Hirsch-Fye quantum Monte Carlo method for dynamical mean-field theory

Nils Blümer

Institut für Physik, Johannes Gutenberg-Universität Mainz

TR 49: Condensed matter systems with variable many-body interactions Frankfurt / Kaiserslautern / Mainz FOR 1346 LDA+DMFT Augsburg *et al.*

Outline

Introduction: Hubbard model and DMFT self-consistency

Hirsch-Fye QMC solution of the single-impurity Anderson model

Achieving DMFT self-consistency, extrapolation

Outline

Introduction: Hubbard model and DMFT self-consistency Hirsch-Fye QMC solution of the single-impurity Anderson model Achieving DMFT self-consistency, extrapolation

Verification: comparison of DMFT results with determinantal QMC [Gorelik, Paiva, Scalettar, Klümper, Blümer, arXiv:1105.3356]

Extension: real-space DMFT for ultracold fermions on optical lattices [Gorelik, Titvinidze, Hofstetter, Snoek, Blümer, PRL (2010)] [Blümer, Gorelik, Comp. Phys. Comm. (2011); Gorelik, Blümer, JLTP (2011)]

Outline

Introduction: Hubbard model and DMFT self-consistency Hirsch-Fye QMC solution of the single-impurity Anderson model Achieving DMFT self-consistency, extrapolation

Verification: comparison of DMFT results with determinantal QMC [Gorelik, Paiva, Scalettar, Klümper, Blümer, arXiv:1105.3356]

Extension: real-space DMFT for ultracold fermions on optical lattices [Gorelik, Titvinidze, Hofstetter, Snoek, Blümer, PRL (2010)] [Blümer, Gorelik, Comp. Phys. Comm. (2011); Gorelik, Blümer, JLTP (2011)]

Tutorial: study Mott metal-insulator transition using HF-QMC

Introduction: Hubbard model and DMFT self-consistency

Hubbard model (arbitrary hopping, 1 band)

$$\hat{H} = \sum_{\langle i,j \rangle,\sigma} t_{ij} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$= \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{n}_{\mathbf{k}\sigma} + U \sum_{i} \hat{D}_{i}; \qquad \hat{D}_{i} = \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Introduction: Hubbard model and DMFT self-consistency

Hubbard model (arbitrary hopping, 1 band)

$$\hat{H} = \sum_{\langle i,j \rangle,\sigma} t_{ij} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$= \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} \hat{n}_{\mathbf{k}\sigma} + U \sum_{i} \hat{D}_{i}; \qquad \hat{D}_{i} = \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

Dynamical mean-field theory (DMFT): local self-energy $\Sigma(\mathbf{k}, \omega) \equiv \Sigma(\omega)$ [Metzner, Vollhardt, PRL (1989), Georges, Kotliar, PRL (1992), Jarrell, PRL (1992)]

- + non-perturbative ~> valid at MIT
- + in thermodynamic limit
- +/- exact for coordination $Z o \infty$

(questionable for $d \leq 2 \rightsquigarrow DCA$, CDMFT)

Iterative solution of DMFT self-consistency equations

Iterative solution of DMFT self-consistency equations

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Hirsch-Fye quantum Monte-Carlo (HF-QMC)

Iterative solution of DMFT self-consistency equations

Impurity solver:

- Iterative perturbation theory (IPT; not controlled)
- Hirsch-Fye quantum Monte-Carlo (HF-QMC)
- Continuous-time quantum Monte-Carlo (CT-QMC)
- Exact diagonalization (ED; large finite-size errors)
- Numerical renormalization group (NRG; 1-2 bands)
- Density matrix renormalization group (DMRG)
- Determinantal quantum Monte Carlo (linear in 1/T)

Hirsch-Fye quantum Monte Carlo method

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\mathcal{G}_{\sigma}(\tau) = -rac{1}{\mathcal{Z}}\int \mathcal{D}[\psi,\psi^*] \; \underbrace{\psi_{\sigma}(\tau)\,\psi_{\sigma}^*(0)}_{\cong\;\hat{c}_{\sigma}\hat{c}_{\sigma}^{\dagger}} \; \exp\left[\mathcal{A}_0 - U\int_0^eta d au' \underbrace{\psi_{\uparrow}^*\psi_{\uparrow}\psi_{\downarrow}\psi_{\downarrow}}_{\cong\;\hat{n}_{\uparrow}\hat{n}_{\downarrow}}
ight]$$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\mathcal{G}_{\sigma}(au) = -rac{1}{\mathcal{Z}}\int \mathcal{D}[\psi,\psi^*] \; \underbrace{\psi_{\sigma}(au)\,\psi_{\sigma}^*(0)}_{\cong\;\hat{c}_{\sigma}\hat{c}_{\sigma}^{\dagger}} \; \exp\Big[\mathcal{A}_0 - U\int_0^eta d au' \underbrace{\psi_{\uparrow}^*\psi_{\uparrow}\psi_{\downarrow}\psi_{\downarrow}}_{\cong\;\hat{n}_{\uparrow}\hat{n}_{\downarrow}}\Big]$$

