i↓ = Ĥ0 + Û

  U=0 half-filled band t=0 isolated atoms

metal-insulator transition



dynamical mean-field theory

Anderson model

Hubbard model replaced by a 
self-consistent one-impurity Anderson model 

Ĥeff =
∑

kσ

εkn̂kσ + εd

∑

σ

n̂dσ + Un̂d↑n̂d↓ +
∑

kσ

(Vkd c†kσdσ + V kd d†σckσ)

Ĥ = −t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓ = Ĥ0 + Û

self-consistent parameters

NRGBethe Ansatz QMCED/Lanczossolution:



dynamics captured        self-energy local
 exact in infinite dimensions

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992)

 

G0
−1 −G−1 = Σ(ω)

dynamical mean-field theory



metal-insulator transition

disappears continuously (at T=0) at a critical value
Uc2/D!2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=!), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G" i#n$at!
1/2

i#n"U/2
"

1/2
i#n#U/2

. (232)

Since ImG(#"i0") also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [%(#=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G" i#n$!
1/2

G 0
#1" i#n$#U/2

"
1/2

G 0
#1" i#n$"U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in %/U . This implies that G(i#)&i# for small

#, and the substitution into the self-consistency condi-
tion implies that G 0

−1&i# , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i#n):

D4G3#8D2#G2"4"4#2"D2#U2$G#16#!0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc!D for (234) (Uc!)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap #%g/2$#$"%g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that '(#+i0+)
must be purely real inside the gap, except for a
(-function piece in Im' at #=0, with

Im'"#"i0"$!#)*2("#$ for #!+#%g/2,%g/2,
(235)

and that Re' has the following low-frequency behavior:

Re'"#"i0"$#U/2!
*2

#
"O"#$. (236)

In these expressions, *2 is given by

1
*2

!"
#!

"!

d-
*"-$

-2 . (237)

*2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap %g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U$Uc1(T!0), with Uc1

ED

! 2.15D (while the iterated perturbation theory method
yields Uc1

IPT ! 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density )D*(#) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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metallic phase

insulating phase

A.Georges et al. RMP 63, 13 (1996)

Bethe lattice

G. Koltiar and D. Vollhardt
Physics Today 57, 53 (2004)

with a nonsingular density of states at the Fermi level
!("=0)=D/2#. As the interaction U is increased, we ex-
pect the Kondo effect to take place, leading to a singlet
nondegenerate ground state of the impurity model. The
low-frequency behavior of $(") is that of a local Fermi
liquid:

Re$%"!i0!&"U/2!%1#1/Z &"!O%"3&, (226)

Im$%"!i0!&"#B"2!O%"4&. (227)

The quasiparticle residue Z defines the renormalized
Fermi energy of the problem:

'F*(ZD (228)

This is also the Kondo temperature of the impurity
model. Since the self-energy is momentum independent,
Z directly yields the effective mass of quasiparticles
(Müller-Hartmann, 1989c):

m*
m

"
1
Z

"1#
)

)"
Re$%"!i0!&!""0. (229)

All these quantities can be computed quantitatively us-
ing the techniques described in Sec. VI. A plot of the
self-energy obtained within the iterated perturbation
theory approximation is given in Fig. 28 for two values
of U representative of the metallic regime. The quasi-
particle residue Z (obtained by exact diagonalization) is
plotted in Fig. 29 as a function of U [and compared to
the Gutzwiller approximation (Brinkman and Rice,
1970)]. Z is close to 1 for small U , and goes to zero at
U"Uc2(T"0)"3D , signalling the disappearance of
quasiparticles, and hence of the metallic solution. The
precise nature of this transition at Uc2 will be further
reviewed in Sec. VII.E.

A plot of the local spectral function

*%"&(#
1
# +

k
ImG%k,"!i0!& (230)

is shown in Fig. 30 for various values of U . The results
displayed have been obtained with the iterated pertur-
bation theory, and it was shown in Sec. VI that this is a
quite accurate approximation in the metal, for all values
of U (except very close to Uc2). For small U , the spec-
tral function is featureless and similar to the bare lattice
density of states. For larger values of U , a narrow qua-
siparticle peak is formed at the Fermi level of width 'F*

and weight Z . This is the Abrikosov-Suhl resonance in
the impurity model language. Notice the pinning of *(0)
at its noninteracting value:

*%""0 &"D%0 &, (231)

as required by the Luttinger theorem for a momentum-
independent self-energy (Müller-Hartmann, 1989c). Two
additional features at frequencies ,U/2 (corresponding
to energies "+-=0,U) are associated with the upper and
lower Hubbard band (empty and doubly occupied sites).

Finally, we mention a very simple argument showing
that the LISA equations cannot sustain a metallic solu-
tion up to arbitrary large U at half-filling (Georges and
Krauth, 1992; Rozenberg, Zhang, and Kotliar, 1992).
Imagine solving the system of Eqs. (220) and (221) by
iteration, with a conduction electron half-bandwidth Dn
at step n . For large U , solving the Kondo problem pro-
duces a bandwidth Dn!1"e#U/tDn . Therefore, Dn iter-
ates to zero for large U . In fact, the metallic solution

FIG. 28. Real and imaginary parts of the real-frequency self-
energy $("+i0+), as obtained from the iterated perturbation
theory approximation, for two metallic values of U/D=1 and 2
(dotted and full lines).

FIG. 29. The quasiparticle weight Z as a function of the inter-
action U . The solid bold line corresponds to exact diagonaliza-
tion results with eight sites. The dotted line is obtained from
iterated perturbation theory. For comparison we also plot the
results using the Gutzwiller variational method (full line). The
error bars near Uc reflect the uncertainties inherent to the
various methods. The diamond represents the exact location of
Uc obtained from the projective method.
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and real materials?
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many bands
U tensor
crystal-field 
non-local U
......

increasing number of free parameters, difficult to test theory



from DFT to many-body models



realistic models

basis functions

localized Wannier functions from LDA (GGA,...)ψinσ(r) =
1√
N

∑

k

e−iRi·k ψnkσ(r)

Ĥe = ĤLDA + Û − ĤDC

ĤLDA = −
∑

σ

∑

in,i′n′

ti,i
′

n,n′c
†
inσci′n′σ

ti,i
′

n,n′ = −
∫

drψinσ(r)[−1
2
∇2 + vR(r)]ψi′n′σ(r)

Hamiltonian

LDA Hamiltonian



Coulomb and double counting

long range Hartree and mean-field exchange-correlation 
already are well described by LDA (GGA,..)

Û =
1
2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U iji′j′

np n′p′c
†
inσc†jpσ′cj′p′σ′ci′n′σ

Û =
1
2
U iji′j′

np n′p′ = 〈inσ jpσ′|Û |i′n′σ j′p′σ′〉

=
∫

dr1

∫
dr2 ψinσ(r1)ψjpσ′(r2)

1
|r1 − r2|ψj′p′σ′(r2)ψi′n′σ(r1)

ĤDC

up to here all electrons are the same....



light and heavy electrons

short-range correction to LDA

Û l =
1
2

∑

i

∑

σσ′

∑

mαm′
α

∑

mβm′
β

Umαmβm′
αm′

β
c†imασc†imβσ′cim′

βσ′cim′
ασ

Ĥe = ĤLDA + Û l − Ĥ l
DC

Û l − Ĥ l
DC

local or almost local

for a l shell, the local Coulomb interaction is

screening? cRPA, cLDA

light (weakly correlated): LDA (GGA,..)

heavy(strongly correlated): U

electrons

eg. l shell



Coulomb interaction tensor

1
|r1 − r2| =

∞∑

k=0

rk
<

rk+1
>

4π

2k + 1

k∑

q=−k

Y k
q (θ2, φ2)Y

k
q (θ1, φ1)

Umαmβm′
αm′

β
=

2l∑

k=0

ak(mαm′
α, mβm′

β)Fk

ak(mαm′
α, mβm′

β) =
4π

2k + 1

k∑

q=−k

〈lmα|Y k
q |lm′

α〉〈lmβ |Y k
q |lm′

β〉

Fk =
∫

dr1 r2
1

∫
dr2 r2

2 R2
nl(r1)

rk
<

rk+1
>

R2
nl(r2). Slater integral

radial integral

Lecture Notes 3.12 and Appendix B

d electrons: F0,  F2,  F4



Coulomb interaction tensor

direct and exchange integrals 

Jm,m′ =
∫

dr1

∫
dr2 ψmσ(r1)ψm′σ(r2)

1
|r1 − r2|ψmσ(r2)ψm′σ(r1)

Um,m′ =
∫

dr1

∫
dr2 ψmσ(r1)ψm′σ′(r2)