(i) Imaginary-time discretization $\beta = \Lambda \Delta \tau$

(ii) Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} \approx \left[e^{-\Delta \tau \hat{T}} e^{-\Delta \tau \hat{V}}\right]^{\Lambda}$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\mathcal{G}_{\sigma}(au) = -rac{1}{\mathcal{Z}}\int \mathcal{D}[\psi,\psi^*] \; \underbrace{\psi_{\sigma}(au)\,\psi_{\sigma}^*(0)}_{\cong \; \hat{c}_{\sigma}\,\hat{c}_{\sigma}^{\dagger}} \; \exp\Big[\mathcal{A}_0 - U\int_0^eta d au' \underbrace{\psi_{\uparrow}^*\psi_{\uparrow}\psi_{\downarrow}\psi_{\downarrow}}_{\cong \; \hat{n}_{\uparrow}\,\hat{n}_{\downarrow}}\Big]$$

(i) Imaginary-time discretization $\beta = \Lambda \Delta \tau$

(ii) Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} \approx \left[e^{-\Delta\tau\hat{T}}e^{-\Delta\tau\hat{V}}\right]^{\Lambda}$

$$\hat{n}_{\uparrow}\hat{n}_{\downarrow}=rac{1}{2}ig[\hat{n}_{\uparrow}+\hat{n}_{\downarrow}-ig(\hat{n}_{\uparrow}-\hat{n}_{\downarrow}ig)^2ig] \quad
ightarrow \quad e^{-\Delta au\,U\hat{n}_{\uparrow}\hat{n}_{\downarrow}}=e^{-\Delta au\,U\hat{n}/2}\,e^{\Delta au\,U(\hat{n}_{\uparrow}-\hat{n}_{\downarrow})^2/2}$$

Green function G in imaginary time (fermionic Grassmann variables ψ , ψ^*):

$$\mathcal{G}_{\sigma}(au) = -rac{1}{\mathcal{Z}}\int \mathcal{D}[\psi,\psi^*] \; \underbrace{\psi_{\sigma}(au)\,\psi_{\sigma}^*(0)}_{\cong \; \hat{c}_{\sigma}\,\hat{c}_{\sigma}^{\dagger}} \; \exp\Big[\mathcal{A}_0 - U\int_0^eta d au' \underbrace{\psi_{\uparrow}^*\psi_{\uparrow}\psi_{\downarrow}\psi_{\downarrow}}_{\cong \; \hat{n}_{\uparrow}\,\hat{n}_{\downarrow}}\Big]$$

(i) Imaginary-time discretization $\beta = \Lambda \Delta \tau$

(ii) Trotter decoupling $e^{-\beta(\hat{T}+\hat{V})} \approx \left[e^{-\Delta\tau\hat{T}}e^{-\Delta\tau\hat{V}}\right]^{\Lambda}$

$$\hat{n}_{\uparrow}\hat{n}_{\downarrow} = rac{1}{2} [\hat{n}_{\uparrow} + \hat{n}_{\downarrow} - (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^2] \quad \rightsquigarrow \quad e^{-\Delta au U \hat{n}_{\uparrow} \hat{n}_{\downarrow}} = e^{-\Delta au U \hat{n}/2} e^{\Delta au U (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^2/2}$$

(iii) Hubbard-Stratonovich transform $\cosh(\lambda) = \exp(\Delta \tau U/2)$

$$e^{\Delta au U(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^2/2} = rac{1}{2} \sum_{s=\pm 1} e^{\lambda s (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})}$$

 $\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \longrightarrow \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) + \left(\begin{array}{c} \bullet \\ \end{array} \right) + \left(\begin{array}{c} \bullet \end{array} \right) +$

Wick theorem:

$$G = \frac{\sum M \det\{M\}}{\sum \det\{M\}}$$

Hirsch-Fye QMC: some more details (1/3) ...

Action $\mathcal{A}_0 - U \int_0^\beta d\tau' \, \psi_\uparrow^* \psi_\uparrow \psi_\downarrow^* \psi_\downarrow$ in discretized form:

$$\mathcal{A}_{\Lambda}[\psi,\psi^*,\mathcal{G},U] = (\Delta\tau)^2 \sum_{\sigma} \sum_{l,l'=0}^{\Lambda-1} \psi^*_{\sigma l} (\mathcal{G}_{\sigma}^{-1})_{ll'} \psi_{\sigma l'} - \Delta\tau U \sum_{l=0}^{\Lambda-1} \psi^*_{\uparrow l} \psi_{\downarrow l} \psi_{\downarrow l} \psi_{\downarrow l}$$
(11)

Matrix \mathcal{G}_{σ} consists of elements $\mathcal{G}_{\sigma II'} \equiv \mathcal{G}_{\sigma}(I\Delta \tau - I'\Delta \tau); \quad \psi_{\sigma I} \equiv \psi_{\sigma}(I\Delta \tau).$

Hirsch-Fye QMC: some more details (1/3) ...