1
|r1 − r2|ψm′σ′(r2)ψmσ(r1)

Lecture Notes 3.12 and Appendix B

Umm′mm′ = Um,m′ =
2l∑

k=0

ak(mm, m′m′)Fk,

Umm′m′m = Jm,m′ =
2l∑

k=0

ak(mm′, m′m)Fk

two-index terms

Û l ∼ 1
2

∑

iσ

∑

mm′

Um,m′ n̂imσn̂im′-σ +
1
2

∑

iσ

∑

m!=m′

(Um,m′ − Jm,m′)n̂imσn̂im′σ

density-density approximation



real harmonics
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Lecture Notes Appendix B



Coulomb tensor d shell

U l
m,m′ |xy〉 |yz〉 |3z2 − r2〉 |xz〉 |x2 − y2〉

|xy〉 U0 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0 − 2J3

|yz〉 U0 − 2J1 U0 U0 − 2J4 U0 − 2J1 U0 − 2J1

|3z2 − r2〉 U0 − 2J2 U0 − 2J4 U0 U0 − 2J4 U0 − 2J2

|xz〉 U0 − 2J1 U0 − 2J1 U0 − 2J4 U0 U0 − 2J1

|x2 − y2〉 U0 − 2J3 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0

U0 = Uavg +
8
7
Javg = Uavg +

8
5
Javg

J1 =
3
49

F2 +
20
9

1
49

F4

J2 = −2Javg + 3J1

J3 = 6Javg − 5J1

J4 = 4Javg − 3J1

Lecture Notes 3.12 and Appendix B

Uavg =
1

(2l + 1)2
∑

m,m′

Um,m′ = F0

Uavg − Javg =
1

2l(2l + 1)

∑

m,m′

(Um,m′ − Jm,m′)

Javg = (F2 + F4)/14

F4/F2 = 15/23atomic 3d



minimal material-specific model



minimal material-specific models
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example: 3d9 cubic perovskite

K+ Cu2+ F- K 4s0 Cu 3d9 F 2p6



cubic crystal-field

Cu3+ 3d9

t2g
6

eg
3
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tight-binding model
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Vpd/2

Slater integrals: Appendix B



tight-binding model
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tight-binding model

HTB |k z〉 |k x〉 |k y〉 |k 3z2 − r2〉 |k x2 − y2〉
|k z〉 εp 0 0 −2Vpdσsz 0
|k x〉 0 εp 0 Vpdσsx −

√
3Vpdσsx

|k y〉 0 0 εp Vpdσsy

√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0
|k x2 − y2〉 0 −

√
3Vpdσsx

√
3Vpdσsy 0 εd

sα = ie−ikαa/2 sin kαa/2

ε2 = εp

ε3 = εp

ε4 = εd

ε1,5 = εp + 1
2∆pd ± 1

2

√
∆2

pd + 16V 2
pdσ|sz|2

from  (0,0,0)   to     (0,0,$)

5

1

2,3

4



the eg bands
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downfolding

[
Hpp Hpd

Hdp Hdd

] [
|k p〉
|k d〉

]
= ε

[
Ipp 0
0 Idd

] [
|k p〉
|k d〉

]

Hε
dd = Hdd −Hdp(Hpp − εIpp)−1Hpd,

Hε
dd |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tε[ 14 (cos kxa+cos kya)−cos kza] 2tε[
√

3
4 (cos kxa−cos kya)]

|k x2−y2〉ε 2tε[
√

3
4 (cos kxa−cos kya)] ε′d−2tε[ 34 (cos kxa+cos kya)]



ab-initio downfolding

NMTO Wannier functions



model for eg (or t2g) systems

U=U0 J=J2 or J1

pair-hopping spin-flip

H= −
∑

m,m′,i,i′,σ

ti,i
′

mm′c
†
imσcim′σ + U

∑

i m

n̂im↑n̂im↓

+
1
2

∑

iσσ′

m#=m′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′

− J
∑

i m#=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
− Ĥ

eg

DC



methods of solution: LDA+U



 Hartree-Fock and LDA+U

ĤLDA + Û l − Ĥ l
DC = ĤLDA +

1
2
U

∑

i

∑

mσ !=m′σ′

n̂imσn̂im′σ′ − 1
2
U

∑

i

∑

mσ !=m′σ′

〈n̂imσ〉〈n̂im′σ′〉

Hartree part

n̂imσn̂im′σ′ → 〈n̂imσ〉n̂im′σ′ + n̂imσ〈n̂im′σ′〉 − 〈n̂imσ〉〈n̂im′σ′〉

Coulomb energy

mean-field (Hartree-like)

ELDA+U[n] = ELDA[n] +
∑

i



1
2
U

∑

mσ !=m′σ′

〈n̂imσ〉〈n̂im′σ′〉 − EDC





εLDA+U
imσ =

∂ELDA+U

∂〈n̂imσ〉
= εLDA

imσ + U(
1
2
− 〈n̂imσ〉)

H = ĤLDA +
∑

imσ

tσmn̂imσ, with tσm = U(
1
2
− 〈n̂imσ〉)

charge self-consistent

-U/2

+U/2



generalization

ELDA+U[n] = ELDA[n] +
1
2

∑

iσ

∑

mm′m′′m′′′

Umm′′m′m′′′〈n̂σ
imm′〉〈n̂-σ

im′′m′′′〉

+
1
2

∑

iσ

∑

mm′m′′m′′′

[Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σ
imm′〉〈n̂σ

im′′m′′′〉 − EDC

EDC =
1
2
UavgN

l(N l − 1)− 1
2
Javg

∑

σ

N l
σ(N l

σ − 1)

Ĥ = ĤLDA +
∑

imm′σ

tσmm′c†imσcim′σ

tσmm′ =
∑

iσ

∑

m′′m′′′

Umm′′m′m′′′〈n̂-σ
im′′m′′′〉 + [Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σ

im′′m′′′〉

−
[
Uavg(N l − 1

2
) − Javg(N l

σ − 1
2
)
]

δm,m′



LDA+U for a eg model

Σiσ =
[

Σiσ
α,α Σiσ

α,β

Σiσ
β,α Σiσ

β,β

]
Σiσ = U

[ 1
2 − 〈n̂σ

iαα〉 −〈n̂σ
iβα〉

−〈n̂σ
iαβ〉 1

2 − 〈n̂σ
iββ〉

]

at site i LDA+U, J=0

H= −
∑

m,m′,i,i′,σ

ti,i
′

mm′c
†
imσcim′σ + U

∑

i m

n̂im↑n̂im↓

+
1
2

∑

iσσ′

m#=m′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′

− J
∑

i m#=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
− Ĥ

eg

DC

only correlated electrons:  double counting incorporated in chemical potential

EDC =
1
2
UavgN

l(N l − 1)− 1
2
Javg

∑

σ

N l
σ(N l

σ − 1)

other sites: symmetries!



KCuF3

Σ/U |ασ〉1u |βσ〉1u |ασ〉2u |βσ〉2u |ασ〉1d |βσ〉1d |ασ〉2d |βσ〉2d

|ασ〉1u

−2δσ,↓−δσ,↑
4

√
3δσ,↑
4 0 0 0 0 0 0

|βσ〉1u

√
3δσ,↑
4

−2δσ,↓+δσ,↑
4 0 0 0 0 0 0

|ασ〉2u 0 0 −2δσ,↓−δσ,↑
4

−
√

3δσ,↑
4 0 0 0 0

|βσ〉2u 0 0 −
√

3δσ,↑
4

−2δσ,↓+δσ,↑
4 0 0 0 0

|ασ〉1d 0 0 0 0 −2δσ,↑−δσ,↓
4

√
3δσ,↓
4 0 0

|βσ〉1d 0 0 0 0
√

3δσ,↓
4

−2δσ,↑+δσ,↓
4 0 0

|ασ〉2d 0 0 0 0 0 0 −2δσ,↑−δσ,↓
4

−
√

3δσ,↓
4

|βσ〉2d 0 0 0 0 0 0 −
√

3δσ,↓
4

−2δσ,↑+δσ,↓
4
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LDA+U bands
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AFM linear Hubbard chain

Ĥ = −t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓ = Ĥ0 + Û

AFM: double cell, half BZ

k k/

t

-1.5
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 0

 0.5

 1
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methods of solution: LDA+DMFT



KCuF3

paramagnetic

massive downfolding to eg

Σl |ασ〉1 |βσ〉1 |ασ〉2 |βσ〉2
|ασ〉1 Σ1

αα Σ1
αβ 0 0

|βσ〉1 Σ1
βα Σ1

ββ 0 0
|ασ〉2 0 0 Σ1

αα −Σ1
αβ

|βσ〉2 0 0 −Σ1
βα Σ1

ββ

eg  HLDA   
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2 equivalent sites