Action $\mathcal{A}_0 - U \int_0^\beta d\tau' \psi_{\uparrow}^* \psi_{\uparrow} \psi_{\downarrow}^* \psi_{\downarrow}$ in discretized form:

$$\mathcal{A}_{\Lambda}[\psi,\psi^*,\mathcal{G},U] = (\Delta\tau)^2 \sum_{\sigma} \sum_{l,l'=0}^{\Lambda-1} \psi^*_{\sigma l} (\mathcal{G}_{\sigma}^{-1})_{ll'} \psi_{\sigma l'} - \Delta\tau U \sum_{l=0}^{\Lambda-1} \psi^*_{\uparrow l} \psi_{\downarrow l} \psi_{\downarrow l} \psi_{\downarrow l}$$
(11)

Matrix \mathcal{G}_{σ} consists of elements $\mathcal{G}_{\sigma II'} \equiv \mathcal{G}_{\sigma}(I\Delta \tau - I'\Delta \tau); \quad \psi_{\sigma I} \equiv \psi_{\sigma}(I\Delta \tau).$

The Trotter decomposition yields to lowest order

$$\exp\left(\mathcal{A}_{\Lambda}[\psi,\psi^{*},\mathcal{G},U]\right) = \prod_{I=0}^{\Lambda-1} \left[\exp\left((\Delta\tau)^{2}\sum_{\sigma}\sum_{I'=0}^{\Lambda-1}\psi_{\sigma I}^{*}(\mathcal{G}_{\sigma}^{-1})_{II'}\psi_{\sigma I'}\right) \times \exp\left(-\Delta\tau U\psi_{\uparrow I}^{*}\psi_{\uparrow I}\psi_{\downarrow I}^{*}\psi_{\downarrow I}\right)\right].$$
(12)

Hirsch-Fye QMC: some more details (2/3) ...

with*

Hubbard-Stratonovich transformation (+ Trotter again) yields

$$G_{\sigma l_1 l_2} = \frac{1}{\mathcal{Z}} \sum_{\{s\}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^*] \psi^*_{\sigma l_1} \psi_{\sigma l_2} \exp\Big(\sum_{\sigma, l, l'} \psi^*_{\sigma l} \mathcal{M}^{s_l}_{\sigma l l'} \psi_{\sigma l'}\Big), \quad (14)$$

$$\uparrow 2^{\wedge} \text{ HS field configurations}$$

$$M^{s_l}_{\sigma \parallel \prime} = (\Delta \tau)^2 (\boldsymbol{\mathcal{G}}_{\sigma}^{-1})_{\parallel \prime} - \lambda \sigma \delta_{\parallel \prime} s_l$$

Hirsch-Fye QMC: some more details (2/3) ...

Hubbard-Stratonovich transformation (+ Trotter again) yields

$$G_{\sigma l_1 l_2} = \frac{1}{\mathcal{Z}} \sum_{\{s\}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^*] \psi^*_{\sigma l_1} \psi_{\sigma l_2} \exp\Big(\sum_{\sigma, l, l'} \psi^*_{\sigma l} \mathcal{M}^{s_l}_{\sigma l l'} \psi_{\sigma l'}\Big),$$
(14)

$$\uparrow 2^{\Lambda} \text{ HS field configurations}$$

$$M_{\sigma ll'}^{s_l} = (\Delta \tau)^2 (\mathcal{G}_{\sigma}^{-1})_{ll'} - \lambda \sigma \delta_{ll'} s_l$$
(15)

Apply Wick's theorem \rightsquigarrow

with*

$$G_{\sigma \parallel \prime} = \frac{1}{\mathcal{Z}} \sum_{\{s\}} \left(\mathsf{M}_{\sigma}^{\{s\}} \right)_{\parallel \prime}^{-1} \det \mathsf{M}_{\uparrow}^{\{s\}} \det \mathsf{M}_{\downarrow}^{\{s\}},$$
(16)
$$\mathcal{Z} = \sum_{\{s\}} \det \mathsf{M}_{\uparrow}^{\{s\}} \det \mathsf{M}_{\downarrow}^{\{s\}}.$$

$\lhd \leftrightarrow \bigtriangleup \rhd$ 8

Hirsch-Fye QMC: some more details (2/3) ...

Hubbard-Stratonovich transformation (+ Trotter again) yields

$$G_{\sigma l_1 l_2} = \frac{1}{\mathcal{Z}} \sum_{\{s\}} \int \mathcal{D}[\psi] \mathcal{D}[\psi^*] \psi^*_{\sigma l_1} \psi_{\sigma l_2} \exp\Big(\sum_{\sigma, l, l'} \psi^*_{\sigma l} \mathcal{M}^{s_l}_{\sigma l l'} \psi_{\sigma l'}\Big),$$
(14)

$$\uparrow 2^{\Lambda} \text{ HS field configurations}$$

$$M_{\sigma ll'}^{s_l} = (\Delta \tau)^2 (\mathcal{G}_{\sigma}^{-1})_{ll'} - \lambda \sigma \delta_{ll'} s_l$$
(15)