Hε
dd |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tε[ 14 (cos kxa+cos kya)−cos kza] 2tε[
√

3
4 (cos kxa−cos kya)]

|k x2−y2〉ε 2tε[
√

3
4 (cos kxa−cos kya)] ε′d−2tε[ 34 (cos kxa+cos kya)]



paramagnetic LDA+DMFT 

quantum impurity solver

lattice green-function matrix

symmetries

self-energy

Gicmσ,i′cm′σ(ω) =
1

Nk

∑

k

([
ω + µI − ĤLDA

k −Σl(ω) + ĤDC
l
]−1

)

icmσ,i′cm′σ

Σl |ασ〉1 |βσ〉1 |ασ〉2 |βσ〉2
|ασ〉1 Σ1

αα Σ1
αβ 0 0

|βσ〉1 Σ1
βα Σ1

ββ 0 0
|ασ〉2 0 0 Σ1

αα −Σ1
αβ

|βσ〉2 0 0 −Σ1
βα Σ1

ββ

Gm,m′(ω) = Gicmσ,icm′σ(ω)

G−1
m,m′(ω) = G−1

m,m′(ω) + Σ ic
m,m′(ω)bath green-function matrix

local green-function matrix

Σ(ω) = G−1(ω)−G−1(ω)



QMC

quantum impurity solvers

 1024

 2048

 4096

 8192

 16384

 1024  2048  4096  8192  16384

s
p
e
e
d
 u

p

# CPU

5M
10M
20M

G(ω) =

∫
d k̃

(
ω + µ−H(k̃)−Σc(ω)

)−1

G−1b (ω) = Σc(ω) + G
−1(ω)

Σc(ω) = G
−1
b (ω)− G

−1
c (ω)

warmup

sampling



KCuF3
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extensions

• ferro and anti ferro magnetism

• charge self-consistency 

• cluster DMFT 

• GW+DMFT

• ....



example: orbital order in KCuF3



orbital order in KCuF3
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problem to solve: why a co-operative Jahn-Teller distortion?



Orbital Order
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TRANSITION METAL OXIDES

Ferroelectricity driven by orbital order
The discovery that the rotation of the orbital arrangement in manganites induces 
ferroelectricity exposes an intriguing phase transition that could serve as a 
blueprint for novel applications.

BERNHARD KEIMER
is at the Max Planck Institute for Solid State Research, 
Heisenbergstr. 1, 70569 Stuttgart, Germany

e-mail: B.Keimer@fkf.mpg.de

Transition metal oxides have fascinated scientists 
since the 1950s, when the newly developed 
technique of neutron di! raction was used to 

show that the compound La1–xCaxMnO3 exhibits a rich 
variety of structural and magnetic phases as the Ca 
concentration is tuned1. " e fascination has increased 
in the wake of the discovery of high-temperature 
superconductivity in a chemically similar compound, 
La2–xBaxCuO4. An unprecedented e! ort followed to 
synthesize single crystals of transition metal oxides 
with exquisite crystallographic quality and chemical 
homogeneity. Such advances in materials preparation 
have in turn triggered further exciting discoveries, one 
of which is the ‘colossal’ response of some transition 
metal oxides to modest external stimuli. For instance, 
although the electronic properties of ordinary metals 
depend only very weakly on the magnetic # eld, 
the electrical resistance of metallic La1–xCaxMnO3 
is extremely sensitive to it2. Another example is 
the thermopower of NaxCoO2, where the voltage 
generated by a temperature gradient exhibits a large 
and unusual magnetic-# eld dependence3.

Adding to the variety of electronic e! ects in 
manganites, Yusuke Tokunaga and co-workers 
report on page 937 of this issue4 the discovery of a 
ferroelectric phase transition in another manganese 
oxide, Pr(Sr0.1Ca0.9)2Mn2O7. " eir # nding is 
remarkable, as it represents the # rst observation of 
ferroelectricity induced by electronic mechanisms 
similar to those involved in some of the ‘colossal’ 
e! ects in other transition metal oxides.

Two microscopic properties of transition metal 
oxides are essential for the understanding of their 
intriguing macroscopic behaviour. First, the valence 
electrons in these materials interact very strongly and 
are hence prone to localization around a particular 
atom. Second, the electrons have the choice of several 
types of energetically equivalent (or degenerate) 
electronic orbitals around the atoms that they could 
occupy. " is orbital degree of freedom ensures that 
the electrons can choose from a manifold of possible 
electronic states. For instance, the valence electrons 
of La1–xCaxMnO3 reside on the Mn ions, where they 

can occupy either of two d-orbitals. Nature abhors 
degeneracy, and at su$  ciently low temperatures each 
electron chooses one of the two orbitals (or a linear 
combination of the two). However, their choices are 
not independent. Once a valence electron localizes 
in a de# nite Mn d-orbital, the charge distribution 
around this ion is distorted, and adjacent oxygen 
ligands are dislodged. Eventually, this leads to the 
spontaneous formation of an ordered pattern of 
occupied orbitals throughout the crystal lattice. Two 
possible orbital patterns for Mn3+ ions on a square 
lattice are shown in Fig. 1. For a mixture of Mn3+ and 
Mn4+ ions (the situation realized in La1–xCaxMnO3 and 
Pr(Sr0.1Ca0.9)2Mn2O7), there are even more ways to 
arrange charges and orbitals on the lattice.

States with di! erent orbital order can have 
strikingly di! erent macroscopic properties. " is is 
illustrated in Fig. 1, where the state with uniform 
orbital occupation is antiferromagnetic, whereas the 
state with alternating orbitals exhibits a macroscopic 
ferromagnetic magnetization. An external magnetic 
# eld favours ferromagnetism and can thus switch the 
materials between two states with completely di! erent 
macroscopic magnetic properties if the orbitally 
uniform, antiferromagnetic state is stable in zero # eld. 
If the energy di! erence between both states is small, 
a large magnetic response is triggered by a small 
magnetic # eld. A similar model explains the colossal 
magnetoresistance observed in La1–xCaxMnO3, where 
small changes in the magnetic # eld lead to large 
changes in the material’s electric resistance2.

As Tokunaga et al. have discovered, similar 
orbital ordering e! ects lead to a ferroelectric phase 
transition in the antiferromagnetic, orbitally ordered 

Figure 1 Possible arrangements of Mn3+ d-orbitals on a square lattice. The patterns are 
two-dimensional versions of orbitally ordered states actually observed in manganese oxides. 
The corresponding magnetic states are indicated by yellow arrows.
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Nature  Publishing Group ©2006

Orbital Physics in Transition-Metal Oxides
Y. Tokura1,2 and N. Nagaosa1

An electron in a solid, that is, bound to or nearly localized on the specific
atomic site, has three attributes: charge, spin, and orbital. The orbital
represents the shape of the electron cloud in solid. In transition-metal
oxides with anisotropic-shaped d-orbital electrons, the Coulomb interac-
tion between the electrons (strong electron correlation effect) is of
importance for understanding their metal-insulator transitions and prop-
erties such as high-temperature superconductivity and colossal magne-
toresistance. The orbital degree of freedom occasionally plays an impor-
tant role in these phenomena, and its correlation and/or order-disorder
transition causes a variety of phenomena through strong coupling with
charge, spin, and lattice dynamics. An overview is given here on this
“orbital physics,” which will be a key concept for the science and tech-
nology of correlated electrons.

The quantum mechanical wave function of an
electron takes various shapes when bound to
an atomic nucleus by Coulomb force. Con-
sider a transition-metal atom in a crystal with
perovskite structure. It is surrounded by six
oxygen ions, O2!, which give rise to the
crystal field potential and hinder the free
rotation of the electrons and quenches the
orbital angular momentum by introducing the
crystal field splitting of the d orbitals. Wave
functions pointing toward O2! ions have
higher energy in comparison with those
pointing between them. The former wave
functions, dx2!y2 and d3z2!r2, are called eg

orbitals, whereas the latter, dxy, dyz, and dzx,
are called t2g orbitals (Fig. 1).

When electrons are put into these wave
functions, the ground state is determined by
the semiempirical Hund’s rule. As an exam-
ple, consider LaMnO3, where Mn3" has a d4

configuration, i.e., four electrons in d orbit-
als. Because of Hund’s rule, all of the spins
are aligned parallel, that is, S # 2, and three
spins are put to t2g orbitals and one spin
occupies one of the eg orbitals.

The relativistic correction gives rise to the
so-called spin-orbit interaction Hspin-orbit #
$L! ! S! , where L! is the orbital angular mo-
mentum and S! is the spin angular momentum.
This interaction plays an important role in
some cases, especially for t2g electrons. How-
ever, the coupling between spin and orbital
degrees of freedom described below is not
due to this relativistic spin-orbit coupling.

Up to now, we have considered only one
transition-metal ion. However, in solids,
there are periodic arrays of ions. There are
two important aspects caused by this: one is
the magnetic interactions, i.e., exchange in-
teractions, between the spins and the other is

the possible band formation and metallic con-
duction of the electrons. Before explaining
these two, let us introduce the Mott insulating
state. Band theory predicts an insulating state
when all bands are fully occupied or empty,
whereas a metallic state occurs under differ-
ent conditions. However, it is possible that
the system is insulating because of the Cou-
lomb interaction when the electron number is
an integer per atom, even if the band theory
without the period doubling predicts a metal-
lic state. This occurs when the kinetic energy
gain is smaller and blocked by the strong
Coulomb repulsion energy U, and the elec-
tron cannot hop to the other atom. This insu-
lator is called a Mott insulator. The most
important difference from the usual band in-
sulator is that the internal degrees of freedom,
spin and orbital, still survive in the Mott
insulator. LaMnO3 is a Mott insulator with
spin S # 2 and the orbital degrees of free-
dom. The spin S # 2 can be represented by
the t2g spin 3/2 strongly coupled to the eg spin
1/2 with ferromagnetic JH (Hund’s coupling).
The two possible choices of the orbitals are
represented by the pseudospin T! , whose z
component Tz # 1/ 2 when dx2!y2 is occu-
pied and Tz # !1/ 2 when d3z2!r2 is occu-
pied. Three components of this pseudospin
satisfy the similar commutation relation with
those of the spin operator, i.e., [T%, T&] #
i!%&'T'.

There is an interaction between the spin
and pseudospin, of S! and T! , between differ-
ent ions. This exchange interaction is repre-
sented by the following generalized Heisen-
berg Hamiltonian (1):

H ! !
ij

( Jij)T! i,T! j*S! i ! S! j " Kij)T! i,T! j*+ (1)

The exchange interactions Jij and Kij origi-
nate from the quantum mechanical process
with intermediate virtual states (2, 3). The
rotational symmetry in the spin space leads to
the inner product form of the interaction.

When more than two orbitals are involved, a
variety of situations can be realized, and this
quantum mechanical process depends on the
orbitals (4, 5). In this way, the spin S! and the
orbital pseudospin T! are coupled. In more
general cases, the transfer integral tij depends
on the direction of the bond ij and also on the
pair of the two orbitals a, b # ( x2 ! y2) or
(3z2 ! r2). This gives rise to the anisotropy
of the Hamiltonian in the pseudospin space as
well as in the real space. For example, the
transfer integral between the two neighboring
Mn atoms in the crystal lattice is determined
by the overlaps of the d orbitals with the p
orbital of the O atom between them. The
overlap between the dx2!y2 and pz orbitals is
zero because of the different symmetry
with respect to the holding in the xy plane.
Therefore, the electron in the dx2!y2 orbital
cannot hop along the z axis. This fact will
be important later in our discussion.

One can consider the long-range ordered
state of the orbital pseudospin T! as well as the
spin S! . In many respects, analogies can be
drawn between S! and T! in spite of the aniso-
tropy in T! space. However, there is one more
aspect that is special to T! —Jahn-Teller (JT)
coupling (6–8). Because each orbital has dif-
ferent anisotropy of the wave function, it is
coupled to the displacement of the O atoms
surrounding the transition-metal ion. For ex-
ample, when the two apical O atoms move
toward the ion, the energy of d3z2!r2 becomes
higher than dx2!y2 and the degeneracy is lift-
ed. This is called the JT effect (6 ) and is
represented by the following Hamiltonian for
a single octahedron:

HJT ! !g)TxQ2 " TzQ3* (2)

where (Q2, Q3) are the coordinates for the
displacements of O atoms surrounding the
transition-metal atom and g is the coupling
constant. When the crystal is considered,
(Q2, Q3) should be generalized to (Qi2, Qi3)
(i, the site index), which is represented as the
sum of the phonon coordinates and the uni-
form component (u2, u3). Here, (u2, u3)
describes the crystal distortion as a whole.
When the long-range orbital order exists, i.e.,
,Tix- . 0 and/or ,Tiz- . 0, the JT distortion
is always present.

Up to now, we have discussed the Mott
insulating state. Let us now consider the
doped carriers into a Mott insulator. High-
transition-temperature superconductor cup-
rates, e.g., La2!xSrxCuO4, offer the most
dramatic example of this carrier doping.
However, the two-dimensional (2D) nature
of the lattice, as well as the larger coherent
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Magnetism, conductivity, and orbital order in (LaMnO3)2n Õ (SrMnO3)n superlattices
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The modulation of charge density and spin order in !LaMnO3"2n / !SrMnO3"n !n=1–4" superlattices is
studied via Monte Carlo simulations of the double-exchange model. G-type antiferromagnetic barriers in the
SrMnO3 regions with low charge density are found to separate ferromagnetic LaMnO3 layers with high charge
density. A metal-insulator transition with increasing n is observed in the direction perpendicular to the inter-
faces. Our simulations provide insight into how disorder-induced localization may cause the metal-insulator
transition occurring at n=3 in experiments.

DOI: 10.1103/PhysRevB.78.201102 PACS number!s": 71.30.!h, 73.21.Cd, 75.47.Lx

Transition-metal oxide heterostructures provide a new av-
enue to utilize the complex properties of strongly correlated
electronic materials to produce multifunctional devices. Sev-
eral exotic phenomena emerge in these heterostructures due
to the reconstruction at the interfaces, such as the existence
of a conducting state between two insulators in
LaAlO3 /SrTiO3 !STO" and LaTiO3 /SrTiO3.1 As one of the
most representative families of strongly correlated oxide ma-
terials, the manganites can also be prepared into heterostruc-
tures with other oxides, such as cuprates, and they exhibit
interesting behavior, such as orbital reconstruction.2

Even without involving other oxides, manganite hetero-
structures can be prepared utilizing manganites with different
doping, e.g., LaMnO3 !LMO" and SrMnO3 !SMO".3–8 At low
temperature !T", bulk LaMnO3 is an A-type antiferromag-
netic !A-AFM" insulator, while SrMnO3 is a G-type antifer-
romagnetic !G-AFM" insulator.9 The alloy-mixed
La1−xSrxMnO3 !LSMO" is a ferromagnetic !FM" metal at low
T and 0.17"x"0.5. However, the LMO-SMO superlattices
can behave differently from bulk LSMO even with the same
average charge density: !i" the ordered A-site cations in the
superlattices remove the A-site disorder, which is important
in alloy manganites and !ii" the artificially modulated A-site
cations also modulate the physical properties, such as charge
density, magnetism, and conductivity. In fact, recent experi-
ments on !LMO"2n / !SMO"n superlattices highlighted the ex-
istence of an exotic metal-insulator transition !MIT" at
n=3.5–8 Moreover, LMO thin films on a STO substrate were
found to be FM instead of A-AFM.7,8

Theoretically, in addition to ab initio calculations,10 most
previous model Hamiltonian investigations on manganite
heterostructures were based on the one-orbital model,11 miss-
ing the important orbital degree of freedom. Although more
realistic two-orbital models were used very recently,12,13 sev-
eral properties of the !LMO"2n / !SMO"n superlattices are still
not understood particularly the explanation for the n=3 MIT.