Apply Wick's theorem \rightsquigarrow

with*

$$G_{\sigma ll'} = \frac{1}{\mathcal{Z}} \sum_{\{s\}} \left(\mathbf{M}_{\sigma}^{\{s\}} \right)_{ll'}^{-1} \det \mathbf{M}_{\uparrow}^{\{s\}} \det \mathbf{M}_{\downarrow}^{\{s\}},$$
(16)
$$\mathcal{Z} = \sum_{\{s\}} \det \mathbf{M}_{\uparrow}^{\{s\}} \det \mathbf{M}_{\downarrow}^{\{s\}}.$$
(17)

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

Gray code (or MC): flip single spin between subsequent configuration:

$$\mathbf{M}_{\sigma} \stackrel{s_{m} \to -s_{m}}{\longrightarrow} \mathbf{M}_{\sigma}' = \mathbf{M}_{\sigma} + \mathbf{\Delta}^{\sigma m}$$
(18)

$$= (1 + \mathbf{\Delta}^{\sigma \, m} (\mathbf{M}_{\sigma})^{-1}) \, \mathbf{M}_{\sigma} \tag{19}$$

with
$$\Delta_{II'}^{\sigma m} = \delta_{II'} \delta_{Im} 2\Delta \tau \lambda \sigma s_I$$
 (20)

Gray code (or MC): flip single spin between subsequent configuration:

$$\mathbf{M}_{\sigma} \stackrel{s_{m} \to -s_{m}}{\longrightarrow} \mathbf{M}_{\sigma}' = \mathbf{M}_{\sigma} + \mathbf{\Delta}^{\sigma \, m}$$
(18)

$$= (1 + \mathbf{\Delta}^{\sigma \, m} (\mathbf{M}_{\sigma})^{-1}) \, \mathbf{M}_{\sigma} \tag{19}$$

with $\Delta_{ll'}^{\sigma m} = \delta_{ll'} \delta_{lm} 2\Delta \tau \lambda \sigma s_l$ (20)

Now: simple (and cheap!) formula for ratio of the determinants:

$$R^{\sigma m} := \frac{\det(\mathbf{M}_{\sigma}')}{\det(\mathbf{M}_{\sigma})} = \det(\mathbf{1} + \mathbf{\Delta}^{\sigma m}(\mathbf{M}_{\sigma})^{-1})$$
$$= 1 + 2\Delta\tau \lambda \sigma s_m (M_{\sigma})_{mm}^{-1}$$
(21)

Gray code (or MC): flip single spin between subsequent configuration:

$$\mathbf{M}_{\sigma} \stackrel{s_{m} \to -s_{m}}{\longrightarrow} \mathbf{M}_{\sigma}' = \mathbf{M}_{\sigma} + \mathbf{\Delta}^{\sigma \, m}$$
(18)

$$= (1 + \mathbf{\Delta}^{\sigma \, m} (\mathbf{M}_{\sigma})^{-1}) \, \mathbf{M}_{\sigma} \tag{19}$$

with $\Delta_{II'}^{\sigma m} = \delta_{II'} \delta_{Im} 2\Delta \tau \lambda \sigma s_I$ (20)

Now: simple (and cheap!) formula for ratio of the determinants:

$$R^{\sigma m} := \frac{\det(\mathbf{M}_{\sigma}')}{\det(\mathbf{M}_{\sigma})} = \det(\mathbf{1} + \mathbf{\Delta}^{\sigma m}(\mathbf{M}_{\sigma})^{-1})$$
$$= 1 + 2\Delta\tau \lambda \sigma s_m (M_{\sigma})_{mm}^{-1}$$
(21)

The inversion of **M** is also elementary, one obtains:

$$(\mathbf{M}_{\sigma}')^{-1} = (\mathbf{M}_{\sigma})^{-1} + \frac{1}{R^{\sigma m}} (\mathbf{M}_{\sigma})^{-1} \mathbf{\Delta}^{\sigma m} (\mathbf{M}_{\sigma})^{-1}$$
(22)

 \rightsquigarrow computational cost for each term: $\mathcal{O}(\Lambda^2)$.

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

Gray code (or MC): flip single spin between subsequent configuration:

$$\mathbf{M}_{\sigma} \stackrel{s_{m} \to -s_{m}}{\longrightarrow} \mathbf{M}_{\sigma}' = \mathbf{M}_{\sigma} + \mathbf{\Delta}^{\sigma \, m}$$
(18)

$$= (1 + \mathbf{\Delta}^{\sigma \, m} (\mathbf{M}_{\sigma})^{-1}) \, \mathbf{M}_{\sigma} \tag{19}$$

with $\Delta_{II'}^{\sigma m} = \delta_{II'} \delta_{Im} 2\Delta \tau \lambda \sigma s_I$ (20)

Now: simple (and cheap!) formula for ratio of the determinants:

$$R^{\sigma m} := \frac{\det(\mathbf{M}_{\sigma}')}{\det(\mathbf{M}_{\sigma})} = \det(\mathbf{1} + \mathbf{\Delta}^{\sigma m}(\mathbf{M}_{\sigma})^{-1})$$
$$= 1 + 2\Delta\tau \lambda \sigma s_m (M_{\sigma})_{mm}^{-1}$$
(21)

The inversion of **M** is also elementary, one obtains:

$$(\mathbf{M}_{\sigma}')^{-1} = (\mathbf{M}_{\sigma})^{-1} + \frac{1}{R^{\sigma m}} (\mathbf{M}_{\sigma})^{-1} \mathbf{\Delta}^{\sigma m} (\mathbf{M}_{\sigma})^{-1}$$
(22)

 \rightsquigarrow computational cost for each term: $\mathcal{O}(\Lambda^2)$. But: 2^A terms!