The two-orbital double-exchange !DE" model is used here
to study !LMO"2n / !SMO"n superlattices via Monte Carlo

!MC" simulations. This model Hamiltonian has been exten-
sively studied before and it is successful to reproduce the
several complex phases in manganites.14 Details about the
Hamiltonian and MC technique can be found in previous
publications.15 Schematically, the Hamiltonian reads as

H = HDE!t0" + HSE!JAF" + HEP!#" + #
i

!$i − %"ni, !1"

where HDE, HSE, and HEP are the standard two-orbital large-
Hund-coupling DE, superexchange !SE", and electron-
phonon !EP" interactions, respectively.14 ni is the eg charge
density at site i. % is the uniform chemical potential, and $i is
the on-site effective potential generated by long-range Cou-
lomb interactions that cannot be neglected in superlattices
involving different electronic compositions. There are four
main input parameters: the SE coupling JAF, the EP coupling
#, %, and $i. All these parameters are in units of t0, which is
the DE hopping between nearest-neighbor !NN" d3z2−r2 orbit-
als along the z direction.14,15 The constant-density phase dia-
gram is determined by JAF and #. The expected eg charge
density is obtained by tuning %. Due to the valence differ-
ence between La3+ and Sr2+, the on-site Coulomb potential $i
is inhomogeneous for the Mn sites. In almost all previous
model investigations, the Coulomb interaction is treated us-
ing the Hartree-Fock !HF" approximation.11–13 However, this
HF approximation is rather difficult to converge for the
three-dimensional !3D" two-orbital model when both t2g
classical spins and lattice distortions are also MC-time
evolving. For this reason, here we adopt another strategy.
Each $i will be determined by its eight NN A-site cation
neighbors.16 More specifically, in the LMO-SMO superlat-
tices, $i is 0 for those Mn between two LaO planes !LMO
region", it becomes V /2 for those between LaO and SrO
planes, and finally it is V for those between two SrO planes
!SMO region" $Figs. 1!a" and 1!b"%. Therefore, this !positive"
constant V is the only parameter to regulate the Coulomb
potential and it is related with the dielectric constant in the
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them resulting from thermal retraction. At the transition between
the bright cap and the smooth dusty (darker) H2O-ice-exposed
units, these polygonal features are seen through a thin and bright
CO2 ice layer. The ice-free stratified terrains expand then to the left
of the image.
Wherever CO2 ice is stable, it traps solid H2O. OMEGAdata show

large areas where CO2 ice has sublimated away, while water ice
remains, mostly mixed with dust. The perennial southern cap thus
by far exceeds the bright CO2-rich icy area. Moreover, the lack of
slope change at the transition between the bright cap and the
surrounding water-ice polygonal areas is an indication that the
CO2-ice layer might well be restricted to a fairly thin layer, no more
than some metres in depth, in agreement with previous estimates
derived from shadowmeasurements in quasi-circular depressions11.
OMEGA spectral images of the bright cap and of its scarps are
consistent with a model in which H2O ice is present in the
underlying material, a scenario which has been proposed to explain
the morphology of the ‘Swiss cheese’ terrains12.
The underlying material, over 1–3 km in thickness and some

400 km in size, according to the Mars Orbiter Laser Altimeter
(MOLA) polar cap profile, is likely to constitute a distinct geological
unit as inferred from its morphology11. The direct OMEGA surface
compositional measurements support a model in which the bulk of
this unit is constituted of dust mixed with water ice, as predicted by
mechanical modelling13. The perennial south polar cap would
then constitute a significant fraction of the overall H2O reservoir.
Conversely, if CO2 ice is indeed restricted to the bright areas,
possibly concentrated in a thin surface veneer, it would not
constitute a major sink for the initial atmospheric CO2.
The inventory of condensed volatiles on Mars, in all potential

phases (gas, clouds, hydrated minerals, frosts, ices, permafrost,
liquids), at and below its surface, is central to understanding the
evolution of the planet, from geological timescales to seasonal
variations. Part of the answer to the question of Mars having
harboured life in the past, and to the issue of Mars hosting future
human exploration, is to be deciphered in this inventory. This is
why contributing to this inventory, in particular on the poles,
remains a major goal for Mars space exploration14. With the
ongoing Mars Express mission just starting its global coverage
of Mars, OMEGA will continue mapping the CO2 and H2O
condensation/sublimation cycles at all south and north latitudes;
the goal is to provide a quantitative evaluation of the seasonal
and perennial condensed reservoirs of these crucial volatile species.
In parallel, theMars AdvancedRadar for Subsurface and Ionosphere
Sounding (MARSIS) experiment will start its mapping phase in
May 2004. It should enable an accurate determination of the volume
of the H2O-ice-rich surface permafrost identified by OMEGA at the
south pole, and compare it with a potential subsurface permafrost
considered up until now to be the major Mars water reservoir. A
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Electronic reconstruction at
an interface between a Mott
insulator and a band insulator
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Surface science is an important and well-established branch of
materials science involving the study of changes in material
properties near a surface or interface. A fundamental issue has
been atomic reconstruction: how the surface lattice symmetry
differs from the bulk. ‘Correlated-electron compounds’ are
materials in which strong electron–electron and electron–lattice
interactions produce new electronic phases, including inter-
action-induced (Mott) insulators, many forms of spin, charge
and orbital ordering, and (presumably) high-transition-
temperature superconductivity1,2. Here we propose that the
fundamental issue for the new field of correlated-electron sur-
face/interface science is ‘electronic reconstruction’: how does the
surface/interface electronic phase differ from that in the bulk? As
a step towards a general understanding of such phenomena, we
present a theoretical study of an interface between a strongly
correlated Mott insulator and a band insulator. We find dramatic
interface-induced electronic reconstructions: in wide parameter
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ranges, the near-interface region is metallic and ferromagnetic,
whereas the bulk phase on either side is insulating and anti-
ferromagnetic. Extending the analysis to a wider range of inter-
faces and surfaces is a fundamental scientific challenge and may
lead to new applications for correlated electron materials.

To assess the effects of a surface or interface on correlated-
electron behaviour we require to understand the changes in the
parameters governing bulk correlated-electron behaviour. The three
key factors are interaction strengths, bandwidths and electron
densities1,3, all of which may change near a surface or interface. In
most cases, surface- or interface-induced changes in all three factors
will contribute, but in developing a general understanding it is
desirable first to study the different effects in isolation. Here we
focus on the effect of electron-density variation caused by the
spreading of charge across an interface. A different charge distri-
bution effect—the compensation of a polar surface by electronic
charge rearrangement—was argued to change the behaviour of C60

films4. (Indeed, Hesper et al.4 coined the term “electronic recon-
struction” in reference to this specific effect; we suggest that this
useful phrase be applied more generally to denote electronic phase
behaviour that is fundamentally different at a surface from in bulk.)
Proximity to a surface or interface can also change the electron
interaction parameters5,6, the electron bandwidth7, and level degen-
eracy8. Experimental studies of surfaces9–12 and heterostructures13

have been interpreted along these lines. Our work is inspired by the
recent striking experimental results of ref. 14; these authors fabri-
cated atomically precise digital heterostructures by inserting a
controllable number of planes of LaTiO3 (a Mott insulator, that
is, a material which is insulating although standard band theory

arguments would predict it to be metallic1) into a controllable
number of planes of SrTiO3 (a more conventional band-insulating
material). Ohtomo et al.14 have measured both the variation of
electron density transverse to the planes and the in-plane direct
current (d.c.) transport properties of their heterostructure14. The
close chemical similarity of the two componentmaterials minimizes
the effects of changes in bandwidths and interaction strengths,
allowing us to focus on the consequences of the spreading of
electronic charge.
To analyse the experiment of ref. 14 we consider a model

consisting of a number n of (001) layers of LaTiO3 (aMott insulator
with formal Ti valence state d1) embedded in an infinite SrTiO3 (a
band insulator with formal Ti valence state d0) crystal, defined
theoretically by placing unit charges (corresponding to the differ-
ence between the ionic charges of La and Sr) at the ideal crystal-
lographic La positions (see inset to Fig. 1). At very low temperature
T, SrTiO3 is almost ferroelectric: the long-wavelength linear-
response dielectric function becomes larger than 103 and is sample
dependent15,16. The experiments of ref. 14 were performed at room
temperature, where the dielectric constant is much smaller, and the
quantity of interest to us is the short-length-scale nonlinear
response, which is expected to be much smaller. The details of the
ferroelectric behaviour are not of interest here, so we model the
dielectric properties using a background e < 15. We also include

Figure 1 Ground-state phase diagram computed in Hartree–Fock approximation as a

function of the on-site Coulomb interaction U and the inverse of the La layer number n.

For small U values the ground state is a paramagnetic metal with no orbital ordering

(PMM region; shaded blue). The solid line marked with squares denotes a second-order

transition to a orbitally disordered magnetic state (M-OD; shaded yellow) that is

ferromagnetic for n ¼ 1; for n . 1 each (001) Ti layer is uniformly polarized, but the

magnetization direction alternates from layer to layer, leading to a ferrimagnetic state

(n ¼ 2, 4, 6, …; odd number of occupied Ti layers) or antiferromagnetic state (n ¼ 3, 5,

7, …; even number of occupied Ti layers). The solid line marked with circles denotes a

first-order transition to a fully polarized ferromagnetic state with (00p) orbital order (FM-

OO; shaded green). For sufficiently thick samples (Bulk, shaded pink), the latter transition

is pre-empted by a first-order transition to the bulk state, which, in the Hartree–Fock

approximation used here, has ferromagnetic spin order and G-type (ppp) antiferro-

orbital order. The actual materials exhibit a G-type AF order and a complicated orbital

order20 apparently due to subtle lattice distortions neglected here21. Inset, schematic of

plane perpendicular to (010) direction of (001) superlattice for the n ¼ 2 case. Circles

show the the positions of Sr (white) and La (red) ions respectively; small black dots show

the positions of Ti ions.

Figure 2 Spin and orbitally resolved charge densities as function of transverse (001)
coordinate z for heterostructure with one La layer. La plane is at z ¼ 0. Filled (open)

symbols indicate majority (minority) spin densities for xz, yz and xy orbitals (see key on

figure). a, Intermediate U (M-OD) regime; full spin polarization but all three orbitals equally
occupied. b, Large U (FM-OO) regime. Full spin polarization persists, orbital

disproportionation occurs. In the Ti layer at z ¼ 1/2, the yz orbital is dominant; in the Ti

layer at z ¼ 21/2, the xz orbital is dominant; at larger jzj the xy orbital is dominant, but
the electron density is low.
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Ionic relaxation contribution to the electronic reconstruction at the n-type
LaAlO3 ÕSrTiO3 interface

Rossitza Pentcheva1 and Warren E. Pickett2
1Department of Earth and Environmental Sciences, University of Munich, Theresienstr 41, 80333 Munich, Germany

2Department of Physics, University of California, Davis, California 95616, USA
!Received 30 June 2008; revised manuscript received 19 September 2008; published 7 November 2008"

Density-functional theory calculations reveal that the compensation mechanism at the isolated n-type inter-
face in LaAlO3 /SrTiO3 superlattices involves both ionic and electronic degrees of freedom. Strong polar
distortions screen the local electric field and reduce the band discontinuity across the interface. We find that the
electronic reconstruction depends sensitively on whether structural optimization is performed within GGA
!conventional exchange and correlation effects" or GGA+U !which includes strong intra-atomic interactions".
For a structural optimization within GGA+U the excess charge is confined to the interface TiO2 layer with a
charge-ordered, orbitally polarized arrangement of Ti3+ and Ti4+. While the charge-ordered phase represents
the ground state, optimization within GGA leads to more pronounced lattice polarization, suppression of charge
order !with remaining dxy-orbital occupation in the interface layer", and a delocalization of the excess charge
extending over a few SrTiO3 layers.

DOI: 10.1103/PhysRevB.78.205106 PACS number!s": 73.20.Hb, 75.70.Cn, 71.28.!d

I. INTRODUCTION

Correlated electrons in oxide heterostructures open up
new possibilities for electronic behavior that is unanticipated
from the properties of the bulk constituents and can thus lead
to new functionality. Although SrTiO3 !STO" and LaAlO3
!LAO" are two conventional nonmagnetic band insulators,
their interfaces were reported to be conducting.1 Recently,
there are indications for magnetism2,3 and superconductivity4

in this system at low temperature. These new functionalities
lend extra urgency to the effort to understand the unantici-
pated properties of this interface.

In the perovskite structure there is a natural charge modu-
lation in the #001$ direction; e.g., in LaAlO3 positively
charged LaO layers alternate with negatively charged AlO2
layers, while in SrTiO3 both the SrO and TiO2 layers are
charge neutral. At both interfaces, the electron-doped n-type
!LaO /TiO2" and the hole-doped p-type !AlO2 /SrO", local
charge neutrality as inferred from the formal valences is dis-
rupted. This violation of charge neutrality turns out to be a
driving force toward the unexpected behavior emerging at
the interface.

Theoretical studies so far concentrate on explaining the
reported conductivity in this system !e.g., Refs. 5–7" by con-
sidering the ideal !defect-free" interface. However, on the
experimental side there is meanwhile a consensus that the
oxygen pressure during growth and post annealing plays a
crucial role. The initially measured high conductivity is at-
tributed to oxygen defects rather than being an intrinsic
property.8–12 Rijnders and Blank13 related recently the three
novel functional properties to three regions of oxygen pres-
sure: !i" high conductivity is measured in samples grown at
or below pO2

%10−6 mbar oxygen pressure in the chamber;
!ii" superconductivity was found for intermediate pressures
of pO2

%10−4–10−5 mbar; !iii" magnetism and nonconduct-
ing behavior were observed only for pO2

%10−3 mbar. The
higher oxygen pressure is widely thought to mitigate the for-
mation of oxygen vacancies, resulting in more nearly stoichi-
ometric materials.

In this paper we concentrate on the intrinsic effects in the
case where the influence of oxygen defects is minimized and
study the !effectively" isolated n-type interface. Using
density-functional theory !DFT" calculations and including a
Hubbard U we have found previously that the charge mis-
match at the n-type LAO/STO interface is accommodated by
charge disproportionation on the Ti sublattice in the interface
layer with Ti3+ and Ti4+ ordered in a checkerboard
arrangement.14 This diluted layer of Ti3+ spins shows a slight
preference for antiferromagnetic coupling,15 as found also
for LaTiO3 /SrTiO3 superlattices.16 First experimental indica-
tions for localized magnetic moments at the interface were
obtained by Brinkman et al.2 Because the above-mentioned
calculations were done for a superlattice containing a single
unit cell of each material and ideal !bulk" positions of the
ions in the cell, we study here the compensation mechanism
in more separated interfaces containing thicker slabs of both
materials. We focus specifically on the crucial role of lattice
relaxations on the electronic state at the interface, since the
largest contribution to the static dielectric constant in both
materials arises from the lattice response. In addition we ex-
plore how the level of treatment of correlation for the Ti 3d
bands influences the structural and electronic properties at
the interface. Finally, the band alignment across the interface
is determined.

II. CALCULATIONAL DETAILS

The DFT calculations are performed using the all-electron
full-potential augmented plane-wave !FP-APW" method in
the WIEN2K implementation17 and the generalized gradient
approximation !GGA" !Ref. 18" of the exchange-correlation
potential. Because at the n-type interface a LaO layer is
placed next to a TiO2 layer which is the building unit of the
Mott insulator LaTiO3, we have considered an on-site Cou-
lomb repulsion on the Ti 3d states within the fully localized
limit !LDA+U" !Ref. 19" using U=8 eV and J=1 eV.
These values are necessary to describe the insulating nature
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Using t2g Wannier functions, a low-energy Hamiltonian is derived for orthorhombic 3d1 transition-
metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field
theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of
correlation effects and cation covalency (GdFeO3-type distortions) is found to suppress orbital fluctua-
tions in LaTiO3 and even more in YTiO3, and to favor the transition to the insulating state.
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Transition-metal perovskites have attracted much in-
terest because of their unusual electronic and magnetic
properties arising from narrow 3d bands and strong Cou-
lomb correlations [1]. The 3d1 perovskites are particularly
interesting, since seemingly similar materials have very
different electronic properties: SrVO3 and CaVO3 are
correlated metals with mass enhancements of, respec-
tively, 2.7 and 3.6 [2], while LaTiO3 and YTiO3 are Mott
insulators with gaps of, respectively, 0.2 and 1 eV [3].

In the Mott-Hubbard picture the metal-insulator tran-
sition occurs when the ratio of the on-site Coulomb re-
pulsion to the one-electron bandwidth exceeds a critical
value Uc=W, which increases with orbital degeneracy
[4,5]. In the ABO3 perovskites the transition-metal ions
(B) are on a nearly cubic (orthorhombic) lattice and at the
centers of corner-sharing O6 octahedra. The 3d band
splits into pd!-coupled t2g bands and pd"-coupled eg
bands, of which the former lie lower, have less O character
and couple less to the octahedra than the latter. The
simplest theories for the d1 perovskites [1] are therefore
based on a Hubbard model with three degenerate, 16 -filled
t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
Unlike the eg-band perovskites, such as LaMnO3, where
large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
dered, in the t2g-band perovskites the octahedra are al-

most perfect. The t2g orbitals have therefore often been
assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
m # 0:45#B, and a 3% JT stretching along a [9], while
YTiO3 is a ferromagnet with TC # 30 K, m0 ! 0:8#B,
and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
c#%0; 0; 2&%1$ &&, with $, %, and & small. The Ti sites 1 to 4
are a=2, b=2, %a$ c&=2, and %b$ c&=2. The La(Y) ab plane is
a mirror %z $ "z& and so is the Ti bc plane %x $ y& when
combined with the translation %b" a&=2.
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properties arising from narrow 3d bands and strong Cou-
lomb correlations [1]. The 3d1 perovskites are particularly
interesting, since seemingly similar materials have very
different electronic properties: SrVO3 and CaVO3 are
correlated metals with mass enhancements of, respec-
tively, 2.7 and 3.6 [2], while LaTiO3 and YTiO3 are Mott
insulators with gaps of, respectively, 0.2 and 1 eV [3].