Simple example: quadrature of a convex function (in d = 1)

Simple example: quadrature of a convex function (in d = 1)

Simple example: quadrature of a convex function (in d = 1)

Simple example: quadrature of a convex function (in d = 1)

Simple example: quadrature of a convex function (in d = 1)

Simple example: quadrature of a convex function (in d = 1)

Convergence of results?

Non-deterministic MC results only meaningful within statistical error bars!

Convergence of results?

Non-deterministic MC results only meaningful within statistical error bars! Here, the deterministic method converges much faster (and regularly)

Convergence of results?

Non-deterministic MC results only meaningful within statistical error bars! Here, the deterministic method converges much faster (and regularly)

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number *N* of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number *N* of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

Solution: approach target probability distribution by random walk (e.g.: 8 states)

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

Solution: approach target probability distribution by random walk (e.g.: 8 states)

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

Solution: approach target probability distribution by random walk (e.g.: 8 states)

Ergodicity and detailed balance

$$p_i P\{i \rightarrow j\} = p_j P\{j \rightarrow i\}$$

 $\Rightarrow \quad P\left[\mathsf{state}\ i\ \mathsf{after}\ \mathsf{update}\ N\right] \stackrel{N \to \infty}{\longrightarrow} p_i$

$$\langle O \rangle = \sum_{i} p_{i} O_{i}, \qquad p_{i} = \frac{e^{-E_{i}/(k_{\rm B}T)}}{\mathcal{Z}} \equiv \frac{\tilde{p}_{i}}{\mathcal{Z}}, \qquad \mathcal{Z} = \sum_{i} e^{-E_{i}/(k_{\rm B}T)}$$

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations. Problem: typically $\sqrt{\operatorname{var}\{p\}} \gg \overline{p}$.

Importance Sampling MC: Probability distribution given by Boltzmann weights p_i . Problem: Normalization $1/\mathcal{Z}$ unknown.

Solution: approach target probability distribution by random walk (e.g.: 8 states)

Ergodicity and detailed balance

$$p_i P\{i \rightarrow j\} = p_j P\{j \rightarrow i\}$$

 $\Rightarrow P [\text{state } i \text{ after update } N] \stackrel{N \to \infty}{\longrightarrow} p_i$

Favorite choice: Metropolis rule $P\{i \rightarrow j\} = \min \left\{\frac{p_j}{p_i}, 1\right\}, \frac{p_j}{p_i} = e^{\Delta E/(k_{\rm B}T)}$

Monte Carlo importance sampling in Hirsch-Fye method

Sample configurations $\{s\}$ according to the (unnormalized) probability

$$P(\{s\}) = \left| \det \mathbf{M}^{\{s\}}_{\uparrow} \det \mathbf{M}^{\{s\}}_{\downarrow} \right|$$

Monte Carlo importance sampling in Hirsch-Fye method

Sample configurations $\{s\}$ according to the (unnormalized) probability

$$P(\{s\}) = \left| \det \mathbf{M}^{\{s\}}_{\uparrow} \det \mathbf{M}^{\{s\}}_{\downarrow} \right|$$
(28)

The Green function can then be calculated as an average $\langle \dots \rangle_s$:

$$\begin{aligned} \mathcal{G}_{\sigma II'} &= \frac{1}{\tilde{\mathcal{Z}}} \left\langle \left(\mathsf{M}_{\sigma}^{\{s\}} \right)_{II'}^{-1} \operatorname{sign} \left(\det \mathsf{M}_{\uparrow}^{\{s\}} \det \mathsf{M}_{\downarrow}^{\{s\}} \right) \right\rangle_{s}, \end{aligned} \tag{29} \\ \tilde{\mathcal{Z}} &= \left\langle \operatorname{sign} \left(\det \mathsf{M}_{\uparrow}^{\{s\}} \det \mathsf{M}_{\downarrow}^{\{s\}} \right) \right\rangle_{s}. \end{aligned}$$

Note: \tilde{Z} deviates from full partition function by prefactor which cancels in (29) MC with importance sampling $\not \rightarrow$ partition function, free energy, entropy!

Monte Carlo importance sampling in Hirsch-Fye method

Sample configurations $\{s\}$ according to the (unnormalized) probability

$$P(\{s\}) = \left| \det \mathbf{M}^{\{s\}}_{\uparrow} \det \mathbf{M}^{\{s\}}_{\downarrow} \right|$$
(28)

The Green function can then be calculated as an average $\langle \dots \rangle_s$:

$$\begin{aligned} \mathcal{G}_{\sigma \parallel'} &= \frac{1}{\tilde{\mathcal{Z}}} \left\langle \left(\mathbf{M}_{\sigma}^{\{s\}} \right)_{\parallel'}^{-1} \operatorname{sign} \left(\det \mathbf{M}_{\uparrow}^{\{s\}} \det \mathbf{M}_{\downarrow}^{\{s\}} \right) \right\rangle_{s}, \end{aligned} \tag{29} \\ \tilde{\mathcal{Z}} &= \left\langle \operatorname{sign} \left(\det \mathbf{M}_{\uparrow}^{\{s\}} \det \mathbf{M}_{\downarrow}^{\{s\}} \right) \right\rangle_{s}. \end{aligned}$$

Note: \tilde{Z} deviates from full partition function by prefactor which cancels in (29) MC with importance sampling $\not\sim$ partition function, free energy, entropy!