In the Mott-Hubbard picture the metal-insulator tran-
sition occurs when the ratio of the on-site Coulomb re-
pulsion to the one-electron bandwidth exceeds a critical
value Uc=W, which increases with orbital degeneracy
[4,5]. In the ABO3 perovskites the transition-metal ions
(B) are on a nearly cubic (orthorhombic) lattice and at the
centers of corner-sharing O6 octahedra. The 3d band
splits into pd!-coupled t2g bands and pd"-coupled eg
bands, of which the former lie lower, have less O character
and couple less to the octahedra than the latter. The
simplest theories for the d1 perovskites [1] are therefore
based on a Hubbard model with three degenerate, 16 -filled
t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
Unlike the eg-band perovskites, such as LaMnO3, where
large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
dered, in the t2g-band perovskites the octahedra are al-

most perfect. The t2g orbitals have therefore often been
assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
m # 0:45#B, and a 3% JT stretching along a [9], while
YTiO3 is a ferromagnet with TC # 30 K, m0 ! 0:8#B,
and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
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FIG. 1: (colour online) Orbitally resolved Cu eg spec-
tral densities of paramagnetic KCuF3 as obtained by
GGA+DMFT(QMC) for different values of the JT distortion.
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FIG. 2: (colour online) Comparison of the total en-
ergies of paramagnetic KCuF3 computed by GGA and
GGA+DMFT(QMC) as a function of the JT distortion. Er-
ror bars indicate the statistical error of the DMFT(QMC)
calculations.

repulsion between the Neg
electrons in the Cu eg Wannier

orbitals.
The many-body Hamiltonian (1) is solved within

DMFT for U = 7 eV and J = 0.9 eV [6] using quan-
tum Monte Carlo (QMC) [28, 29, 30]. Figure 1 shows
the spectral density of paramagnetic KCuF3, obtained
from the QMC data by the maximum entropy method,
for three values of the JT distortion δJT . Most impor-
tantly, a paramagnetic insulating state with a strong or-
bital polarization is obtained for all δJT . The energy gap
is in the range 1.5–3.5 eV, and increases with increasing
δJT . The sharp feature in the spectral density at about
−3 eV corresponds to the fully occupied 3z2 − r2 orbital
[27], whereas the lower and upper Hubbard bands are
predominantly of x2 − y2 character and are located at
−5.5 eV and 1.8 eV, respectively.

The total energies as a function of the JT distortion
obtained by the GGA and GGA+DMFT, respectively,
are compared in Fig. 2. We note that the GGA not only
predicts a metallic solution, but its total energy is seen to
be almost constant for 0 < δJT

<
∼ 4%. Both features are

in contradiction to experiment since the extremely shal-

low minimum at δJT # 2.5% would imply that KCuF3

has no JT distortion for T >
∼ 100 K. By contrast, the in-

clusion of the electronic correlations among the partially
filled Cu eg states in the GGA+DMFT approach leads
to a very substantial lowering of the total energy by ∼
175 meV per formula unit (fu). This implies that the
strong JT distortion persists up to the melting temper-
ature (> 1000 K), in agreement with experiment. The
minimum of the GGA+DMFT total energy is located at
the value δJT = 4.2% which is also in excellent agreement
with the experimental value of 4.4% [20]. This clearly
shows that the JT distortion in paramagnetic KCuF3 is
caused by electronic correlations.

An analysis of the occupation matrices for the eg Cu
Wannier states obtained by the GGA+DMFT calcula-
tions confirms a substantial orbital polarization in the
calculated paramagnetic phase of KCuF3. As shown in
Fig. 3 the orbital order parameter (defined as the differ-
ence between 3z2−r2 and x2−y2 Cu eg Wannier occupan-
cies [27]) saturates at about 98% for δJT

>
∼ 4%. Thus, the

GGA+DMFT result shows a predominant occupation of
the Cu 3z2 − r2 orbitals. We note that even without a
JT distortion the orbital order parameter would remain
quite large (∼40%). Moreover, while the GGA result
for δJT = 0 yields a symmetric orbital polarization with
respect to C4 rotations around the c axis, spontaneous
antiferro-orbital order is found in GGA+DMFT. This
difference is illustrated in Fig. 3 where insets (a) and
(c) depict the hole orbital order obtained by the GGA
and GGA+DMFT for δJT = 0.2%, respectively. The
GGA charge density is more or less the same along the a
and b axis [inset (a)], i.e., the Cu dx2−z2 and dy2−z2 hole
orbitals are almost equally occupied and hence are not
ordered. By contrast, the GGA+DMFT results clearly
show an alternating occupation [inset (c)], corresponding
to the occupation of a x2 − y2 hole orbital in the local
coordinate system, which implies antiferro-orbital order.
For the experimentally observed value of the JT distor-
tions of δJT = 4.4% both GGA and GGA+DMFT find
antiferro-orbital order [insets (b),(d)]. However, we note
again that, in contrast to the GGA+DMFT, the GGA
yields a metallic solution without any JT distortion for
T >
∼ 100 K, in contradiction to experiment.
In conclusion, by formulating GGA+DMFT — the

combination of the ab initio band structure calculation
technique GGA with the dynamical mean-field theory
— in terms of plane-wave pseudopotentials [16] we con-
structed a robust computational scheme for the inves-
tigation of complex materials with strong electronic in-
teractions. Most importantly, this framework is able to
determine the correlation induced structural relaxation
of a solid. Results obtained for paramagnetic KCuF3,
namely an equilibrium Jahn-Teller distortion of 4.2% and
antiferro-orbital ordering, agree well with experiment.
The electronic correlations were also found to be respon-
sible for a considerable enhancement of the orbital po-
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A computational scheme for the investigation of complex materials with strongly interacting electrons

is formulated which is able to treat atomic displacements, and hence structural relaxation, caused by

electronic correlations. It combines ab initio band structure and dynamical mean-field theory and is

implemented in terms of plane-wave pseudopotentials. The equilibrium Jahn-Teller distortion and

antiferro-orbital order found for paramagnetic KCuF3 agree well with experiment.
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In materials with correlated electrons, the interaction
between spin, charge, orbital, and lattice degrees of free-
dom leads to a wealth of ordering phenomena and complex
phases [1]. The diverse properties of such systems and their
great sensitivity with respect to changes of external pa-
rameters such as temperature, pressure, magnetic field, or
doping also make them highly attractive for technological
applications [1]. In particular, orbital degeneracy is an
important and often inevitable cause for this complexity
[2]. A fascinating example is the cooperative Jahn-Teller
(JT) effect—the spontaneous lifting of the degeneracy of
an orbital state—leading to an occupation of particular
orbitals (‘‘orbital ordering’’) and, simultaneously, to a
structural relaxation with symmetry reduction.

The electronic structure of materials can often be de-
scribed quite accurately by density functional theory in the
local density approximation (LDA) [3] or the generalized
gradient approximation (GGA) [4,5]. However, these
methods usually fail to predict the correct electronic and
structural properties of materials where electronic correla-
tions play a role. Extensions of LDA, e.g., LDAþ U [6]
and self-interaction correction LDA [7], can improve the
results, e.g., the band gap value and local moment, but only
for solids with long-range order. Hence the computation of
electronic, magnetic, and structural properties of strongly
correlated paramagnetic materials remains a great chal-
lenge. Here the recently developed combination of band-
structure approaches and dynamical mean-field theory [8],
the so-called LDAþ DMFT computational scheme [9],
has become a powerful new tool for the investigation of
strongly correlated compounds in both their paramagnetic
and magnetically ordered states. This technique has re-
cently provided important insights into the properties of
correlated electron materials [10], especially in the vicinity
of a Mott metal-insulator transition as encountered in
transition metal oxides [1].

Applications of LDAþ DMFT so far mainly employed
linearized and higher-order muffin-tin orbital [L(N)MTO]
methods [11] and concentrated on the study of correlation
effects within the electronic system for a given ionic
lattice. On the other hand, the interaction of the electrons
with the ions also affects the lattice structure. LDAþ
DMFT investigations of particularly drastic examples, the
volume collapse in paramagnetic Ce [12,13] and Pu [14]
and the magnetic moment collapse in MnO [15], incorpo-
rated the lattice by calculating the total energy of the
correlated material as a function of the atomic volume.
However, for investigations going beyond equilibrium vol-
ume calculations, e.g., of the cooperative JT effect and
other subtle structural relaxation effects, the L(N)MTO
method is not suitable since it cannot determine atomic
displacements reliably. This is partly due to the fact that the
atomic-sphere approximation used in the L(N)MTO
scheme, with a spherical potential inside the atomic sphere,
completely neglects multipole contributions to the electro-
static energy originating from the distorted charge density
distribution around the atoms. By contrast, the plane-wave
pseudopotential approach employed here does not neglect
such contributions and can thus fully describe the effect of
the distortion on the electrostatic energy.
In this Letter, we present a computational scheme which

allows us to calculate lattice relaxation effects caused by
electronic correlations. To this end, the GGAþ DMFT—a
merger of the GGA and DMFT—is formulated within a
plane-wave pseudopotential approach [16–18]. Thereby
the limitations of the L(N)MTO scheme in the direct
calculation of total energies are overcome. In particular,
we apply this new method to determine the orbital order
and the cooperative JT distortion in the paramagnetic phase
of the prototypical JT system KCuF3.
KCuF3 has long been known to be a prototypical mate-

rial with a cooperative JT distortion [2] where the elec-
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two scenarios

•electron-phonon coupling   
            

•super-exchange

• why TN  (40K) much smaller than TOO  (800-1400 K) ?