If the sign in (29) is constant (no sign problem) \rightsquigarrow simplification:

$$G_{\sigma \parallel \prime} = \frac{1}{\tilde{\mathcal{Z}}} \left\langle \left(\mathsf{M}_{\sigma}^{\{s\}} \right)_{\parallel \prime}^{-1} \right\rangle_{s}, \qquad \tilde{\mathcal{Z}} = \left\langle 1 \right\rangle_{s}.$$
(31)

- (i) Choose starting HS-field configuration $\{s\}$ (uniform or from previous run)
- (ii) Compute initial Green function matrix M^{-1} (determinant not needed)

- (i) Choose starting HS-field configuration $\{s\}$ (uniform or from previous run)
- (ii) Compute initial Green function matrix M^{-1} (determinant not needed)
- (iii) Thermalization of Markov chain by N_{warm} warm-up sweeps
- (iv) Perform N_{meas} measurement sweeps (accumulate sum of intermediate Green functions M^{-1} and observables)

- (i) Choose starting HS-field configuration $\{s\}$ (uniform or from previous run)
- (ii) Compute initial Green function matrix M^{-1} (determinant not needed)
- (iii) Thermalization of Markov chain by N_{warm} warm-up sweeps
- (iv) Perform N_{meas} measurement sweeps (accumulate sum of intermediate Green functions \mathbf{M}^{-1} and observables)
- (v) Divide accumulated sums by the number of attempted configuration updates \rightsquigarrow Green function, other observables (double occupancy, susceptibilities, ...)

- (i) Choose starting HS-field configuration $\{s\}$ (uniform or from previous run)
- (ii) Compute initial Green function matrix M^{-1} (determinant not needed)
- (iii) Thermalization of Markov chain by N_{warm} warm-up sweeps
- (iv) Perform N_{meas} measurement sweeps (accumulate sum of intermediate Green functions M^{-1} and observables)
- (v) Divide accumulated sums by the number of attempted configuration updates \rightsquigarrow Green function, other observables (double occupancy, susceptibilities, ...)

One sweep: attempt spin-flip for each auxiliary spin $s_m \quad (1 \le m \le \Lambda)$

Metropolis acceptance probability: min{1, $R^{\uparrow m} R^{\downarrow m}$ }, where

$$R^{\sigma \ m} = \frac{\det(\mathbf{M}_{\sigma}')}{\det(\mathbf{M}_{\sigma})} = 1 + 2\Delta\tau \ \lambda \ \sigma \mathbf{s}_{m} \ (\mathbf{M}_{\sigma})_{mm}^{-1}$$

Impact of HF-QMC parameters: number of sweeps, discretization Δau

• Statistical error: $(\Delta G)_{\text{statistical}} \propto 1/\sqrt{N_{\text{meas}}}$ Impact of HF-QMC parameters: number of sweeps, discretization Δau

- Statistical error: $(\Delta G)_{\text{statistical}} \propto 1/\sqrt{N_{\text{meas}}}$
- Thermalization error: N_{warm} "large enough" (e.g. N_{warm} = N_{meas}/100)

Impact of HF-QMC parameters: number of sweeps, discretization Δau

- Thermalization error: N_{warm} "large enough" (e.g. N_{warm} = N_{meas}/100)
- Discretization error: $(\Delta G)_{\Delta au} \propto \Delta au^2$

Achieving self-consistency using HF-QMC

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

Iterative solution of DMFT self-consistency equations

For each discretization $\Delta \tau$:

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)

Iterative solution of DMFT self-consistency equations

For each discretization $\Delta \tau$:

- 0. Initialize self-energy
- 1. Solve Dyson equation
- 2. Solve single impurity Anderson model (SIAM)

10

20

0.0236

0.0235

0.0234

0.0232

0.0231

0.023 0.0229 0.0228

Special issue: Fourier transformations in DMFT-QMC cycle

Iterative solution of DMFT equations (for imaginary-time impurity solver)

Special issue: Fourier transformations in DMFT-QMC cycle

Iterative solution of DMFT equations (for imaginary-time impurity solver)

Naive discrete Fourier transformation \rightsquigarrow oscillations (instead of $G(\omega) \stackrel{\omega \to \infty}{\longrightarrow} 1/\omega$)

But:
$$\frac{d^2G(\tau)}{d\tau^2}$$
 maximal for $\tau \to 0, \beta \quad \rightsquigarrow$ natural boundary conditions inappropriate

But:
$$\frac{d^2G(au)}{d au^2}$$
 maximal for $au o 0, eta wedge wedge$ natural boundary conditions inappropriate