Our approach: single out Kugel-Khomskii mechanism
                             using LDA+DMFT

• what about LDA+U,HF,GGA+DMFT results?
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Mechanism for orbital ordering in KCuF3
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FIG. 3: (Color online) Orbital polarization p (left) and (right)
occupied state |θ〉 (| − θ〉) for sites 1 and 3 (2 and 4) as a
function of temperature. Solid line: 300 K (R11) and 800 K
(R800K

2.4 ) structures. Dots: orthorhombic structures with half
(R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full)
and 4 ( empty) sites CDMFT. Dashes: ideal cubic structure
(I0). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:
U = 6 eV. Squares: U = 7 eV. Crystal-field splitting (meV):
840 (R11), 495 (R6), 219 (R0), 168 (R800K

2.4 ), and 0 (I0).

to the randomly oriented t2g spins. These spectra are
in line with experiments [31–34]. We find that even at
1150 K the system is fully orbitally polarized (p ∼ 1).
On sites 1 and 3, the occupied state is |θ〉 ∼ |106o〉,
on sites 2 and 4 it is | − θ〉 ∼ | − 106o〉 (d-type OO);
|θ〉 is close to the lower crystal-field state obtained from
LDA (table I) and in excellent agreement with neutron
diffraction experiments [8]. We find that things hardly
change when the JT distortion is halved (R6 structure in
Fig. 3). Even for the average 800 K structure (R800K

2.4 ) OO
does not disappear: Although the Jahn-Teller distortion
is strongly reduced to δJT = 2.4%, the crystal-field split-
ting is ∼168 meV and the orbital polarization at 1150 K
is as large as p ∼ 0.65, while θ is now close to 90o. For
all these structures, orbital order is already determined
by the distortions via the crystal-field splitting.

To find the temperature TKK at which Kugel-Khomskii
super-exchange drives orbital-order we consider the zero
crystal-field limit, i.e. the ideal cubic structure, I0. The
eg band-width increases to Weg

∼ 3.7 eV and for U =
5 eV the system is a Mott insulator with a tiny gap only
below T ∼ 650 K. We find TKK ∼ 650 K, very close
to the metal-insulator transition (Fig. 3). To check how
strongly TKK changes when the gap opens, we increase
U . For U = 5.5 eV we find an insulating solution with
a small gap of ∼ 0.5 eV and TKK still close to ∼ 650 K.
For U = 6 eV, Eg ∼ 0.9 eV and TKK ∼ 550 K. Even with
an unrealistically large U = 7 eV, giving Eg ∼ 1.8 eV,
TKK is still as large as ∼ 470 K. Thus, despite the small
gap, TKK decreases as ∼ 1/U , as expected for super-
exchange. For a realistic U ∼ 5 eV, the calculated TKK ∼
650 K is surprisingly close to the order-disorder transition
temperature, TOO ∼ 750 K, though still much smaller

than TJT ! 1150 K. The occupied state at site 1 is |θ〉 ∼
|90o〉 for all U .

Such a large TKK is all the more surprising when com-
pared with the value obtained for KCuF3, TKK ∼ 350 K
[21]. For the ideal cubic structure the hopping matrix
(table I) is ti,i±z

m,m′ ∼ −tδm,m′δm,3z2−1, ti,i±x
m,m = ti,i±y

m,m ∼
−t/4(1 + 2δm,x2−y2), and for m $= m′ ti,i±x

m,m′ = −ti,i±y

m,m′ ∼√
3t/4. Since the effective (after averaging over the di-

rections of St2g
) hopping integral in LaMnO3, 2t/3 ∼

345 meV is ∼ 10% smaller than t ∼ 376 meV in KCuF3

[21], one may expect a slightly smaller TKK in LaMnO3,
opposite to what we find. Our result can, however, be
understood in super-exchange theory. The KK SE part of
the Hamiltonian, obtained by second-order perturbation
theory in t from Eq. (1), may be written as

Hi,i′

SE ∼
JSE

2

∑

〈ii′〉x,y

[

3T x
i T x

i′ ∓
√

3 (T z
i T x

i′ + T x
i T z

i′)
]

+
JSE

2

∑

〈ii′〉x,y

T z
i T z

i′ + 2JSE

∑

〈ii′〉z

T z
i T z

i′ , (2)

where 〈i, i′〉x,y and 〈i, i′〉z indicate near neighboring sites
along x, y, or z; −(+) refers to the x (y) direction, T x

i

and T z
i are pseudospin operators [3], with T z|3z2 − 1〉 =

1/2|3z2 − 1〉, T z|x2 − y2〉 = −1/2|x2 − y2〉. The su-
perexchange coupling is JSE = (t̄2/U)(w/2), where t̄
is the effective hopping integral. In the large U limit
(negligible J/U and h/U), w ∼ 1 + 4〈Sz

i 〉〈Sz
i′ 〉+ (1−

4〈Sz
i 〉〈Sz

i′〉)u
i,i′

⇑,⇓/ui,i′

⇑,⇑, where Sz
i are the eg spin operators.

In LaMnO3 the eg spins align with the randomly oriented
t2g spins, thus t̄ = 2t/3, w ∼ 2, and JSE ∼ 2(2t/3)2/U .
For d-type order, the classical ground-state is |θ〉 ∼ |90o〉,
in agreement with our DMFT results. In KCuF3, with
configuration t62ge

3
g, the Hund’s rule coupling between eg

and t2g plays no role, i.e. 〈Sz
i 〉 = 0. The hopping inte-

gral t̄ = t is indeed slightly larger than in LaMnO3, but
w ∼ 1, a reduction of 50%. Consequently, JSE is reduced
by ∼ 0.6 in KCuF3. For finite J/U and h/U , w is a more
complicated function, but the conclusions stay the same.
We verified solving (1) with LDA+DMFT that also for

LaMnO3 TKK drops drastically if ui,i′

σ,−σ = 0 and h = 0.
It remains to evaluate the effect of the orthorhombic

distortion on the transition. For this we perform calcu-
lations for the system R0 with no Jahn-Teller distortion,
but keeping the tetragonal and GdFeO3-type distortion
of the 300 K structure. This structure is metallic for
U = 4 eV; for U = 5 eV it has a gap of ∼ 0.5 eV. We
find a large polarization already at 1150 K (p ∼ 0.45).
Such polarization is due to the crystal-field splitting of
about 219 meV, with lower crystal-field states at site 1
given by |1〉 ∼ |x2 − y2〉. Surprisingly the most occupied
state |θ〉 is close to |1〉 (θ ∼ 180) only at high temper-
ature (∼ 1000 K). The orthorhombic crystal-field thus
competes with super-exchange, analogous to an external
field with a component perpendicular to an easy axis.

KCuF3 and LaMnO3 
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KCuF3 (LDA+U)

KCuF3 atomic KCuF3 (LSDA)

Fig. 1: Charge density for a cut through KCuF3. The charge density contours (on a logarithmic

scale) for the insulating solid calculated with LDA+U hardly differs from the charge density

of the metal obtained in LSDA. Both hardly differ from the superposition of atomic charge

densities. Large black circles: position of Cu atoms, small black circles: F atoms.

finding a good approximation is virtually impossible.

By the nature of the Kohn-Sham approach, density-functional calculations are largely confined

to materials, for which the picture of individual electrons is adequate, and Fermi-liquid the-

ory, which models weakly interacting quasi-particles, applies. There is, however, a remarkable

variety of strongly correlated materials for which this standard model of electronic structure

theory breaks down. The hallmark of these materials is that some of their electrons are neither

perfectly localized, nor fully itinerant. These electrons can no longer be considered individu-

ally. The resulting behavior presents some of the deepest intellectual challenges in physics. At

the same time interest in strongly correlated materials is fueled by the astounding possibilities

for technological applications. Prominent examples are the transition-metal oxides, e.g., the

high-temperature superconductors, and molecular crystals [13].

details matter...
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identify which details do matters

Philp Warren 
Anderson
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