- adjust boundary cond. [Oudovenko]
- spline-fit only difference w.r.t. reference problem:
 - IPT [Jarrell]

But:
$$\frac{d^2 G(\tau)}{d\tau^2}$$
 maximal for $\tau \to 0, \beta \quad \rightsquigarrow$ natural boundary conditions inappropriate

- adjust boundary cond. [Oudovenko]
- spline-fit only difference w.r.t. reference problem:
 - IPT [Jarrell]

- high-frequency expansion for $\Sigma(\omega)$ [Knecht, NB]

 $\Sigma_{\sigma}(\omega) = U(\langle \hat{n}_{-\sigma}
angle - rac{1}{2}) \, \omega^0 + U^2 \langle \hat{n}_{-\sigma}
angle (1 - \langle \hat{n}_{-\sigma}
angle) \, \omega^{-1} + \mathcal{O}(\omega^{-2})$

But:
$$\frac{d^2 G(\tau)}{d\tau^2}$$
 maximal for $\tau \to 0, \beta \quad \rightsquigarrow$ natural boundary conditions inappropriate

 $\Sigma_{\sigma}(\omega) = U(\langle \hat{n}_{-\sigma}
angle - rac{1}{2}) \, \omega^0 + U^2 \langle \hat{n}_{-\sigma}
angle (1 - \langle \hat{n}_{-\sigma}
angle) \, \omega^{-1} + \mathcal{O}(\omega^{-2})$

But:
$$\frac{d^2 G(\tau)}{d\tau^2}$$
 maximal for $\tau \to 0, \beta \quad \rightsquigarrow$ natural boundary conditions inappropriate

Sensitive test: high-frequency tails of self-energy

Self-consistency cycle using conventional HF-QMC

Self-consistency cycle using conventional HF-QMC

Extrapolation $\Delta \tau \rightarrow 0$

improves accuracy by orders of magnitude $(\sim \text{same cost})$

Self-consistency cycle using conventional HF-QMC

Extrapolation $\Delta \tau \rightarrow 0$ improves accuracy by orders of magnitude (\sim same cost)

Example: energy Efor U = 4, T = 1/45(Bethe DOS) [NB, PRB (2007)]

Self-consistency cycle using conventional HF-QMC

(a)

$$G(i\omega_n) = \int d\varepsilon \frac{\rho_0(\varepsilon)}{i\omega_n - \varepsilon - \Sigma(i\omega_n)}$$
(b) $O_{\Delta\tau_1}$

$$O_{\Delta\tau_2}$$

$$G_{\Delta\tau}$$

Extrapolation $\Delta \tau \rightarrow 0$ improves accuracy by orders of magnitude (\sim same cost)

Example: energy Efor U = 4, T = 1/45(Bethe DOS) [NB, PRB (2007)]

Recent developments

Verification: comparison of DMFT results (d = 3) with determinantal QMC

Extension: real-space DMFT for ultracold fermions on optical lattices

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

Comparison DMFT – direct QMC for the 3d cubic lattice (n = 1)

Excellent general agreement DMFT \leftrightarrow QMC, even at small U

Comparison DMFT – direct QMC for the 3d cubic lattice (n = 1)

Excellent general agreement DMFT \leftrightarrow QMC, even at small U

Typical QMC discretization errors (thin lines) larger than DMFT deviations!

Double occupancy as a universal measure of AF correlations + entropy

Minimum of D(s) at $s \approx \log 2$ for all d!
Double occupancy as a universal measure of AF correlations + entropy

Minimum of D(s) at $s \approx \log 2$ for all d!

No features seen at d = 3 Néel transition $(s_N \approx log(2)/2)$

Real-space DMFT: use local self-energy in inhomogeneous system

Include trapping potential, e.g.:
$$V_i = V r_i^2$$

 $H = -\sum_{(ij),\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$

Real-space DMFT: use local self-energy in inhomogeneous system

Include trapping potential, e.g.:
$$V_i = V r_i^2$$

 $H = -\sum_{(ij),\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$

 \rightsquigarrow N single-site impurities, coupled by real-space lattice Dyson equation:

$$\left[G_{\sigma}(i\omega_{n})\right]_{ij}^{-1} = (\mu_{\sigma} + i\omega_{n})\delta_{ij} - t_{ij} - (V_{i} + \Sigma_{i\sigma}(i\omega_{n}))\delta_{ij}$$

[M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter, NJP (2008); R. Helmes, T. A. Costi, and A. Rosch, PRL (2008)]

Note: impurity problems are site-parallel, lattice Dyson equation is frequency-parallel

Real-space DMFT: use local self-energy in inhomogeneous system

Include trapping potential, e.g.:
$$V_i = V r_i^2$$

 $H = -\sum_{(ij),\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i=1}^{N} n_{i\uparrow} n_{i\downarrow} + \sum_{i,\sigma} V_i n_{i\sigma}$

 \rightsquigarrow N single-site impurities, coupled by real-space lattice Dyson equation:

$$\left[G_{\sigma}(i\omega_{n})\right]_{ij}^{-1} = (\mu_{\sigma} + i\omega_{n})\delta_{ij} - t_{ij} - (V_{i} + \Sigma_{i\sigma}(i\omega_{n}))\delta_{ij}$$

[M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter, NJP (2008); R. Helmes, T. A. Costi, and A. Rosch, PRL (2008)]

Note: impurity problems are site-parallel, lattice Dyson equation is frequency-parallel

Here: HF-QMC (cost $\propto T^{-3}$) "slab method" + pbc \sim exact for $\mathcal{O}(10^5)$ atoms $\xrightarrow{\text{slab}}$ $\xrightarrow{\text{pbc}}$

Results: RDMFT-QMC (cubic lattice, V = 0.05t, U = W = 12t)

Proposal: enhanced double occupancy (i.e. interaction energy) as a signature of antiferromagnetic order at strong coupling [Gorelik, Titvinidze, Hofstetter, Snoek, Blümer, PRL (2010)]

Tutorial: study Mott metal-insulator transition using HF-QMC

Elena Gorelik Univ. Mainz

Daniel Rost Univ. Mainz

Autumn school Hands-on LDA+DMFT, IFF Jülich · 2011/10/05 · Nils Blümer

$\triangleleft \leftrightarrow \bigtriangleup \vartriangleright 27$

Bandwidth control of metal-insulator transitions (example: V_2O_3)

Corundum structure

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

$$\label{eq:cr} \begin{split} &\alpha_{\text{Cr}} < \alpha_{\text{V}} < \alpha_{\text{Ti}} \\ & \text{Bond angles for } V_2 O_3 \\ & \text{doped with Cr or Ti} \end{split}$$

Bandwidth control of metal-insulator transitions (example: V_2O_3)

Corundum structure

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

$$\label{eq:cr} \begin{split} &\alpha_{\text{Cr}} < \alpha_{\text{V}} < \alpha_{\text{Ti}} \\ & \text{Bond angles for } V_2 O_3 \\ & \text{doped with Cr or Ti} \end{split}$$

Breakdown of Bloch band description at paramagnetic Mott transition

Bloch states near Fermi energy

Bandwidth control of metal-insulator transitions (example: V_2O_3)

Corundum structure

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

$$\label{eq:cr} \begin{split} &\alpha_{\text{Cr}} < \alpha_{\text{V}} < \alpha_{\text{Ti}} \\ & \text{Bond angles for } V_2 O_3 \\ & \text{doped with } Cr \text{ or } \text{Ti} \end{split}$$

Breakdown of Bloch band description at paramagnetic Mott transition

Bloch states near Fermi energy

Bandwidth control of metal-insulator transitions (example: V_2O_3)

Corundum structure

Hydrostatic pressure or isovalent doping change

- lattice spacings
- bond angles
- \rightsquigarrow hopping amplitudes

$$\label{eq:cr} \begin{split} &\alpha_{\text{Cr}} < \alpha_{\text{V}} < \alpha_{\text{Ti}} \\ & \text{Bond angles for } V_2 O_3 \\ & \text{doped with } Cr \text{ or } \text{Ti} \end{split}$$

Breakdown of Bloch band description at paramagnetic Mott transition

Paramagnetic Mott transition at half filling within DMFT

Phase diagram

Paramagnetic Mott transition at half filling within DMFT

Phase diagram can be constructed from (i) $G(\tau) \rightsquigarrow A(\omega)$;

Paramagnetic Mott transition at half filling within DMFT

Phase diagram can be constructed from (i) $G(\tau) \rightsquigarrow A(\omega)$; (ii) other observables

http://komet337.physik.uni-mainz.de/Gorelik/DMFT_tutorial/

DMFT+HF-QMC Tutorial

- Task: Find and explore MIT
- Tools
- Background: Metal-Insulator Transition in the half-filled Hubbard model
- Manual for Mainz implementation of DMFT+HF-QMC
- Manual for Mainz implementation of Maximum Entropy method

 $\left[\text{version of } 2011/10/05\right]$

Task: Find and explore MIT (Bethe lattice, paramagnetic case)

- 0. In your home directory create a symbolic link to the **bin** folder containing all the <u>executables and</u> <u>scripts</u> for this Tutorial: **In -s /home/bluemer/bin**
- 1. Perform DMFT calculations for T = 0.04, fixed value of $\Delta \tau = 0.2$, and U = 3.5, 4, 4.5, 4.7, 4.8, 5, 5.5
 - in a series with increasing interaction values
 - $\circ~$ in a series with decreasing interaction values
- 2. Extract observables:
 - i. double occupancy D(U)
 - ii. quasiparticle weight $Z(U) = (1 Im\Sigma(\omega_1)/\omega_1)^{-1}$
- 3. Check convergency with D and/or Z
- 4. Compute spectra (using MaxEnt)
- 5. Explore the dependence of the results on the imaginary time discretization $\Delta \tau$:
 - i. For one of the U values perform calculations for a set of $\Delta\tau$ values.
 - ii. Plot double occupancy as a function of $\Delta\tau^2$
 - iii. Perform $\Delta \tau \rightarrow 0$ extrapolation

Hint: you may use the provided <u>scripts</u> to create input files and extract observables.